ГОСТ Р 53054-2008

ОбозначениеГОСТ Р 53054-2008
НаименованиеМашинные технологии производства продукции растениеводства. Методы экологической оценки
СтатусДействует
Дата введения01.01.2009
Дата отмены-
Заменен на-
Код ОКС65.060
Текст ГОСТа


ГОСТ Р 53054-2008

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Машинные технологии производства продукции растениеводства

МЕТОДЫ ЭКОЛОГИЧЕСКОЙ ОЦЕНКИ

Machine technology tests for plant growing production. Methods of ecological estimation

ОКС 65.060

Дата введения 2009-01-01

Предисловие

1 РАЗРАБОТАН Федеральным государственным научным учреждением "Российский научно-исследовательский институт по испытанию сельскохозяйственных технологий и машин" (ФГНУ "РосНИИТиМ")

2 ВНЕСЕН Министерством сельского хозяйства Российской Федерации

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 17 декабря 2008 г. N 434-ст

4 ВВЕДЕН ВПЕРВЫЕ

5 ПЕРЕИЗДАНИЕ. Июнь 2020 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт устанавливает номенклатуру экологических показателей и методы их определения при испытании машинных технологий производства продукции растениеводства.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 17.4.1.02-83 Охрана природы. Почвы. Классификация химических веществ для контроля загрязнения

ГОСТ 17.4.3.03 Охрана природы. Почвы. Общие требования к методам определения загрязняющих веществ

ГОСТ 17.4.3.06 Охрана природы. Почвы. Общие требования к классификации почв по влиянию на них химических загрязняющих веществ

ГОСТ 17.4.4.02 Охрана природы. Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа

ГОСТ 5180 Грунты. Методы лабораторного определения физических характеристик

ГОСТ 13586.3 Зерно. Правила приемки и методы отбора проб

ГОСТ 20432 Удобрения. Термины и определения

________________

Действует ГОСТ 34103-2017 "Удобрения органические. Термины и определения".

ГОСТ 20915 Испытания сельскохозяйственной техники. Методы определения условий испытаний

ГОСТ 21507 Защита растений. Термины и определения

ГОСТ 26213 Почвы. Методы определения органического вещества

ГОСТ 26927 Сырье и продукты пищевые. Методы определения ртути

ГОСТ 26928 Продукты пищевые. Метод определения железа

ГОСТ 26930 Сырье и продукты пищевые. Метод определения мышьяка

ГОСТ 26931 Сырье и продукты пищевые. Методы определения меди

ГОСТ 26932 Сырье и продукты пищевые. Методы определения свинца

ГОСТ 26933 Сырье и продукты пищевые. Методы определения кадмия

ГОСТ 26934 Сырье и продукты пищевые. Метод определения цинка

ГОСТ 26953 Техника сельскохозяйственная мобильная. Методы определения воздействия движителей на почву

________________

Действует ГОСТ Р 58656-2019.

ГОСТ 27593 Почвы. Термины и определения

ГОСТ 28714 Машины для внесения твердых минеральных удобрений. Методы испытаний

ГОСТ Р ИСО 5725-2 Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений

ГОСТ Р 52759 Машины для внесения твердых органических удобрений. Методы испытаний

________________

Действует ГОСТ 28718-2016 "Техника сельскохозяйственная. Машины для внесения твердых органических удобрений. Методы испытаний".

ГОСТ Р 52778 Испытания сельскохозяйственной техники. Методы эксплуатационно-технологической оценки

________________

Действует ГОСТ 24055-2016 "Техника сельскохозяйственная. Методы эксплуатационно-технологической оценки".

СТ СЭВ 4295 Фрукты и овощи свежие. Отбор проб

СТ СЭВ 4299 Картофель. Методы отбора проб и определение качества

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 17.4.1.02, ГОСТ 20432, ГОСТ 21507, ГОСТ 27593, а также следующие термины с соответствующими определениями:

3.1 предельно допустимая концентрация вещества, загрязняющего почву; ПДК: Максимальная концентрация загрязняющего почву вещества, не вызывающая негативного прямого или косвенного влияния на природную среду и здоровье человека.

3.2 действующее вещество удобрения (д.в. удобрения): Основной питательный элемент, содержащийся в удобрении.

3.3 технология: Научно обоснованный интегрированный комплекс условий, эффективных технологических процессов, их режимов, отдельных способов (приемов) и соответствующих материально-технических средств для производства продукции определенного вида заданного количества и качества.

3.4 машинная технология производства продукции растениеводства: Совокупность агротехнических и организационных приемов, способов получения конечной сельскохозяйственной продукции с заданными требованиями по количеству и качеству, выполненных комплексом мобильных и стационарных машин разного назначения.

3.5 машинный комплекс: Набор энергосредств, сельскохозяйственных машин, оборудования и систем адаптеров, обеспечивающих комплексную механизацию производства продукции растениеводства.

4 Общие положения

4.1 Машинные технологии производства продукции растениеводства (далее - технологии) испытывают по соответствующим нормативным документам.

4.2 Экологическую оценку технологий проводят одновременно с определением показателей условий испытания технологий и показателей качества полученной сельскохозяйственной продукции на том же участке поля, где закладывают полевые опыты.

4.3 Средства измерений, применяемые для измерения показателей экологической оценки, должны быть поверены в соответствии с [1].

5 Номенклатура показателей

Номенклатура показателей экологической оценки технологий приведена в формах А.1, А.2 (приложение А).

6 Методы определения показателей экологической оценки

6.1 Определение условий проведения экологической оценки

6.1.1 Сведения о предшественнике в севообороте, сорте, орошении и нормах полива получают на основании агротехнических данных хозяйства.

6.1.2 Тип почвы и наименование по механическому составу определяют по почвенной карте хозяйства (района) или органолептическим способом по методу Качинского.

6.1.3 Механические обработки почвы указывают после применения пестицида.

6.1.4 Глубину обработки измеряют линейкой, погружая ее в почву до необработанного слоя. Для этого в каждой повторности проводят не менее 25 измерений по следу рабочего органа с интервалом 1 м по ходу движения агрегата. Если след рабочих органов не определим, то измерения проводят на равном расстоянии по всей ширине захвата машины. За рабочими органами, образующими гребнистую поверхность, проводят парные измерения глубины на гребне и в борозде с последующим вычислением среднего значения двух измерений.

Для секционных машин измерения проводят по каждой секции.

Повторность опыта четырехкратная (две - по ходу движения, две - по ходу обратно). Погрешность измерения глубины не должна быть более ±1,0 см. Данные измерений записывают в форму Б.1 (приложение Б) и обрабатывают методом математической статистики с получением среднего арифметического значения глубины и стандартного отклонения.

Допускается определять глубину обработки методами поперечного и продольного профилирования.

