ГОСТ 27998-88

ОбозначениеГОСТ 27998-88
НаименованиеКорма растительные. Методы определения железа
СтатусДействует
Дата введения01.01.1990
Дата отмены-
Заменен на-
Код ОКС65.120
Текст ГОСТа


ГОСТ 27998-88

Группа С19



МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ



КОРМА РАСТИТЕЛЬНЫЕ


Методы определения железа


Vegetable feeds. Methods for determination of iron

ОКСТУ 9709

Дата введения 1990-01-01



ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Государственным агропромышленным комитетом СССР

РАЗРАБОТЧИКИ

С.Г.Самохвалов, канд. с.-х. наук (руководитель темы); Н.А.Чеботарева, канд. биол. наук; Г.И.Горшкова; В.А.Чуйков, канд. биол. наук; Х.К.Худякова, канд. биол. наук

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 23.12.88 N 4538

3. ВВЕДЕН ВПЕРВЫЕ

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер раздела, пункта

ГОСТ 61-75

3.1.2

ГОСТ 199-78

3.1.2

ГОСТ 1721-85

1

ГОСТ 1722-85

1

ГОСТ 1770-74

2.1.2; 3.1.2; 4.1.2

ГОСТ 3118-77

2.1.1; 2.1.2; 3.1.2; 4.1.2

ГОСТ 3760-79

2.1.2; 3.1.2

ГОСТ 4139-75

4.1.2

ГОСТ 4140-74

2.1.2

ГОСТ 4204-77

2.1.2

ГОСТ 4461-77

2.1.2; 3.1.2

ГОСТ 5456-79

3.1.2

ГОСТ 5457-75

2.1.2

ГОСТ 6709-72

2.1.1; 2.1.2; 3.1.2; 4.1.2

ГОСТ 7194-81

1

ГОСТ 9147-80

2.1.1

ГОСТ 10929-76

4.1.2

ГОСТ 13586.3-83

1

ГОСТ 13979.0-86

1

ГОСТ 22867-77

2.1.2; 3.1.2; 4.1.2

ГОСТ 24104-88

2.1.1; 2.1.2; 3.1.2; 4.1.2

ГОСТ 25336-82

2.1.1; 2.1.2; 3.1.2; 4.1.2

ГОСТ 27262-87

1

5. Ограничение срока действия снято по протоколу N 4-93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 4-94)

6. ПЕРЕИЗДАНИЕ

Настоящий стандарт распространяется на корма растительного происхождения и устанавливает атомно-абсорбционный и фотометрический методы определения в них массовой доли железа.

1. ОТБОР ПРОБ

Отбор проб - по ГОСТ 1721, ГОСТ 1722, ГОСТ 7194, ГОСТ 13586.3, ГОСТ 13979.0, ГОСТ 27262.

2. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ЖЕЛЕЗА

Метод основан на сравнении поглощения резонансного излучения свободными атомами железа, образующимися в пламени при введении в него растворов золы кормов и растворов сравнения с известной концентрацией железа. При использовании пламени воздух-пропан-бутан влияние сопутствующих элементов устраняют, вводя в растворы избыток стронция.

2.1. Аппаратура, материалы и реактивы

2.1.1. Для подготовки проб к испытанию и их минерализации применяют:

измельчитель проб растений ИПР-2, соломорезку ИСР-1;

сушилку проб кормов СК-1 или шкаф сушильный лабораторный с погрешностью поддержания температуры не более 5 °С;

мельницу лабораторную МРП-2;

сито с круглыми отверстиями диаметром 1 мм, изготовленное из стали или алюминия;

ступку фарфоровую с пестиком;

весы лабораторные 3-го класса точности с наибольшим пределом взвешивания 500 г по ГОСТ 24104*;

_______________

* С 1 июля 2002 г. вводится в действие ГОСТ 24104-2001 (здесь и далее).

печь муфельную, обеспечивающую поддержание температуры 525 °С с погрешностью не более 25 °С;

щипцы для тиглей муфельные;

баню водяную;

стеклянные или пластмассовые банки вместимостью 250 см с плотно закрывающимися пробками или крышками;

тигли фарфоровые низкие N 4 по ГОСТ 9147;

стекла часовые диаметром 5 см;

палочки стеклянные оплавленные;

воронки стеклянные лабораторные диаметром 36-56 мм по ГОСТ 25336;

пробирки градуированные со шлифом вместимостью 20 см по ГОСТ 25336;

штатив для пробирок;

бюретки с краном 2-го класса точности вместимостью 50 см или дозаторы агрессивных жидкостей вместимостью 2 и 5 см с погрешностью дозирования не более 2%, выполненные из материалов, не загрязняющих раствор железом;

кислоту соляную по ГОСТ 3118, х.ч., разбавленную дистиллированной водой 1:1 и 1:10 по объему;

воду дистиллированную по ГОСТ 6709.

