ГОСТ ИСО 7749-2-2004

ОбозначениеГОСТ ИСО 7749-2-2004
НаименованиеОборудование сельскохозяйственное оросительное. Аппараты дождевальные вращающиеся. Часть 2. Равномерность орошения и методы испытаний
СтатусЗаменен
Дата введения01.01.2008
Дата отмены-
Заменен наГОСТ ISO 15886-3-2017
Код ОКС65.060.35
Текст ГОСТа

ГОСТ ИСО 7749-2-2004

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Оборудование сельскохозяйственное оросительное

АППАРАТЫ ДОЖДЕВАЛЬНЫЕ ВРАЩАЮЩИЕСЯ

Часть 2

Равномерность орошения и методы испытаний

Agricultural irrigation equipment. Rotating sprinklers. Part 2. Uniformity of distribution and test methods

МКС 65.060.35

Дата введения 2008-01-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Научно-производственным республиканским унитарным предприятием "Белорусский государственный институт стандартизации и сертификации (БелГИСС)" на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5

2 ВНЕСЕН Комитетом по стандартизации, метрологии и сертификации при Совете министров Республики Беларусь

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 26 мая 2004 г. N 25)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Азербайджан

AZ

Азстандарт

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Грузия

GE

Грузстандарт

Казахстан

KZ

Госстандарт Республики Казахстан

Киргизия

KG

Кыргызстандарт

Молдова

MD

Молдова-Стандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

Туркмения

TM

Главгосслужба "Туркменстандартлары"

Узбекистан

UZ

Узстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 28 марта 2006 г. N 45-ст межгосударственный стандарт ГОСТ ИСО 5682-1-2004 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2008 г.

5 Настоящий стандарт идентичен международному стандарту ИСО 7749-2:1990* "Оборудование сельскохозяйственное оросительное. Аппараты дождевальные вращающиеся. Часть 2. Равномерность орошения и методы испытаний" (ISO 7749-2:1990 "Agricultural irrigation equipment - Rotating sprinklers - Part 2: Uniformity of distribution and test methods", IDT).

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - .

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Май 2020 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

Настоящий стандарт устанавливает условия и методы испытаний по определению равномерности орошения вращающихся дождевальных аппаратов, выраженной через коэффициент равномерности орошения (). Требования настоящего стандарта распространяются на стационарные вращающиеся дождевальные аппараты, предназначенные для орошения и работающие при давлениях, рекомендованных изготовителем.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий стандарт. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных - последнее издание (включая все изменения).

ISO 7749-1:1995, Agricultural irrigation equipment - Rotating sprinklers - Part 1: Design and operational requirements (Оборудование сельскохозяйственное оросительное. Аппараты дождевальные вращающиеся. Часть 1. Требования к конструкции и эксплуатационным характеристикам)

3 Термины и определения

В настоящем стандарте применены термины по ИСО 7749-1, а также следующие термины с соответствующими определениями:

3.1 интенсивность орошения (water application rate): Средняя глубина орошения на орошаемом участке за единицу времени (например, миллиметр в час).

3.2 дождемер (collector): Сосуд для сбора воды, распыляемой дождевальным аппаратом при испытаниях по определению равномерности орошения.

4 Испытания по определению равномерности орошения

4.1 Общие условия испытаний

4.1.1 Расположение испытательного участка

Испытательный участок, на котором расположены дождемеры, должен быть ровным (максимально допустимый уклон 1%). Участок не должен иметь препятствий, которые могут помешать свободному распределению воды.

Рядом с участком не должно быть деревьев или препятствий, так как они могут изменять поток воздуха над испытательным участком. Испытательный участок может располагаться в защищенном, закрытом помещении или на защищенном извне пространстве.

4.1.2 Конструкция дождемеров

Дождемеры для сбора воды, распыляемой дождевальным аппаратом, должны иметь в верхней части цилиндрическую форму не менее чем на одну треть высоты. Все дождемеры должны иметь одинаковую форму и размеры, наружные кромки должны быть острыми, без видимых деформаций. Дождемеры должны иметь такую конструкцию, чтобы собираемая вода не разбрызгивалась. Высота дождемеров - не менее 15 см, но не менее двойной средней высоты воды, собираемой при испытаниях. Диаметр дождемера должен составлять половину его высоты, но не менее 8,5 см.