Для поперечного профилирования на каждом учетном участке перед проходом машины вбивают две опорные стойки, на которые горизонтально устанавливают координатную рейку или профилограф перпендикулярно к направлению движения агрегата. Горизонтальность рейки проверяют по уровню. Расстояния от поверхности поля до верхней стороны рейки измеряют линейкой по всей ширине захвата машины с интервалом 10 см. Погрешность измерений не должна быть более ±1,0 см.

Для широкозахватных машин устанавливают промежуточные стойки на одной линии в створе с крайними, с последовательной проверкой горизонтальности по уровню. Затем рейку и промежуточные стойки убирают и проводят учетный проход машиной.

После прохода машины устанавливают промежуточные стойки и рейку в первоначальное положение и проводят измерения повторно. Удалив взрыхленный слой почвы, проводят профилирование поверхности дна борозды.

Продольное профилирование проводят походу движения агрегата. Для этого перед проходом агрегата устанавливают рейку длиной 3-6 м. После этого снимают продольный профиль до прохода машины. Делают отметки на вспомогательной и поперечной рейках, чтобы после прохода машины установить их в первоначальное положение. Затем рейки убирают, а колышки оставляют на месте. После прохода машины рейки вновь устанавливают и снимают профиль поверхности и дна обработанного слоя аналогично поперечному профилированию. Измерения проводят по всей длине координатной рейки с интервалом 10 см.

Результаты записывают в форму Б.2 (приложение Б).

6.1.5 Пробы почвы на влажность, плотность, содержание пестицидов и удобрений отбирают не менее чем на пяти пробных площадках, выделенных по диагонали участка согласно рисунку 1.

Пробные площадки почвы отмечают по координатной сетке на равном расстоянии друг от друга так, чтобы исключить искажение результатов анализов под влиянием окружающей среды.

В садах пробы отбирают на расстоянии 1 м от стволов деревьев, на виноградниках и под пропашными культурами пробы почвы отбирают так, чтобы в равной мере захватить рядки и междурядья. В лесных питомниках и на полях, занятых сеянцами и саженцами, точечные пробы отбирают на грядках между посевными строчками или рядами посадки саженцев. При обработке поля пестицидом ленточным или краевым способом пробы отбирают из обработанных зон.

6.1.6 Сроки отбора проб, их число для характеристики по слоям должны быть установлены в рабочей программе испытаний технологий.


- места отбора точечных проб; 1, 2, 3, 4, 5 - пробные площадки почвы

Рисунок 1 - Схема размещения пробных площадок почвы и мест отбора точечных проб

6.1.7 Отбор проб на влажность, плотность и методы их определения - по ГОСТ 20915.

6.1.8 Содержание эрозионно опасных частиц в слое от 0 до 5 см определяют до и после прохода каждой почвообрабатывающей машины (агрегата) на пробных площадках согласно рисунку 1.

Измерения проводят на трех проходах по диагонали участка. На каждом проходе отбирают пробы почвы массой не менее 2,5 кг. Отобранные пробы почвы в лабораторных условиях доводят до воздушно-сухого состояния и просеивают через решето с отверстиями диаметром 1 мм. Массу фракции (проход решета) взвешивают с погрешностью ±10 г.

Результаты взвешивания записывают в форму Б.3 (приложение Б) и вычисляют массовую долю эрозионно опасных частиц , %, по формуле

, (1)

где - масса фракции, кг;

- масса пробы, кг.

6.1.9 Пробы почвы на содержание пестицидов и удобрений согласно 6.1.5 отбирают методом конверта почвенным буром через каждые 5 см из слоев от 0 до 5 см; св. 5 до 10 см; св. 10 до 15 см, если предусматривается обработка почвы на глубину свыше 15 см - через каждые 10 см.

6.1.9.1 В каждом слое почвы отбирают пять точечных проб. Масса каждой точечной пробы должна быть не менее 200 г.

6.1.9.2 Объединенную пробу составляют путем смешивания пяти точечных проб, отобранных на одной площадке из каждого слоя отдельно (рисунок 2). Масса объединенной пробы должна быть не менее 1 кг.


Рисунок 2 - Схема отбора объединенной пробы

6.1.9.3 Объединенную пробу снабжают этикеткой по форме Б.4 (приложение Б), упаковывают в емкость из химически нейтрального материала и направляют для анализа в специализированную агролабораторию.

Пробы почвы, предназначенные для определения содержания пестицидов, не следует отбирать в полиэтиленовую или пластмассовую тару.

6.1.9.4 В лаборатории пробы почвы для химического анализа высушивают до воздушно-сухого состояния по ГОСТ 5180 и подготавливают к анализу по ГОСТ 17.4.4.02.

6.1.9.5 Анализ проб проводят стандартными методами.

Общие требования к методам определения загрязняющих веществ - по ГОСТ 17.4.3.03.

6.1.10 Препаративную форму пестицида и процент действующего вещества (д.в.) определяют согласно паспортным данным предприятия-изготовителя.

Пример - Метафос - 20%-ный концентрат эмульсии (к.э.) или 40%-ный к.э., симазин - 50%-ный смачивающий порошок (с.п.) и т.д.

6.1.11 Способ обработки определяют визуально.

Пример - Опрыскивание, опыливание, опрыскивание с заделкой в почву на глубину 10 см и т.д.

При заделке пестицидов в почву указывают интервал времени между опрыскиванием и заделкой препарата.

Пример - Опрыскивание с одновременной заделкой на глубину..., опрыскивание с заделкой через сутки и т.д. (Указывают также расход рабочей жидкости на 1 га).

6.1.12 Сроки и дозы применения пестицида и удобрения определяют рабочей программой и записывают в форму А.1 (приложение А). Если применяют несколько доз одновременно, то проставляют одну и ту же дату (дату их применения).

Интервалы от посева до обработки и между обработками проставляют со знаком "плюс", если обработку (обработки) проводят после посева (посадки) культуры, со знаком "минус" - если до посева.

6.1.13 Фазу развития растения в период обработки определяют визуально.

6.1.14 При применении других химических средств указывают пестициды, минеральные удобрения, регуляторы роста растений и т.д., которые применены в качестве фона на опытном поле параллельно с изучаемым пестицидом, а также сроки их применения и дозы.

6.1.15 Вид, форму минерального удобрения, процент действующего вещества определяют согласно паспортным данным на удобрение, представленным изготовителем.

6.1.16 Способ внесения удобрений определяют визуально.

6.2 Определение показателей экологической оценки

6.2.1 Анализ проб почвы, отобранных согласно 6.1.5, проводят в день отбора.

6.2.2 Содержание эрозионно опасных частиц в слое от 0 до 5 см определяют по 6.1.8.

6.2.2.1 Изменение содержания эрозионно опасных частиц вычисляют по разности содержания эрозионно опасных частиц до и после прохода почвообрабатывающей машины (агрегата) и записывают в форму А.2 (приложение А).