2.1.2. Для определения железа в растворе золы применяют:

весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г и 4-го класса точности с наибольшим пределом взвешивания 500 г по ГОСТ 24104;

атомно-абсорбционный спектрометр С-302, С-112 или С-115;

лампу с полым катодом для определения железа ЛСП-1 или ЛТ-2;

компрессор воздушный мембранный производительностью не менее 20 дм/мин при давлении не менее 300 кПа;

ацетилен растворенный технический по ГОСТ 5457 или пропан-бутан бытовой в баллоне;

колбы мерные с пришлифованными пробками 2-го класса точности вместимостью 50, 100 и 1000 см по ГОСТ 1770;

пробирки со шлифом вместимостью 10-20 см по ГОСТ 25336;

пипетки 2-го класса точности вместимостью 2 и 5 см или дозаторы той же вместимости с погрешностью дозирования не более 1%, выполненные из материалов, не загрязняющих растворы железом;

бюретки с краном 2-го класса точности вместимостью 50 и 100 см или дозаторы вместимостью 5 и 8 см с погрешностью дозирования не более 1%, выполненные из материалов, не загрязняющих растворы железом;

бюретку с краном 2-го класса точности вместимостью 10 см, пипетку 2-го класса точности с одной меткой вместимостью 100 см и пипетки градуированные 2-го класса точности вместимостью 5, 25 см;

цилиндры мерные вместимостью 10, 25, 100, 500, 1000 см по ГОСТ 1770;

стакан химический вместимостью 200 см по ГОСТ 25336;

стекло часовое диаметром 9-12 см;

воронку стеклянную лабораторную диаметром 75 мм по ГОСТ 25336;

фильтры обеззоленные "красная" или "белая лента" диаметром 12,5 см;

кислоту соляную по ГОСТ 3118, х.ч., концентрированную и разбавленную дистиллированной водой 1:40 по объему;

кислоту серную по ГОСТ 4204, х.ч.;

кислоту азотную по ГОСТ 4461, х.ч.;

аммиак водный по ГОСТ 3760, разбавленный дистиллированной водой 1:4 по объему;

аммоний азотнокислый по ГОСТ 22867, х.ч.;

стронций хлористый 6-водный по ГОСТ 4140, ч.д.а.;

железо-аммонийные квасцы 12-водные по НТД, х.ч.;

воду дистиллированную по ГОСТ 6709.

Примечание. Допускается использовать аппаратуру, мерную посуду и другие средства измерения, имеющие такие же или лучшие метрологические характеристики.

2.2. Подготовка к испытанию

2.2.1. Подготовка проб к испытанию

Среднюю пробу сена, силоса, сенажа, соломы, зеленых кормов измельчают на отрезки длиной 1-3 см; корнеплоды разрезают на пластинки (ломтики) толщиной до 0,8 см. Методом квартования выделяют часть средней пробы, масса которой после высушивания должна быть не менее 100 г. Высушивание проб проводят в сушильном шкафу при температуре 60-65 °С до воздушно-сухого состояния.

После высушивания воздушно-сухую пробу размалывают на лабораторной мельнице и просеивают через сито. Остаток на сите измельчают ножницами или в ступке, добавляют к просеянной части и тщательно перемешивают.

Подготовленные для испытания пробы хранят в стеклянной или пластмассовой банке с крышкой в сухом месте.

2.2.2. Приготовление раствора серной кислоты с массовой долей 16%

9 см концентрированной серной кислоты (пл. 1,835) прибавляют небольшими порциями к 91 см дистиллированной воды при перемешивании.

2.2.3. Приготовление раствора азотнокислого аммония с массовой долей 2%

20,0 г азотнокислого аммония растворяют в 980 см дистиллированной воды.

2.2.4. Приготовление раствора железа массовой концентрации 1 мг/см (раствор А)

8,635 г 12-водных железо-аммонийных квасцов растворяют в дистиллированной воде, содержащей 25 см раствора серной кислоты с массовой долей 16%, доводят объем раствора дистиллированной водой до 1 дм в мерной колбе и перемешивают.