Дождемеры, предназначенные для сбора воды и подачи в измерительное приспособление, должны иметь приемную часть с острой кромкой и диаметром не менее 8,5 см. Дождемеры должны быть цилиндрической или конической (расширяющейся вверх) формы с углом наклона боковых стенок не менее 45° к горизонтали.

Допускается применение дождемеров других типов при условии, что они обеспечивают погрешность измерения не менее, чем дождемеры, оговоренные выше.

Плоскость приемных отверстий должна быть параллельна земле с погрешностью ±5°, а перепад высот рядом расположенных дождемеров не должен превышать 2 см.

4.1.3 Установка дождевального аппарата для испытаний

Новые дождевальные аппараты перед испытаниями должны проработать при испытательном давлении в течение 1 ч.

Устанавливают дождевальный аппарат на стояке с диаметром соединения, совместимым с резьбой на дождевальном аппарате. Необходимо обеспечить, чтобы стояк был установлен вертикально и не отклонялся или изгибался во время испытаний. Максимальное допустимое отклонение от вертикального положения - не более 1°.

Высота расположения основной насадки дождевального аппарата относительно приемных отверстий дождемеров должна составлять не менее десяти номинальных диаметров дождевального аппарата, но не менее 50 см.

Дождевальный аппарат, для которого изготовитель рекомендует различную высоту орошения, например выдвижной дождевальный аппарат, испытывают на высоте расположения основной насадки дождевального аппарата над приемными отверстиями дождемеров, указанной изготовителем как высота, рекомендуемая для правильного использования.

Фильтр устанавливают на линии питания до вывода для подключения манометра. Размер ячейки фильтра должен быть таким, чтобы пропускаемые частицы имели размер не более 30% размера меньшей оси выходного сечения дождевального аппарата.

4.1.4 Измерение условий окружающей среды

Перед проведением испытаний и в процессе испытаний с интервалами не более 15 мин следует измерять скорость ветра и его направление. Измерения проводят в открытом поле. Скорость ветра во время испытаний должна соответствовать требованиям ИСО 7749-1:1995, таблица 3. Изменение направления ветра должно быть не более 20° при скорости ветра более 0,4 м/с.

Измерения показателей ветра должны быть выполнены на расстоянии не более 50 м от границы испытательного участка на высоте приблизительно 90% максимальной высоты траектории, но не менее 2 м. Скорость ветра должна быть указана в протоколе испытаний.

Относительная влажность и температура окружающей среды должны быть измерены во время испытаний.

4.1.5 Средства измерений и условия испытаний

Испытательное давление должно быть измерено на высоте основной насадки испытуемого дождевального аппарата (см. рисунок 1). Точка, в которой измеряют давление, должна быть расположена на расстоянии не менее 20 см от дождевального аппарата, так чтобы локальные изменения не сказывались на показаниях манометра.

Между точкой измерения давления и дождевальным аппаратом не должно быть расположено никаких устройств и приборов, которые могут вызвать снижение давления.

Во время испытания давление не должно изменяться более чем на ±4%. Допустимая погрешность средств измерений от действительного значения должна соответствовать таблице 1.


Рисунок 1 - Измерение давления в дождевальном аппарате

Таблица 1 - Погрешность измерения

Измеряемый показатель

Погрешность

Расход воды

±2%

Давление

±2%

Скорость ветра и его направление должны быть измерены чашечным суммирующим анемометром, снабженным флюгером или другим устройством определения направления ветра или любым другим устройством.

Относительная влажность и температура окружающей среды должны быть измерены стандартными средствами измерения, используемыми на метеорологических полевых станциях для измерения данных параметров.

4.1.6 Продолжительность испытания

Продолжительность испытаний должна быть не менее 1 ч.

4.1.7 Расчет интенсивности орошения

Интенсивность орошения , мм/ч, рассчитывают по следующей формуле

,

где - расход воды, м/ч;

- расстояние между боковыми отводами, м;

- расстояние между дождевальными аппаратами, м.

4.2 Полнополевой метод

4.2.1 Устанавливают стояк с дождевальным аппаратом в центре испытательного участка на пересечении диагоналей, проведенных из углов испытательного участка (см. рисунок 2).