6.2.3 Плотность почвы определяют до и после прохода машин. Отбор проб проводят на площадках согласно рисунку 1. Метод определения - по ГОСТ 20915.

6.2.3.1 Уплотнение почвы определяют по разности ее плотности до и после прохода машины.

6.2.4 Удельное давление ходовой системы на почву определяют по ГОСТ 26953.

6.2.5 Загрязнение почвы пестицидами определяют до и после применения всех обработок в сроки, определенные рабочей программой.

6.2.5.1 Для анализа почвы на содержание пестицидов используют объединенные пробы, составленные по 6.1.9.

6.2.5.2 Анализ проб проводят в специализированной лаборатории по 6.1.9.5.

6.2.5.3 Среднее значение содержания остатков пестицидов рассчитывают как среднее арифметическое отдельных результатов по всем повторностям опыта.

Если результат одной из повторностей существенно отличается от остальных, проводят выбраковку по ГОСТ Р ИСО 5725-2. Результаты записывают в форму Б.5 (приложение Б).

6.2.5.4 Полученные данные о содержании остатков пестицидов в почвах по базовой и новой технологиям сравнивают между собой и оценивают путем их сравнения со значениями предельно допустимых (ПДК) или ориентировочно допустимых концентраций (ОДК) пестицидов в почве. Значения ПДК и ОДК приведены в ГОСТ 17.4.1.02.

Данные записывают в форму А.2 (приложение А).

6.2.5.5 При определении приоритетности химических веществ, попадающих в почву любым антропогенным путем, для контроля загрязнения почв следует учитывать класс опасности веществ.

Отнесение химических веществ к классам опасности приведено в ГОСТ 17.4.1.02-83 (приложения 2, 3).

6.2.5.6 Коэффициенты концентрации загрязнения почвы пестицидами и ответной реакции по влиянию химического загрязнения на состояние почв вычисляют по приложению ГОСТ 17.4.3.06. Результаты записывают в форму А.2 (приложение А).

6.2.6 Содержание в почве удобрений определяют до и после внесения в сроки, определенные рабочей программой.

6.2.6.1 Для анализа почвы на содержание удобрения используют объединенные пробы, составленные по 6.1.9.

6.2.6.2 Анализ почвы проводят с использованием утвержденных методов в специализированных лабораториях. Обработку результатов проводят по 6.2.5.3.

6.2.6.3 Полученные данные о содержании удобрений в почвах по базовой и новой технологиям сравнивают между собой и с ТЗ (ТУ). Данные записывают в форму А.2 (приложение А).

6.2.7 Равномерность распределения в почве (или на поверхности) жидких минеральных и органических удобрений определяют в соответствии с приложением В.

6.2.7.1 Равномерность распределения в почве (или на поверхности) твердых минеральных удобрений определяют по ГОСТ 28714, твердых органических удобрений - по ГОСТ Р 52759.

6.2.8 Определение содержания органических веществ проводят по ГОСТ 26213 в начале и в конце испытаний технологий. Данные записывают в форму А.2 (приложение А).

6.2.9 Определение содержания основных химических загрязнителей в продукции растениеводства

6.2.9.1 Пробы готовой продукции отбирают на содержание основных химических загрязнителей в день сбора урожая.

6.2.9.2 Метод отбора, подготовка проб к анализу и номенклатура показателей основных химических загрязнителей должны быть указаны в нормативных документах на конкретную продукцию в соответствии с санитарными правилами и нормами, утвержденными Минздравом России [2].

Пробы зерна отбирают и подготавливают к анализу по ГОСТ 13586.3, фрукты и овощи - СТ СЭВ 4295, картофель - СТ СЭВ 4299.

6.2.9.3 Определение содержания основных химических загрязнителей в продукции растениеводства проводят в соответствии с санитарными правилами и нормами, утвержденными Минздравом России [2]. Содержание ртути - по ГОСТ 26927, железа - по ГОСТ 26928, мышьяка - по ГОСТ 26930, меди - по ГОСТ 26931, свинца - по ГОСТ 26932, кадмия - по ГОСТ 26933 и цинка по ГОСТ 26934. Полученные данные записывают в форму А.2 (приложение А).

6.2.10 Загрязнение окружающей среды выбросами вредных веществ (отработавшими газами) двигателями тракторов и самоходных сельскохозяйственных машин определяют по расходу топлива за период испытаний базовой и новой технологий.

6.2.10.1 Расход топлива по новой и базовой технологиям определяют по ГОСТ Р 52778.

6.2.10.2 Уровень загрязнения окружающей среды отработавшими газами от сгорания топлива оценивают по значению нанесенного экологического ущерба , руб., и вычисляют по формуле

, (2)

где - расход топлива по всей технологии производства определенной культуры, кг;

- норматив платежей за загрязнение окружающей среды, руб./кг (в Российской Федерации 0,15).

6.2.10.3 Индекс загрязнения вычисляют по формуле


, (3)

где , - экологический ущерб по базовой и новой технологиям соответственно.

6.3 Обработка и анализ результатов испытаний

6.3.1 Компьютерную обработку результатов испытаний базовой и новой технологий проводят по программе, разработанной для испытаний технологий.

6.3.2 Исходными данными для проведения расчетов служат результаты измерений, записанные в формы Б.1-Б.5 (приложение Б).

6.3.3 После обработки исходных данных заполняются сводные ведомости в соответствии с формами А.1-А.2 (приложение А).

6.3.4 Полученные результаты используют для анализа соответствия результатов испытаний новой технологии требованиям ТЗ (ТУ), а также сопоставления их с показателями базовой технологии.

6.3.5 На основании анализа полученных значений экологических показателей делают выводы об экологической безопасности новой технологии и возможности ее применения.

Приложение А
(обязательное)


Сводные ведомости определения результатов экологической оценки

Форма А.1 - Условия проведения экологической оценки машинных технологий

Наименование показателя

Значение показателя

по ТЗ, исходным требованиям

по результатам испытаний

по новой технологии

по базовой технологии

Дата

Место испытаний

Вид работы

Предшественник в севообороте

Культура, сорт

Орошение, норма полива, м/га

Почва

Тип почвы и название по механическому составу

Механические обработки почвы

Глубина обработки, см

Влажность почвы, %,

в слое*:

от 0 до 5 см включ.

св. 5 " 10 " "

" 10 " 15 " "

Содержание эрозионно опасных частиц в слое 0-5 см, %

Плотность почвы, г/см, в слое*:

от 0 до 10 см включ.

св. 10 " 20 " "

" 20 " 30 " "

Защита растений

Препаративная форма пестицида, % д.в.