Массовую концентрацию железа в приготовленном растворе проверяют весовым методом. Для этого 100 см раствора с помощью пипетки помещают в химический стакан вместимостью 200 см, прибавляют несколько капель концентрированной азотной кислоты, нагревают почти до кипения и осаждают железо в виде гидроксида, прибавляя раствор аммиака, разбавленного 1:4, при интенсивном перемешивании до слабого запаха. Стакан с осадком накрывают часовым стеклом, нагревают еще 30 мин, дают осадку осесть и фильтруют горячий раствор через обеззоленный фильтр с красной или белой лентой, сливая сначала прозрачный раствор. Осадок на дне стакана промывают 2-3 раза декантацией горячим раствором азотнокислого аммония, подщелоченным несколькими каплями аммиака, количественно переносят осадок на фильтр и 2-3 раза промывают его тем же раствором. Затем осадок на фильтре промывают 3-4 раза горячей дистиллированной водой, фильтр с осадком помещают в доведенный до постоянной массы фарфоровый тигель и ставят в холодный муфель. Постепенно повышая температуру, сушат, озоляют фильтр и прокаливают остаток при температуре 800-900 °С до постоянной массы.

Массовую концентрацию железа в растворе (), мг/см, вычисляют по формуле

, (1)

где - масса осадка FеО, мг;

0,6994 - коэффициент пересчета массы FеО на массу Fe;

100 - объем раствора, взятый для анализа, см.

Раствор хранят не более 1 года.

2.2.5. Приготовление раствора железа массовой концентрации 100 мкг/см (раствор Б)

В мерную колбу вместимостью 50 см с помощью пипетки помещают объем раствора А, в котором содержится 5 мг железа, доводят до метки соляной кислотой, разбавленной 1:40, и перемешивают.

Раствор хранят не более 3 мес. Допускается приготовление смешанного раствора железа, меди, цинка, марганца.

2.2.6. Приготовление раствора железа массовой концентрации 500 мкг/см (раствор В)

В мерную колбу вместимостью 50 см с помощью пипетки помещают объем раствора А, в котором содержится 25 мг железа, доводят до метки соляной кислотой, разбавленной 1:40, и перемешивают. Раствор хранят не более 3 мес. Допускается приготовление смешанного раствора железа, меди, цинка, марганца.

2.2.7. Приготовление растворов сравнения для определения железа с использованием воздушно-ацетиленового пламени

В мерные колбы вместимостью 100 см из бюретки вместимостью 10 см наливают указанные в табл.1 объемы раствора Б, доводят до меток соляной кислотой, разбавленной 1:40, и тщательно перемешивают. Растворы сравнения готовят в день проведения анализа. Допускается приготовление смешанных растворов железа, меди, цинка, марганца.

Таблица 1

Номер раствора сравнения

Объем раствора Б, см

Массовая концентрация железа в растворе сравнения, мкг/см

Массовая концентрация железа в растворе сравнения в пересчете на массовую долю в растительном материале, млн (мг/кг)*

1

0

0

0

2

1

1

50

3

2

2

100

4

5

5

250

5

10

10

500

_______________

* 3начения массовых долей железа в растительном материале даны с учетом 5-кратного разбавления раствора золы перед анализом.

2.2.8. Приготовление растворов сравнения для определения железа с использованием воздушно-пропан-бутанового пламени

В мерные колбы вместимостью 100 см из бюретки вместимостью 10 см наливают указанные в табл.2 объемы раствора В, доводят до меток соляной кислотой, разбавленной 1:40, и тщательно перемешивают. Растворы сравнения готовят в день проведения анализа. Допускается приготовление смешанных растворов железа, меди, цинка, марганца.

Таблица 2

Номер раствора сравнения

Объем раствора В, см

Массовая концентрация железа в растворе сравнения, мкг/см

Массовая концентрация железа в растворе сравнения в пересчете на массовую долю в растительном материале, млн (мг/кг)

1

0

0

0

2

1

5

50

3

2

10

100

4

5

25

250

5

10

50

500

2.2.9. Приготовление раствора хлористого стронция

6,1 г 6-водного хлористого стронция растворяют примерно в 200 см дистиллированной воды, приливают 16,4 см концентрированной соляной кислоты, доводят объем раствора дистиллированной водой до 1 дм и тщательно перемешивают. Раствор содержит 2 г стронция в 1 дм.