4.2.2 Расстояние между дождемерами должно быть установлено, как показано на рисунке 2. Допустимые отклонения от шага должны быть не более 5 см в любом направлении. Область размещения дождемеров должна быть достаточной, чтобы обеспечить полный охват зоны орошения с учетом необходимого дополнительного запаса по краям участка.

4.2.3 Метод расчета коэффициента равномерности орошения () приведен в приложении А.


m = 2 м для дождевальных аппаратов с диаметром орошения более 10 м; m = 1 м для дождевальных аппаратов с диаметром орошения 10 м и менее; n = 0,5 м; Y - дождевальный аппарат; 0 - дождемер для определения распределения воды; X - дождемер для определения диаметра орошения (см. ИСО 7749-1)

Примечание - Метод измерения диаметра орошения установлен в ИСО 7749-1.

Рисунок 2 - Пример расположения дождемеров при испытаниях дождевального аппарата по определению равномерности и диаметра орошения полнополевым методом

4.3 Радиальный метод

Данный метод следует применять только при отсутствии ветра.

Устанавливают дождемеры по прямой линии, проведенной от центра испытуемого дождевального аппарата. Максимальные расстояния между дождемерами вдоль линии должны соответствовать приведенным в таблице 2.

Таблица 2 - Расстояние между дождемерами

Максимальное расстояние между дождемерами, м

Диаметр орошения, м

1

20

2

>20

Количество дождемеров на линии должно быть достаточным, чтобы охватить полный радиус орошения дождевального аппарата с учетом дополнительного запаса по радиусу.

Во время испытания стояк, на который установлен дождевальный аппарат, должен вручную поворачиваться на четверть оборота (90°) вокруг своей оси три раза за равные промежутки времени. Поворот должен осуществляться, когда струя воды дождевального аппарата находится не над дождемерами.

Расчет коэффициента равномерности орошения () приведен в приложении А.

Приложение А
(обязательное)


Равномерность орошения

А.1 Дождевальный аппарат предназначен для достижения равномерного орошения данного участка земли. Каждый дождевальный аппарат имеет свою характеристику распределения, которая зависит от давления воды и размера насадки. Различные дождевальные аппараты имеют различные характеристики распределения. Равномерность орошения зависит от характеристик распределения и расстояния между дождевальными аппаратами. Следовательно, существует необходимость сравнения равномерности орошения различных дождевальных аппаратов при различных условиях эксплуатации.

А.2 Христиансен вывел следующую формулу для расчета коэффициента равномерности орошения ()

,

где - количество измерений;

- среднеарифметическое значение измерений;

- измерение каждого дождемера;

- сумма абсолютных значений каждого отклонения измерения от среднего значения.

________________

J.E.Christiansen, Irrigation by Sprinkling, Bulletin 670, University of California, Berkeley, 1942 (Христиансен, Орошение спринклерами, бюллетень 670, Калифорнийский университет, Беркли, 1942).

А.3 Коэффициент равномерности орошения рассчитывают по результатам испытаний распределения воды дождевальным аппаратом в полевых условиях. Дождемеры одного размера и формы располагают на одинаковом расстоянии друг от друга в определенном порядке на испытательном участке. Основой для расчета коэффициента является количество собранной воды в каждом дождемере.

С учетом зон перекрытия конкретного дождевального аппарата схемы распределения воды при различных расстояниях между дождевальными аппаратами, для имитации полевых условий (на основе схемы распределения, полученной одним дождевальным аппаратом, испытанным полнополевым методом) коэффициент равномерности орошения для различных расстояний между дождевальными аппаратами определяют следующим образом:

a) дождемеры устанавливают как показано на рисунке 2;

b) измеряют количество воды в дождемерах при работе дождевального аппарата в соответствии с условиями настоящего стандарта;

c) регистрируют количество собранной воды;

d) определяют перекрытие, т.е. суммарное количество воды, которое было бы собрано дождемерами, если бы они были расположены между четырьмя дождевальными аппаратами, идентичными испытываемому дождевальному аппарату, для которого коэффициент равномерности орошения определен. Затем рассчитывают коэффициент равномерности орошения по формуле Христиансена.

А.4 Коэффициент равномерности орошения 100% означает абсолютно равномерное распределение воды по всему полю. Более низкое значение в процентах указывает на худшие уровни равномерности орошения.