Способ обработки

Доза, кг д.в./га

первая обработка

вторая "

третья "

четвертая "

Дата обработки

первая

вторая

третья

четвертая

Интервал от посева (посадки) культуры до обработки, сут

Интервал между обработками, сут:

первой и второй

второй и третьей

третьей и четвертой

Фаза развития растения в период обработки

Применение других химических средств

Питание растений

Вид удобрения

Форма минерального удобрения, % д.в. в удобрении

Способ внесения удобрений

Доза, кг д.в./га

Дата внесения удобрений

* Число слоев и градация устанавливаются по ТЗ на технологии.

Форма А.2 - Экологические показатели машинных технологий

Наименование показателя

Значение показателя

по ТЗ, исходным требованиям

по результатам испытаний

по новой технологии

по базовой технологии

1 Разрушение почвенного слоя рабочими органами машин:

- изменение содержания эрозионно опасных частиц, %

- уплотнение почвы, г/см

- максимальное давление движителей на почву, МПа

2 Загрязнение окружающей среды выбросами вредных веществ двигателями тракторов и самоходных сельскохозяйственных машин:

- значение экологического ущерба, руб.

- индекс загрязнения

3 Содержание в почве пестицидов, мг/кг почвы:

- до применения

- после всех обработок

4 Содержание в почве удобрений:

4.1 Макрохимические удобрения, г/кг:

- до применения

- после "

4.2 Микрохимические удобрения, мг/кг:

- до применения

- после "

5 Коэффициент концентрации загрязнения почвы*

6 Коэффициент ответной реакции по влиянию химического загрязнения на состояние почвы*

7 Равномерность распределения в почве (или на поверхности), %:

7.1 Минеральных удобрений:

- по ширине внесения

- по ходу движения

7.2 Органических удобрений

- по ширине внесения

- по ходу движения

8 Содержание органического вещества в почве, %

9 Содержание основных химических загрязнителей в продукции растениеводства, мг/кг

* Определяют при наличии ПДК загрязняющего почву вещества.



Приложение Б
(обязательное)


Формы ведомостей результатов испытаний

Форма Б.1 - Ведомость определения глубины обработки

Марка машины

Дата

Место испытаний

Вид работы

Скорость

Сведения о средствах измерений

Измерение

Глубина обработки, см

Повторность

1

2

3

...

1

2

3

...

(25)

Исполнитель

должность

личная подпись

фамилия, инициалы

Форма Б.2 - Ведомость определения глубины обработки методом профилирования

Марка машины

Дата

Место испытаний

Вид работы

Скорость

Сведения о средствах измерений


В сантиметрах

Точка измерения

Расстояние от поверхности поля до верхней стороны рейки

Расстояние от дна борозды до верхней стороны рейки

Глубина обработки

Расстояние от поверхности поля до верхней стороны рейки

Расстояние от дна борозды до верхней стороны рейки

Глубина обработки

продольный профиль N

поперечный профиль N

Исполнитель

должность

личная подпись

фамилия, инициалы

Форма Б.3 - Ведомость определения эрозионно опасных частиц почвы

Марка машины

Дата

Место испытаний

Вид работы

Скорость

Сведения о средствах измерений

Номер пробы

Масса комков, кг

до обработки

после обработки

общая масса пробы

масса фракции (проход решета 1 мм)

общая масса пробы

масса фракции (проход решета 1 мм)

1

2

3

6

Сумма

Среднее арифметическое значение

Содержание эрозионно опасных частиц

-

-

Исполнитель

должность

личная подпись

фамилия, инициалы

Форма Б.4 - Этикетка

Наименование технологии

Номер участка

Номер площадки для отбора проб

Номер объединенной пробы, горизонт (слой), глубина отбора пробы

Характер метеорологических условий в день отбора пробы

Препарат (удобрение), наименование загрязняющего вещества

Доза, кг/га д.в., кг/га

Исполнитель

должность

личная подпись

фамилия, инициалы

Форма Б.5 - Ведомость определения содержания в почве пестицидов

Место испытаний

Дата

Наименование технологии

Место отбора пробы

номер поля, участка

Номер площадки

Содержание пестицидов, мг/кг почвы, в слое, см

от 0 до 5 включ.

св. 5 до 10 включ.

св. 10 до 15 включ.

1

2

3

4

5

Среднее арифметическое значение

Исполнитель

должность

личная подпись

фамилия, инициалы



Приложение В
(обязательное)


Методика определения неравномерности распределения жидких удобрений

В.1 Неравномерность распределения жидких удобрений определяют на рабочей ширине внесения и по ходу движения машины при поверхностном и внутрипочвенном внесении удобрений.

В.2 При поверхностном внесении удобрений перед проведением опыта осуществляют пробный проезд агрегата для определения колеи и уточнения скорости движения.

Рабочие органы машины при этом должны быть отключены. Для определения неравномерности внесения удобрений по ширине необходимо на общую ширину внесения удобрений, которая округляется до значения, кратного 0,5 м, в большую сторону, расставить противни или подставки в три поперечных сплошных ряда (повторности) с расстоянием между рядами 5 м.

Последовательность нумерации проб должна быть слева направо по ходу движения агрегата. Дополнительно вблизи опытного участка расставляют три контрольных противня. Размеры противней должны быть 0,5x0,5x0,05 м. По следу колес противни (подставки) не устанавливают. Массу удобрения для них определяют как среднее арифметическое значение из двух граничащих с колеей противней. Для определения неравномерности по ходу движения машины расставляют 20 противней в два сплошных ряда: один по оси движения агрегата, второй - справа или слева от нее на удалении 1/4 общей ширины внесения. Пробы должны быть пронумерованы по ходу движения машины.

Схема расстановки противней (подставок) показана на рисунке В.1.


Рисунок В.1 - Схема расстановки противней при определении качества работы машин

В.3 При внутрипочвенном внесении удобрений для определения неравномерности внесения по ширине используют данные определения расхода жидкости через рабочие органы по ширине внесения. Для определения неравномерности по ходу движения агрегата при внутрипочвенном внесении противни (подставки) из влагонепроницаемого материала расставляют в три сплошных ряда (по 20 шт. в каждом) под три приподнятых рабочих органа (один средний и два крайних), остальные рабочие органы должны быть заглублены на рабочую глубину.

В.4 Для улавливания жидких минеральных удобрений с помощью противней при определении неравномерности распределения удобрений необходимо заготовить листы фильтровальной бумаги размерами 0,5x0,5 м. Листы бумаги должны быть пронумерованы по повторностям и до взвешивания храниться при комнатной температуре не менее 48 ч. Взвешивание проводят на весах с погрешностью не более ±0,1 г.

Листы взвешенной фильтровальной бумаги хранят в сухом месте во влагонепроницаемой таре (полиэтиленовых мешках).