2.3. Проведение испытания

2.3.1. Озоление растительного материала и растворение золы

В тигле взвешивают с погрешностью не более 0,02 г навеску испытуемой пробы, приготовленной по п.2.2.1, массой 2 г. Тигель помещают в холодную муфельную печь и повышают температуру до 250-300 °С. После прекращения выделения дыма температуру печи поднимают до (525±25) °С и ведут прокаливание в течение трех часов. Затем тигель охлаждают, золу смачивают несколькими каплями дистиллированной воды и из бюретки или дозатором приливают 2 см соляной кислоты, разбавленной 1:1. Тигель помещают на кипящую водяную баню и упаривают кислоту до влажных солей. Из бюретки или дозатором приливают в тигель 5 см соляной кислоты, разбавленной 1:10, накрывают часовым стеклом и выдерживают на кипящей водяной бане в течение 30 мин. Раствор золы, не фильтруя, с помощью палочки переносят через воронку в пробирку, установленную в штативе. Тигель, палочку и воронку тщательно обмывают дистиллированной водой, доводят раствор дистиллированной водой до метки, перемешивают и дают осадку отстояться. Пробу для анализа берут, не взмучивая осадка.

Допускается отделение раствора золы от нерастворившегося остатка фильтрованием через бумажный фильтр.

Одновременно ставят в трех повторениях контрольный опыт, проводя его через все стадии анализа, исключая взятие навески испытуемой пробы.

2.3.2. Определение железа в растворе золы

2.3.2.1. Определение железа в растворе золы проводят по аналитической линии 248,3 нм, используя для атомизации пламя ацетилен-воздух или пропан-бутан-воздух. Пламя окислительное (прозрачное, голубое). Ширину щели монохроматора, расход газов, ток, питающий лампу с полым катодом, устанавливают в соответствии с инструкциями, прилагаемыми к прибору и лампе.

При установке горелки относительно просвечивающего луча добиваются максимальных значений поглощения для растворов сравнения.

2.3.2.2 При использовании пламени ацетилен-воздух из растворов золы пипеткой или дозатором берут пробы по 2 см и помещают в пробирки. К пробам из бюретки или дозатором приливают по 8 см соляной кислоты, разбавленной 1:40, и перемешивают.

2.3.2.3. При использовании пламени пропан-бутан-воздух из раствора золы и растворов сравнения, приготовленных по п.2.2.8, пипеткой или дозатором берут пробы по 5 см и помещают в пробирки. Первый и третий растворы сравнения, необходимые для периодической проверки градуировочной характеристики прибора, берут каждый в 2-3 пробирки. К пробам из бюретки или дозатором приливают по 5 см раствора хлористого стронция и перемешивают.

2.3.2.4. При стабилизировавшемся режиме работы прибора в пламя вводят первый раствор сравнения, не содержащий железа, и устанавливают начало отсчета (нулевое значение оптической плотности, концентрации или 100%-ного пропускания). Затем вводят в пламя пятый раствор сравнения с максимальной концентрацией железа и с помощью соответствующих регулировок устанавливают размах шкалы. Снова вводят первый раствор сравнения, проверяют и, если требуется, корректируют установку начала отсчета. Затем вводят в пламя остальные растворы сравнения в порядке возрастания в них концентрации железа и регистрируют соответствующие им показания измерительного прибора по шкале пропускания, равномерной шкале оптической плотности или в единицах концентрации.

Отградуировав прибор по растворам сравнения, вводят в пламя растворы золы и регистрируют соответствующие им показания измерительного прибора. Одновременно проводят контрольный опыт. Через каждые десять измерений в пламя вводят первый и третий растворы сравнения для проверки градуировочной характеристики прибора. Если при проверке обнаруживаются отклонения показаний прибора, вызывающие погрешность измерений более чем на 3% отн., градуировку прибора корректируют или повторяют и последние десять растворов золы анализируют снова.

Если показание измерительного прибора для раствора золы превышает показание для пятого раствора сравнения, раствор золы разбавляют соляной кислотой, разбавленной 1:40, и анализ повторяют. При таком же разбавлении повторяют и контрольный опыт.

2.4. Обработка результатов

2.4.1. По данным, полученным для растворов сравнения, строят градуировочный график. По оси абсцисс откладывают массовые концентрации железа в растворах сравнения в пересчете на массовые доли в растительном материале в млн, а по оси ординат - соответствующие им показания измерительного прибора. По градуировочному графику находят массовые концентрации железа в анализируемых растворах в пересчете на массовые доли в растительном материале в млн.