А.5 Испытание дождевальных аппаратов радиальным методом и расчет коэффициента равномерности орошения выполняют следующим образом:

a) дождемеры устанавливают на равных расстояниях вдоль радиуса, проведенного от места установки дождевального аппарата;

b) измеряют количество воды в дождемерах при работе дождевального аппарата в соответствии с условиями настоящего стандарта;

c) рассчитывают количество воды, собранной в имитируемых дождемерах, расположенных вдоль радиуса, который представляет их расположение (т.е. их расстояние от испытуемого дождевального аппарата), если бы были они установлены в соответствии с полнополевым методом (см. рисунок А.1).

Приведенное выше количество воды представляет количество, которое было бы собрано в соответствующих дождемерах, если бы они были установлены в соответствии с полнополевым методом, а также показывает схему распределения воды испытуемого дождевального аппарата;

d) имитируя расстояние между дождевальными аппаратами в соответствии с расстоянием, для которого коэффициент равномерности орошения определен, рассчитывают суммарное количество воды, которое было бы собрано дождемерами, если бы они были расположены между четырьмя дождевальными аппаратами, идентичными испытуемому. Затем определяют коэффициент равномерности орошения по формуле Христиансена.


- расположение дождемеров вдоль радиуса; - имитация расположения дождемеров, представляющих расположение дождемеров по полнополевому методу. Количество воды в имитируемых дождемерах рассчитывают в зависимости от радиального расстояния от испытуемого спринклера; - расположение дождемеров в соответствии с полнополевым методом для вычисления коэффициента равномерности орошения с учетом перекрытия; - расположение дождевального аппарата.

Примечание - Показана только 1/8 часть круга.

Рисунок А.1 - Схема расположения дождемеров при определении диаметра орошения при расчете равномерности орошения с учетом перекрытия

Приложение ДА
(справочное)

Сведения о соответствии ссылочных международных стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного
международного стандарта

Степень

Обозначение и наименование
соответствующего межгосударственного стандарта

ISO 7749-1:1995

IDT

ГОСТ ИСО 7749-1-2004 "Оборудование сельскохозяйственное оросительное. Аппараты дождевальные вращающиеся. Часть 1. Требования к конструкции и эксплуатационным характеристикам"

Примечание - В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

- IDT - идентичный стандарт.

УДК 631.347.4:620.17:006.354

МКС 65.060.35

Ключевые слова: интенсивность орошения, методы испытаний, дождемер, условия испытаний, полнополевой метод, радиальный метод, коэффициент равномерности орошения

Электронный текст документа

и сверен по:

, 2020

Другие госты в подкатегории

    ГОСТ 10000-2017

    ГОСТ 10677-82

    ГОСТ 1114-84

    ГОСТ 12.2.111-2020

    ГОСТ 11674-75

    ГОСТ 12.2.122-2013

    ГОСТ 12588-81

    ГОСТ 12.2.139-97

    ГОСТ 12.2.122-88

    ГОСТ 12.2.121-2013

    ГОСТ 10677-2001

    ГОСТ 15594-80

    ГОСТ 12.2.121-88

    ГОСТ 17034-82

    ГОСТ 12935-76

    ГОСТ 16526-70

    ГОСТ 17800-72

    ГОСТ 18524-85

    ГОСТ 13398-82

    ГОСТ 19677-87

    ГОСТ 12.2.140-97

    ГОСТ 19722-82

    ГОСТ 19777-74

    ГОСТ 20760-75

    ГОСТ 20793-2009

    ГОСТ 17595-88

    ГОСТ 158-74

    ГОСТ 20062-96

    ГОСТ 22587-91

    ГОСТ 19597-94

    ГОСТ 22999-88

    ГОСТ 23074-85

    ГОСТ 23173-78

    ГОСТ 21909-83

    ГОСТ 23173-96

    ГОСТ 20915-75

    ГОСТ 23982-85

    ГОСТ 23707-95

    ГОСТ 19598-95

    ГОСТ 23734-79

    ГОСТ 2472-80

    ГОСТ 24665-81

    ГОСТ 25327-82

    ГОСТ 25483-95

    ГОСТ 25518-93

    ГОСТ 17.2.2.02-98

    ГОСТ 25353-82

    ГОСТ 25836-83

    ГОСТ 25791-90

    ГОСТ 25942-90

    ГОСТ 26285-84

    ГОСТ 26711-89

    ГОСТ 26738-91

    ГОСТ 26879-88

    ГОСТ 24059-2017

    ГОСТ 26954-2019

    ГОСТ 27310-87

    ГОСТ 26025-83

    ГОСТ 27388-87

    ГОСТ 27434-87

    ГОСТ 27857-88

    ГОСТ 13758-89

    ГОСТ 27021-86

    ГОСТ 26026-83

    ГОСТ 27378-87

    ГОСТ 28099-89

    ГОСТ 28174-89

    ГОСТ 27999-88

    ГОСТ 27994-88

    ГОСТ 20915-2011

    ГОСТ 28305-89

    ГОСТ 28286-89

    ГОСТ 28306-2018

    ГОСТ 28307-2013

    ГОСТ 28287-89

    ГОСТ 28516-90

    ГОСТ 28523-90

    ГОСТ 28307-89

    ГОСТ 28524-90

    ГОСТ 28708-90

    ГОСТ 28713-2018

    ГОСТ 28306-89

    ГОСТ 28708-2001

    ГОСТ 28714-90

    ГОСТ 28713-90

    ГОСТ 28301-89

    ГОСТ 23730-88

    ГОСТ 28722-2018

    ГОСТ 28722-90

    ГОСТ 28957-91

    ГОСТ 28958-91

    ГОСТ 28718-90

    ГОСТ 30411-2001

    ГОСТ 30411-95

    ГОСТ 30506-97

    ГОСТ 28745-90

    ГОСТ 30725-2001

    ГОСТ 28301-2015

    ГОСТ 24055-2016

    ГОСТ 30723-2001

    ГОСТ 28301-2007

    ГОСТ 30748-2001

    ГОСТ 30749-2001

    ГОСТ 30752-2001

    ГОСТ 30747-2001

    ГОСТ 28717-90

    ГОСТ 31593-2012

    ГОСТ 30746-2001

    ГОСТ 17460-72

    ГОСТ 28714-2007

    ГОСТ 28718-2016

    ГОСТ 32485-2013

    ГОСТ 30750-2001

    ГОСТ 33037-2014

    ГОСТ 32617-2014

    ГОСТ 30745-2001

    ГОСТ 33678-2015

    ГОСТ 33679-2015

    ГОСТ 31742-2012

    ГОСТ 31595-2012

    ГОСТ 31345-2017

    ГОСТ 33691-2015

    ГОСТ 31348-2007

    ГОСТ 33687-2015

    ГОСТ 33677-2015

    ГОСТ 33736-2016

    ГОСТ 34280-2017

    ГОСТ 34363-2017

    ГОСТ 33734-2016

    ГОСТ 31345-2007

    ГОСТ 34389-2018

    ГОСТ 33032-2014

    ГОСТ 34431-2018

    ГОСТ 32431-2013

    ГОСТ 33686-2015

    ГОСТ 34491-2018