В.5 Непосредственно перед проведением опыта при внесении жидких минеральных удобрений на расставленные по учетной делянке, а также на контрольные противни (подставки) раскладывают листы фильтровальной бумаги (улавливающие поверхности).

Испытуемая машина при установившемся режиме работы проходит по опытной делянке. При этом фиксируют рабочую скорость движения машины, рабочее давление в коммуникации, скорость и направление ветра.

Количество осевшего удобрения на улавливающих поверхностях определяют весовым или химическим методом. При весовом методе определения улавливающие поверхности собирают с противней (подставок) и упаковывают в течение не более двух минут (во избежание испарения). Допускается собирать улавливающие поверхности поэтапно по поверхностям с таким расчетом, чтобы продолжительность сбора одной повторности ряда не превышала двух минут.

Собранные из противней улавливающие поверхности складывают лицевой стороной внутрь и каждую отдельно помещают в полиэтиленовый пакет.

Во избежание испарения удобрений полиэтиленовый пакет закрывают и до отправки в лабораторию хранят в тени.

При химическом методе определения количества осевшего удобрения продолжительность сбора улавливающих поверхностей и их герметизация не влияют на значение определяемых показателей.

В.6 Весовой метод определения количества осевших жидких минеральных удобрений заключается в определении разницы массы листов фильтровальной бумаги (улавливающих поверхностей) с удобрениями и без них.

Взвешивание проб осуществляют в день их отбора в лабораторных условиях. Погрешность взвешивания жидких минеральных удобрений не должна быть более ±0,1 г. Результаты взвешивания записывают в формы В.1 и В.3 (приложение В).

В.7 При химическом методе количество осевшего удобрения определяют по водорастворимой РО по градуировочному графику. Для этой цели используют реактивы по ГОСТ 20851.2. Для построения градуировочного графика из емкости испытуемой машины при проведении опыта отбирают в колбу удобрение и тщательно перемешивают его. Из этой пробы в мерные колбы вместимостью 500 см отбирают навеску удобрения в зависимости от содержания РО в удобрении:

- 2, 4, 6, 8,10,12 г - при 21%-34% ;

- 4, 8, 12, 16, 20, 24 г - при 11%-20% ;

- 6, 12, 18, 24, 30, 36 г - при 0%-10% .

Навески, содержащиеся в колбах, доводят дистиллированной водой до метки 500 см, тщательно перемешивают. Из каждой колбы отмеряют по 1 см образцового раствора удобрения, переносят в пикнометры (или мерные цилиндры) вместимостью 100 см, добавляют 20 см дистиллированной воды, 25 см реактива А и доводят до метки дистиллированной водой. Содержание колбы перемешивают и через 15 мин колориметрируют относительно раствора сравнения (вода 20 см+реактив 25 см+вода 55 см). Измерения проводят при длине волны 450 нм в кюветах 10 и 20 мм на фотоэлектроколориметре типа ФЭК-56 (светофильтр N 4) или ФЭК-60 (светофильтр N 3).

По полученным значениям оптических плотностей строят градуировочный график, откладывая по оси абсцисс количество удобрения в граммах, содержащееся в образцовых растворах, по оси ординат - соответствующие им значения оптических плотностей. Градуировочный график проверяют ежедневно по трем точкам. Приготовление реактива А: смешать в равных объемах (1 дм) растворы азотной кислоты (1:2), ванадата аммония и молибдата аммония в указанной последовательности.

В.8 Проведение анализа

Опрыснутые удобрениями улавливающие поверхности разрезают на кусочки площадью не более 2 см, помещают в литровые стаканы, заливают дистиллированной водой, перемешивают стеклянной палочкой и оставляют на три часа. Перемешивание повторяют через полтора часа, а также за 15 мин до проведения анализа. В мерные колбы вместимостью 100 см отмеряют 1 см анализируемого раствора, доливают 20 см дистиллированной воды, 25 см реактива и доводят до метки дистиллированной водой, перемешивают и через 15 мин колориметрируют. По градуировочной кривой определяют количество удобрений на улавливающей поверхности. При дозе внесения РО до 100 кг/га для смыва удобрения с улавливающих поверхностей расходуют 500 см дистиллированной воды. С увеличением дозы внесения РО для смыва удобрения расходуют 750 см дистиллированной воды, а количество удобрения, определенное по градуировочному графику, умножают на 1,5, что соответствует фактической навеске в граммах. Результаты записывают в формы В.2-В.4.

Форма В.1 - Ведомость определения неравномерности распределения жидких минеральных удобрений по ширине внесения весовым методом

Марка машины

Место испытаний

Вид удобрения

Дата

Давление в напорной коммуникации

МПа

Скорость движения агрегата

м/с

Доза внесения удобрения

кг/га

Сведения о средствах измерений

Масса в граммах

Номер улавливающей поверхности

Распределение удобрения по рядам (повторностям)

(противня)

1

2

3

масса улавли- вающей поверх- ности

масса улавли- вающей поверх- ности с удобре- нием

масса удоб- рения

масса улавли- вающей поверх- ности

масса улавли- вающей поверх- ности с удобре- нием

масса удоб- рения

масса улавли- вающей поверх- ности

масса улавли- вающей поверх- ности с удобре- нием

масса удоб- рения

1

2

3

.
.
.

Среднее арифметическое значение, г

Стандартное отклонение, г

Коэффициент вариации, %

Отклонение от среднего, %:

максимальное

минимальное

Исполнитель

должность

личная подпись

фамилия, инициалы

Форма В.2 - Ведомость определения неравномерности внесения удобрений по ходу движения

Марка машины

Место испытаний

Вид удобрения

Дата

Давление в напорной коммуникации

МПа

Скорость движения агрегата

м/с

Доза внесения удобрения

кг/га

Сведения о средствах измерений

Номер улавливающей поверхности (противня)

Весовой метод (для минеральных удобрений)

Химический метод (для минеральных удобрений)

Объемный метод (для органических удобрений)

Повторность

1

2

1

2

1

2

масса улавли-
вающей поверх-
ности, г

масса улавли-
вающей поверх-
ности с удобре-
нием, г

масса удобре-
ния, г

масса улавли-
вающей поверх-
ности, г

масса улавли-
вающей поверх-
ности с удобре-
нием, г

масса удобре-
ния, г

размер кюветы ФЭК, мм

пока-
затель опти-
ческой плот-
ности ФЭК

масса удобре-
ния по графику, г

размер кюветы ФЭК, мм

пока-
затель опти-
ческой плот-
ности ФЭК

масса удобре-
ния по графику, г

объем удоб-
рения, см

объем удоб-
рения, см

1

2

3

...

n (20)

Среднее арифметическое значение, г

Стандартное отклонение, г

Коэффициент вариации, %

Отклонение от среднего, %:

максимальное

минимальное

Исполнитель

должность

личная подпись

фамилия, инициалы

Форма В.3 - Ведомость определения неравномерности распределения удобрения по ходу движения при внутрипочвенном внесении

Марка машины

Место испытаний

Вид удобрения

Дата

Давление в напорной коммуникации

МПа

Доза внесения удобрения

кг/га Скорость движения агрегата

м/с

Сведения о средствах измерения

Номер улавливающей поверхности

Весовой метод

Химический метод

Ряд (повторность)

Ряд (повторность)

1

2

3

1

2

3

масса улавли-
вающей поверх-
ности, г

масса улавли-
вающей поверх-
ности с удобре-
нием, г

масса удобре-
ния, г

масса улавли-
вающей поверх-
ности, г

масса улавли-
вающей поверх-
ности с удобре-
нием, г

масса удобре-
ния, г

масса улавли-
вающей поверх-
ности, г

масса улавли-
вающей поверх-
ности с удобре-
нием, г

масса удобре-
ния, г

размер кюветы ФЭК, мм

пока-
затель опти-
ческой плот-
ности ФЭК

масса удобре-
ния по графику, г

размер кюветы ФЭК, мм

пока-
затель опти-
ческой плот-
ности ФЭК

масса удобре-
ния по графику, г

размер кюветы ФЭК, мм

пока-
затель опти-
ческой плот-
ности ФЭК

масса удобре-
ния по графику, г

1

2

3

...

n (20)

Среднее арифметическое значение, г

Стандартное отклонение, г

Коэффициент вариации, %

Отклонение от среднего, %:

максимальное

минимальное

Исполнитель

должность

личная подпись

фамилия, инициалы

Форма В.4 - Ведомость определения неравномерности распределения жидких минеральных удобрений по ширине внесения химическим методом

Марка машины

Место испытаний

Вид удобрения

Дата

Давление в напорной коммуникации

МПа

Скорость движения агрегата

м/с

Доза внесения удобрения

кг/га

Сведения о средствах измерений

Номер улавливающей поверхности

Распределение удобрения по рядам (повторностям)

1

2

3

размер кюветы ФЭК, мм

пока-
затель опти-
ческой плот-
ности ФЭК

масса удобре-
ния по графику, г

размер кюветы ФЭК, мм

пока-
затель опти-
ческой плот-
ности ФЭК

масса удобре-
ния по графику, г

размер кюветы ФЭК, мм

пока-
затель опти-
ческой плот-
ности ФЭК

масса удобре-
ния по графику, г

1

2

3



n

Среднее арифметическое значение, г

Стандартное отклонение, г

Коэффициент вариации, %

Отклонение от среднего, %:

максимальное

минимальное

Исполнитель

должность

личная подпись

фамилия, инициалы

В.9 Неравномерность распределения удобрений по ширине внесения по машинам для поверхностного внесения штанговыми рабочими органами определяют по средним арифметическим значениям масс удобрения на соответствующих улавливающих поверхностях после наложения от условных смежных проходов (формы В.1, В.3).

Обработку данных выполняют в следующей последовательности:

1) вычисляют среднее арифметическое значение расхода удобрения , г (см), поступившего в сосуды из всех распылителей (жиклеров) по ширине внесения по формуле

, (B.1)

где - масса (объем) удобрения, поступившего в сосуды из -го распылителя (жиклера), г (см);

- число распылителей (жиклеров) на штанге.

2) вычисляют стандартное отклонение , по формуле

. (В.2)

3) неравномерность расхода удобрения , %, между отдельными распылителями (жиклерами) по ширине захвата вычисляют по формуле

. (В.3)

В.10 Неравномерность распределения удобрения по ходу движения машины для поверхностного внесения штанговыми рабочими органами определяют по значениям масс удобрения с противней, уложенных по ходу движения машины.

Неравномерность распределения удобрений по ходу движения машин характеризуется коэффициентом вариации, вычисленном по массе удобрений с противней, уложенных по ходу движения.

В.11 Отклонение максимального и минимального расхода удобрения от среднего арифметического значения расхода из всех распылителей (жиклеров) определяют в следующей последовательности:

1) вычисляют среднеарифметическое значение расхода удобрения , г, из всех распылителей (жиклеров) по ширине внесения по формуле В.1;

2) вычисляют максимальное , %, и минимальное значения отклонения расхода удобрения , %, от среднего значения расхода по формулам

, (B.4)

где - максимальное значение расхода удобрений распылителями (жиклерами), г (см);

, (B.5)

где - минимальное значение расхода удобрений распылителями (жиклерами), г (см).

В.12 Неравномерность распределения удобрений по ширине внесения с бесштанговыми рабочими органами при поверхностном внесении определяют на рабочей ширине внесения. За рабочую ширину внесения принимают оптимальную ширину, при которой после наложения условных смежных проходов обеспечивается предельно допустимая неравномерность по ТЗ (ТУ), при этом перекрытие должно проводиться не более чем до половины общей ширины захвата.

Если после расчета неравномерности распределения удобрения по ширине полученные значения превышают (или значительно ниже) предельно допустимые значения неравномерности по ТЗ (ТУ), последовательно увеличивают или уменьшают значение перекрытия на значение, кратное 0,5 м, до определения ширины внесения, при которой неравномерность соответствует требованиям нормативных документов. Это и будет рабочая ширина внесения.


Библиография

[1]

Порядок проведения поверки средств измерений, требования к знаку поверки и содержанию свидетельства о поверке, утвержденный приказом Минпромторга России от 2 июля 2015 г. N 1815

[2]

Санитарные правила и нормы СанПиН 2.3.2.1078-2001

Гигиенические требования безопасности и пищевой ценности пищевых продуктов

УДК 631.17:631.3-027.045:006.354

ОКС 65.060

Ключевые слова: метод, показатели, условия испытания, экологическая оценка, машинные технологии

Электронный текст документа

и сверен по:

, 2020

Другие госты в подкатегории

    ГОСТ 10000-2017

    ГОСТ 10677-82

    ГОСТ 1114-84

    ГОСТ 12.2.111-2020

    ГОСТ 11674-75

    ГОСТ 12.2.122-2013

    ГОСТ 12588-81

    ГОСТ 12.2.139-97

    ГОСТ 12.2.122-88

    ГОСТ 12.2.121-2013

    ГОСТ 10677-2001

    ГОСТ 15594-80

    ГОСТ 12.2.121-88

    ГОСТ 17034-82

    ГОСТ 12935-76

    ГОСТ 16526-70

    ГОСТ 17800-72

    ГОСТ 18524-85

    ГОСТ 13398-82

    ГОСТ 19677-87

    ГОСТ 12.2.140-97

    ГОСТ 19722-82

    ГОСТ 19777-74

    ГОСТ 20760-75

    ГОСТ 20793-2009

    ГОСТ 17595-88

    ГОСТ 158-74

    ГОСТ 20062-96

    ГОСТ 22587-91

    ГОСТ 19597-94

    ГОСТ 22999-88

    ГОСТ 23074-85

    ГОСТ 23173-78

    ГОСТ 21909-83

    ГОСТ 23173-96

    ГОСТ 20915-75

    ГОСТ 23982-85

    ГОСТ 23707-95

    ГОСТ 19598-95

    ГОСТ 23734-79

    ГОСТ 2472-80

    ГОСТ 24665-81

    ГОСТ 25327-82

    ГОСТ 25483-95

    ГОСТ 25518-93

    ГОСТ 17.2.2.02-98

    ГОСТ 25353-82

    ГОСТ 25836-83

    ГОСТ 25791-90

    ГОСТ 25942-90

    ГОСТ 26285-84

    ГОСТ 26711-89

    ГОСТ 26738-91

    ГОСТ 26879-88

    ГОСТ 24059-2017

    ГОСТ 26954-2019

    ГОСТ 27310-87

    ГОСТ 26025-83

    ГОСТ 27388-87

    ГОСТ 27434-87

    ГОСТ 27857-88

    ГОСТ 13758-89

    ГОСТ 27021-86

    ГОСТ 26026-83

    ГОСТ 27378-87

    ГОСТ 28099-89

    ГОСТ 28174-89

    ГОСТ 27999-88

    ГОСТ 27994-88

    ГОСТ 20915-2011

    ГОСТ 28305-89

    ГОСТ 28286-89

    ГОСТ 28306-2018

    ГОСТ 28307-2013

    ГОСТ 28287-89

    ГОСТ 28516-90

    ГОСТ 28523-90

    ГОСТ 28307-89

    ГОСТ 28524-90

    ГОСТ 28708-90

    ГОСТ 28713-2018

    ГОСТ 28306-89

    ГОСТ 28708-2001

    ГОСТ 28714-90

    ГОСТ 28713-90

    ГОСТ 28301-89

    ГОСТ 23730-88

    ГОСТ 28722-2018

    ГОСТ 28722-90

    ГОСТ 28957-91

    ГОСТ 28958-91

    ГОСТ 28718-90

    ГОСТ 30411-2001

    ГОСТ 30411-95

    ГОСТ 30506-97

    ГОСТ 28745-90

    ГОСТ 30725-2001

    ГОСТ 28301-2015

    ГОСТ 24055-2016

    ГОСТ 30723-2001

    ГОСТ 28301-2007

    ГОСТ 30748-2001

    ГОСТ 30749-2001

    ГОСТ 30752-2001

    ГОСТ 30747-2001

    ГОСТ 28717-90

    ГОСТ 31593-2012

    ГОСТ 30746-2001

    ГОСТ 17460-72

    ГОСТ 28714-2007

    ГОСТ 28718-2016

    ГОСТ 32485-2013

    ГОСТ 30750-2001

    ГОСТ 33037-2014

    ГОСТ 32617-2014

    ГОСТ 30745-2001

    ГОСТ 33678-2015

    ГОСТ 33679-2015

    ГОСТ 31742-2012

    ГОСТ 31595-2012

    ГОСТ 31345-2017

    ГОСТ 33691-2015

    ГОСТ 31348-2007

    ГОСТ 33687-2015

    ГОСТ 33677-2015

    ГОСТ 33736-2016

    ГОСТ 34280-2017

    ГОСТ 34363-2017

    ГОСТ 33734-2016

    ГОСТ 31345-2007

    ГОСТ 34389-2018

    ГОСТ 33032-2014

    ГОСТ 34431-2018

    ГОСТ 32431-2013

    ГОСТ 33686-2015

    ГОСТ 34491-2018

    ГОСТ 34492-2018

    ГОСТ 34493-2018

    ГОСТ 34494-2018

    ГОСТ 34490-2018

    ГОСТ 34393-2018

    ГОСТ 34495-2018

    ГОСТ 34501-2018

    ГОСТ 34605-2019

    ГОСТ 34629-2019

    ГОСТ 34391-2018

    ГОСТ 34392-2018

    ГОСТ 34746-2021

    ГОСТ 34747-2021

    ГОСТ 3481-79

    ГОСТ 3496-74

    ГОСТ 3497-74

    ГОСТ 34265-2017

    ГОСТ 4154-93

    ГОСТ 4156-93

    ГОСТ 4153-93

    ГОСТ 4230-93

    ГОСТ 5.1650-72

    ГОСТ 4229-94

    ГОСТ 6939-85

    ГОСТ 7057-81

    ГОСТ 7496-84

    ГОСТ 34631-2019

    ГОСТ 33735-2016

    ГОСТ 9024-70

    ГОСТ 7751-2009

    ГОСТ 33737-2016

    ГОСТ EN 12525-2012

    ГОСТ 7751-85

    ГОСТ EN 13118-2012

    ГОСТ 34496-2018

    ГОСТ EN 12965-2012

    ГОСТ 34498-2018

    ГОСТ 34390-2018

    ГОСТ EN 13448-2012

    ГОСТ ЕН 632-2003

    ГОСТ EN 13140-2012

    ГОСТ EN 1853-2012

    ГОСТ 7057-2001

    ГОСТ IEC 60335-2-70-2015

    ГОСТ IEC 60335-2-87-2019

    ГОСТ IEC 60335-2-70-2011

    ГОСТ IEC 60335-2-87-2015

    ГОСТ IEC 60335-2-94-2021

    ГОСТ 34630-2019

    ГОСТ ISO 11001-2-2019

    ГОСТ EN 609-1-2012

    ГОСТ EN 609-2-2012

    ГОСТ ISO 11169-2011

    ГОСТ ISO 11512-2011

    ГОСТ ISO 11850-2011

    ГОСТ ISO 11839-2016

    ГОСТ ISO 11001-1-2019

    ГОСТ EN 703-2012

    ГОСТ ИСО 14269-3-2003

    ГОСТ IEC 60335-2-77-2011

    ГОСТ ИСО 14269-5-2003

    ГОСТ ISO 16231-1-2016