    ГОСТ 34492-2018

    ГОСТ 34493-2018

    ГОСТ 34494-2018

    ГОСТ 34490-2018

    ГОСТ 34393-2018

    ГОСТ 34495-2018

    ГОСТ 34501-2018

    ГОСТ 34605-2019

    ГОСТ 34629-2019

    ГОСТ 34391-2018

    ГОСТ 34392-2018

    ГОСТ 34746-2021

    ГОСТ 34747-2021

    ГОСТ 3481-79

    ГОСТ 3496-74

    ГОСТ 3497-74

    ГОСТ 34265-2017

    ГОСТ 4154-93

    ГОСТ 4156-93

    ГОСТ 4153-93

    ГОСТ 4230-93

    ГОСТ 5.1650-72

    ГОСТ 4229-94

    ГОСТ 6939-85

    ГОСТ 7057-81

    ГОСТ 7496-84

    ГОСТ 34631-2019

    ГОСТ 33735-2016

    ГОСТ 9024-70

    ГОСТ 7751-2009

    ГОСТ 33737-2016

    ГОСТ EN 12525-2012

    ГОСТ 7751-85

    ГОСТ EN 13118-2012

    ГОСТ 34496-2018

    ГОСТ EN 12965-2012

    ГОСТ 34498-2018

    ГОСТ 34390-2018

    ГОСТ EN 13448-2012

    ГОСТ ЕН 632-2003

    ГОСТ EN 13140-2012

    ГОСТ EN 1853-2012

    ГОСТ 7057-2001

    ГОСТ IEC 60335-2-70-2015

    ГОСТ IEC 60335-2-87-2019

    ГОСТ IEC 60335-2-70-2011

    ГОСТ IEC 60335-2-87-2015

    ГОСТ IEC 60335-2-94-2021

    ГОСТ 34630-2019

    ГОСТ ISO 11001-2-2019

    ГОСТ EN 609-1-2012

    ГОСТ EN 609-2-2012

    ГОСТ ISO 11169-2011

    ГОСТ ISO 11512-2011

    ГОСТ ISO 11850-2011

    ГОСТ ISO 11839-2016

    ГОСТ ISO 11001-1-2019

    ГОСТ EN 703-2012

    ГОСТ ИСО 14269-3-2003

    ГОСТ IEC 60335-2-77-2011

    ГОСТ ИСО 14269-5-2003

    ГОСТ ISO 16231-1-2016

    ГОСТ ISO 15886-3-2017

    ГОСТ ИСО 14269-2-2003

    ГОСТ 34499-2018

    ГОСТ EN 13525-2012

    ГОСТ ISO 11837-2016

    ГОСТ ISO 3776-1-2012

    ГОСТ ИСО 14269-4-2003

    ГОСТ ISO 3776-2-2012

    ГОСТ ISO 26322-1-2012

    ГОСТ ISO 26322-2-2012

    ГОСТ ISO 3776-3-2013

    ГОСТ ISO 3776-2-2018

    ГОСТ ИСО 4253-2005

    ГОСТ ISO 2332-2013

    ГОСТ ISO 4254-13-2013

    ГОСТ ИСО 4252-2005

    ГОСТ IEC 62841-4-3-2020

    ГОСТ ISO 4254-11-2013

    ГОСТ ИСО 11545-2004

    ГОСТ ISO 4254-6-2012

    ГОСТ ИСО 4254-6-2005

    ГОСТ ИСО 4254-7-2005

    ГОСТ ISO 4254-9-2021

    ГОСТ ISO 5395-2-2016

    ГОСТ ISO 5395-1-2016

    ГОСТ ISO 5395-3-2016

    ГОСТ ISO 5675-2019

    ГОСТ ISO 5681-2012

    ГОСТ ИСО 5682-2-2004

    ГОСТ ISO 4254-10-2013

    ГОСТ ИСО 4254-3-2005

    ГОСТ ISO 4254-9-2012

    ГОСТ ISO 5721-2-2016

    ГОСТ ISO 5721-1-2016

    ГОСТ ISO 16231-2-2019

    ГОСТ ISO 12003-2-2016

    ГОСТ ISO 4254-8-2013

    ГОСТ ISO 7914-2012

    ГОСТ ISO 5674-2012

    ГОСТ ИСО 5682-1-2004

    ГОСТ ISO 8084-2011

    ГОСТ ИСО 7714-2004

    ГОСТ ИСО 5682-3-2004

    ГОСТ ISO 8083-2011

    ГОСТ ИСО 8224-2-2004

    ГОСТ ISO 8082-2-2014

    ГОСТ ISO 8082-1-2017

    ГОСТ ИСО 8909-2-2003

    ГОСТ МЭК 60335-2-94-2004

    ГОСТ МЭК 60335-2-92-2004

    ГОСТ ИСО 7749-1-2004

    ГОСТ ISO 22867-2014

    ГОСТ Р 50022-92

    ГОСТ Р 50060-92

    ГОСТ Р 41.71-99

    ГОСТ ISO 730-2019

    ГОСТ Р 50163-92

    ГОСТ Р 50060-98

    ГОСТ Р 50164-92

    ГОСТ ИСО 9261-2004

    ГОСТ Р 50634-93

    ГОСТ Р 50162-92

    ГОСТ ИСО 9260-2004

    ГОСТ Р 50192-92

    ГОСТ Р 50911-96

    ГОСТ Р 50717-94

    ГОСТ Р 50191-92

    ГОСТ Р 50908-96

    ГОСТ Р 51207-98

    ГОСТ Р 51390-99

    ГОСТ Р 51389-99

    ГОСТ Р 51208-98

    ГОСТ Р 51657.1-2000

    ГОСТ Р 51961-2002

    ГОСТ Р 51754-2001

    ГОСТ Р 51960-2002

    ГОСТ Р 41.86-99

    ГОСТ Р 52504-2005

    ГОСТ Р 51629-2000

    ГОСТ Р 52648-2006

    ГОСТ Р 51614-2000

    ГОСТ Р 52746-2007

    ГОСТ Р 52291-2004

    ГОСТ Р 52026-2003

    ГОСТ Р 52053-2003

    ГОСТ ИСО 8224-1-2004

    ГОСТ Р 52649-2006

    ГОСТ Р 52777-2007

    ГОСТ Р 53051-2008

    ГОСТ Р 52759-2007

    ГОСТ Р 52758-2007

    ГОСТ Р 53054-2008

    ГОСТ Р 53391-2009

    ГОСТ Р 53489-2009

    ГОСТ Р 52757-2007

    ГОСТ Р 54454-2011

    ГОСТ Р 53057-2008

    ГОСТ Р 53052-2008

    ГОСТ Р 54778-2011

    ГОСТ Р 52778-2007

    ГОСТ Р 54781-2011

    ГОСТ Р 54784-2011

    ГОСТ Р 54785-2011

    ГОСТ Р 54780-2011

    ГОСТ Р 41.96-2005

    ГОСТ Р 53053-2008

    ГОСТ Р 58249-2018

    ГОСТ Р 58330.1-2018

    ГОСТ Р 58330.2-2018

    ГОСТ Р 58330.3-2021

    ГОСТ Р 55261-2012

    ГОСТ Р 57192-2016

    ГОСТ Р 54783-2011

    ГОСТ Р 41.96-99

    ГОСТ Р 58657-2019

    ГОСТ Р 58331.1-2018

    ГОСТ Р 58331.2-2019

    ГОСТ Р ИСО 10884-99

    ГОСТ Р 58655-2019

    ГОСТ Р 58801-2020

    ГОСТ Р 54779-2011

    ГОСТ Р ИСО 11783-1-2021

    ГОСТ Р ИСО 11783-11-2021

    ГОСТ Р 53056-2008

    ГОСТ Р ИСО 11783-13-2021

    ГОСТ Р ИСО 11783-12-2021

    ГОСТ Р ИСО 11169-2000

    ГОСТ Р ИСО 11783-3-2021

    ГОСТ Р ИСО 11783-14-2021

    ГОСТ Р ИСО 11512-2000

    ГОСТ Р ИСО 11783-4-2021

    ГОСТ Р ИСО 11783-8-2021

    ГОСТ Р ИСО 11783-7-2021

    ГОСТ Р 60.6.2.1-2019

    ГОСТ Р ИСО 11783-5-2021

    ГОСТ Р ИСО 11850-2005

    ГОСТ Р ИСО 11783-9-2021

    ГОСТ Р ИСО 11783-2-2021

    ГОСТ Р ИСО 15078-2002

    ГОСТ Р ИСО 11783-10-2021

    ГОСТ Р 54782-2011

    ГОСТ Р 58656-2019

    ГОСТ Р ИСО 13862-2003

    ГОСТ Р ИСО 4254-7-2011

    ГОСТ Р ИСО 13860-2003

    ГОСТ Р ИСО 7914-99

    ГОСТ Р ИСО 13861-2003

    ГОСТ Р ИСО 4254-1-2011

    ГОСТ Р ИСО 7917-99

    ГОСТ Р ИСО 7918-99

    ГОСТ Р ИСО 6815-2004

    ГОСТ Р ИСО 7916-99

    ГОСТ Р ИСО 8083-2008

    ГОСТ Р ИСО 8084-2005

    ГОСТ Р ИСО 8084-99

    ГОСТ Р ИСО 8380-99

    ГОСТ Р ИСО 8082-2005

    ГОСТ Р ИСО 3463-2008

    ГОСТ Р ИСО 12003-1-2011

    ГОСТ Р ИСО 8082-99

    ГОСТ Р ИСО 8082-1-2012

    ГОСТ Р 41.96-2011

    ГОСТ Р МЭК 60335-2-77-99

    ГОСТ Р ИСО 5700-2008

    ГОСТ Р ИСО 5696-2002

    ГОСТ Р 55262-2012