    ГОСТ ISO 15886-3-2017

    ГОСТ ИСО 14269-2-2003

    ГОСТ 34499-2018

    ГОСТ EN 13525-2012

    ГОСТ ISO 11837-2016

    ГОСТ ISO 3776-1-2012

    ГОСТ ИСО 14269-4-2003

    ГОСТ ISO 3776-2-2012

    ГОСТ ISO 26322-1-2012

    ГОСТ ISO 26322-2-2012

    ГОСТ ISO 3776-3-2013

    ГОСТ ISO 3776-2-2018

    ГОСТ ИСО 4253-2005

    ГОСТ ISO 2332-2013

    ГОСТ ISO 4254-13-2013

    ГОСТ ИСО 4252-2005

    ГОСТ IEC 62841-4-3-2020

    ГОСТ ISO 4254-11-2013

    ГОСТ ИСО 11545-2004

    ГОСТ ISO 4254-6-2012

    ГОСТ ИСО 4254-6-2005

    ГОСТ ИСО 4254-7-2005

    ГОСТ ISO 4254-9-2021

    ГОСТ ISO 5395-2-2016

    ГОСТ ISO 5395-1-2016

    ГОСТ ISO 5395-3-2016

    ГОСТ ISO 5675-2019

    ГОСТ ISO 5681-2012

    ГОСТ ИСО 5682-2-2004

    ГОСТ ISO 4254-10-2013

    ГОСТ ИСО 4254-3-2005

    ГОСТ ISO 4254-9-2012

    ГОСТ ISO 5721-2-2016

    ГОСТ ISO 5721-1-2016

    ГОСТ ISO 16231-2-2019

    ГОСТ ISO 12003-2-2016

    ГОСТ ISO 4254-8-2013

    ГОСТ ISO 7914-2012

    ГОСТ ISO 5674-2012

    ГОСТ ИСО 5682-1-2004

    ГОСТ ISO 8084-2011

    ГОСТ ИСО 7714-2004

    ГОСТ ИСО 5682-3-2004

    ГОСТ ISO 8083-2011

    ГОСТ ИСО 8224-2-2004

    ГОСТ ИСО 7749-2-2004

    ГОСТ ISO 8082-2-2014

    ГОСТ ISO 8082-1-2017

    ГОСТ ИСО 8909-2-2003

    ГОСТ МЭК 60335-2-94-2004

    ГОСТ МЭК 60335-2-92-2004

    ГОСТ ИСО 7749-1-2004

    ГОСТ ISO 22867-2014

    ГОСТ Р 50022-92

    ГОСТ Р 50060-92

    ГОСТ Р 41.71-99

    ГОСТ ISO 730-2019

    ГОСТ Р 50163-92

    ГОСТ Р 50060-98

    ГОСТ Р 50164-92

    ГОСТ ИСО 9261-2004

    ГОСТ Р 50634-93

    ГОСТ Р 50162-92

    ГОСТ ИСО 9260-2004

    ГОСТ Р 50192-92

    ГОСТ Р 50911-96

    ГОСТ Р 50717-94

    ГОСТ Р 50191-92

    ГОСТ Р 50908-96

    ГОСТ Р 51207-98

    ГОСТ Р 51390-99

    ГОСТ Р 51389-99

    ГОСТ Р 51208-98

    ГОСТ Р 51657.1-2000

    ГОСТ Р 51961-2002

    ГОСТ Р 51754-2001

    ГОСТ Р 51960-2002

    ГОСТ Р 41.86-99

    ГОСТ Р 52504-2005

    ГОСТ Р 51629-2000

    ГОСТ Р 52648-2006

    ГОСТ Р 51614-2000

    ГОСТ Р 52746-2007

    ГОСТ Р 52291-2004

    ГОСТ Р 52026-2003

    ГОСТ Р 52053-2003

    ГОСТ ИСО 8224-1-2004

    ГОСТ Р 52649-2006

    ГОСТ Р 52777-2007

    ГОСТ Р 53051-2008

    ГОСТ Р 52759-2007

    ГОСТ Р 52758-2007

    ГОСТ Р 53391-2009

    ГОСТ Р 53489-2009

    ГОСТ Р 52757-2007

    ГОСТ Р 54454-2011

    ГОСТ Р 53057-2008

    ГОСТ Р 53052-2008

    ГОСТ Р 54778-2011

    ГОСТ Р 52778-2007

    ГОСТ Р 54781-2011

    ГОСТ Р 54784-2011

    ГОСТ Р 54785-2011

    ГОСТ Р 54780-2011

    ГОСТ Р 41.96-2005

    ГОСТ Р 53053-2008

    ГОСТ Р 58249-2018

    ГОСТ Р 58330.1-2018

    ГОСТ Р 58330.2-2018

    ГОСТ Р 58330.3-2021

    ГОСТ Р 55261-2012

    ГОСТ Р 57192-2016

    ГОСТ Р 54783-2011

    ГОСТ Р 41.96-99

    ГОСТ Р 58657-2019

    ГОСТ Р 58331.1-2018

    ГОСТ Р 58331.2-2019

    ГОСТ Р ИСО 10884-99

    ГОСТ Р 58655-2019

    ГОСТ Р 58801-2020

    ГОСТ Р 54779-2011

    ГОСТ Р ИСО 11783-1-2021

    ГОСТ Р ИСО 11783-11-2021

    ГОСТ Р 53056-2008

    ГОСТ Р ИСО 11783-13-2021

    ГОСТ Р ИСО 11783-12-2021

    ГОСТ Р ИСО 11169-2000

    ГОСТ Р ИСО 11783-3-2021

    ГОСТ Р ИСО 11783-14-2021

    ГОСТ Р ИСО 11512-2000

    ГОСТ Р ИСО 11783-4-2021

    ГОСТ Р ИСО 11783-8-2021

    ГОСТ Р ИСО 11783-7-2021

    ГОСТ Р 60.6.2.1-2019

    ГОСТ Р ИСО 11783-5-2021

    ГОСТ Р ИСО 11850-2005

    ГОСТ Р ИСО 11783-9-2021

    ГОСТ Р ИСО 11783-2-2021

    ГОСТ Р ИСО 15078-2002

    ГОСТ Р ИСО 11783-10-2021

    ГОСТ Р 54782-2011

    ГОСТ Р 58656-2019

    ГОСТ Р ИСО 13862-2003

    ГОСТ Р ИСО 4254-7-2011

    ГОСТ Р ИСО 13860-2003

    ГОСТ Р ИСО 7914-99

    ГОСТ Р ИСО 13861-2003

    ГОСТ Р ИСО 4254-1-2011

    ГОСТ Р ИСО 7917-99

    ГОСТ Р ИСО 7918-99

    ГОСТ Р ИСО 6815-2004

    ГОСТ Р ИСО 7916-99

    ГОСТ Р ИСО 8083-2008

    ГОСТ Р ИСО 8084-2005

    ГОСТ Р ИСО 8084-99

    ГОСТ Р ИСО 8380-99

    ГОСТ Р ИСО 8082-2005

    ГОСТ Р ИСО 3463-2008

    ГОСТ Р ИСО 12003-1-2011

    ГОСТ Р ИСО 8082-99

    ГОСТ Р ИСО 8082-1-2012

    ГОСТ Р 41.96-2011

    ГОСТ Р МЭК 60335-2-77-99

    ГОСТ Р ИСО 5700-2008

    ГОСТ Р ИСО 5696-2002

    ГОСТ Р 55262-2012