2.4.2. Массовую долю железа в воздушно-сухом растительном материале (), млн, вычисляют по формуле

, (2)

где - коэффициент, учитывающий дополнительное, не предусмотренное основной методикой разбавление анализируемого раствора; при анализе растворов, подготовленных по основной методике, =1, дополнительно разбавленных в 2 раза - 2 и т. д.;

- массовая концентрация железа в растворе золы в пересчете на массовую долю в растительном материале, млн;

- среднее арифметическое значений массовой концентрации железа, полученных в контрольном опыте, в пересчете на массовую долю в растительном материале, млн.

Значение результата контрольного опыта не должно превышать 1/3 массовой доли железа в растительном материале.

За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений. Результат вычисляют до первого десятичного знака и округляют до целого числа.

Допускается проведение анализа без параллельных определений при наличии в партии испытуемых проб стандартных образцов (СО). За результат испытания принимают результат единичного определения, если разница между воспроизведенным и аттестованным в СО содержанием определяемого элемента не превышает 0,7. В этом случае обязателен выборочный статистический контроль сходимости параллельных определений.

Контрольные анализы проводят в двух параллельных определениях

.

2.4.3. Допускаемые расхождения между результатами параллельных определений () и между результатами, полученными в разных условиях (), при доверительной вероятности =0,95 не должны превышать следующих значений:

; (3)

, (4)

где - среднее арифметическое результатов двух параллельных определений, млн;

- среднее арифметическое результатов двух испытаний, выполненных в разных условиях, млн.

Предельную погрешность результата анализа (), млн, при односторонней доверительной вероятности =0,95 вычисляют по формуле

, (5)

где - массовая доля железа, млн (результат единичного определения или среднее арифметическое результатов двух параллельных определений).

3. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ЖЕЛЕЗА
С ОРТО-ФЕНАНТРОЛИНОМ

Метод основан на сравнении оптической плотности оранжево-красного комплексного соединения двухвалентного железа с орто-фенантролином, образующегося в растворах золы и растворах сравнения с известной концентрацией железа. Железо восстанавливают до двухвалентного состояния гидроксиламином.

3.1. Аппаратура, материалы и реактивы

3.1.1. Для подготовки проб к испытанию и их минерализации - по п.2.1.1.

3.1.2. Для определения железа в растворе золы применяют:

фотоэлектроколориметр или спектрофотометр, позволяющий работать в интервале длин волн 490-530 нм;

весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г и 4-го класса точности с наибольшим пределом взвешивания 500 г по ГОСТ 24104;

штатив для пробирок;

пробирки со шлифом вместимостью 20-25 см по ГОСТ 25336;

колбы мерные с пришлифованными пробками 2-го класса точности вместимостью 50, 100 и 1000 см по ГОСТ 1770;

пипетку 2-го класса точности вместимостью 2 см или дозатор той же вместимости с погрешностью дозирования не более 1%, изготовленный из материала, не загрязняющего раствор железом;

бюретки с краном 2-го класса точности вместимостью 50 и 100 см или дозаторы вместимостью 5 и 10 см с погрешностью дозирования не более 1%, изготовленные из материала, не загрязняющего раствор железом;

бюретку с краном 2-го класса точности вместимостью 10 см, пипетку 2-го класса точности с одной меткой вместимостью 100 см и пипетки градуированные 2-го класса точности вместимостью 5, 25 см;

цилиндры мерные вместимостью 10, 25, 100, 500, 1000 см по ГОСТ 1770;

стакан химический вместимостью 200 см по ГОСТ 25336;

стекло часовое диаметром 9-12 см;

воронку стеклянную лабораторную диаметром 75 мм по ГОСТ 25336;

фильтры обеззоленные, "красная" или "белая лента" диаметром 12,5 см;

гидроксиламин гидрохлорид по ГОСТ 5456, ч.д.а.;

кислоту соляную по ГОСТ 3118, х.ч., разбавленную дистиллированной водой 1:40 по объему;

кислоту азотную по ГОСТ 4461, х.ч.;

кислоту уксусную ледяную по ГОСТ 61, х.ч.;

аммиак водный по ГОСТ 3760, ч.д.а.;

натрий уксуснокислый по ГОСТ 199, ч.д.а.;

аммоний азотнокислый по ГОСТ 22867, х.ч.;

орто-фенантролин, ч.д.а.;

железоаммонийные квасцы по НТД, х.ч.;

воду дистиллированную по ГОСТ 6

709.

3.2. Подготовка к испытанию

3.2.1. Подготовка проб к испытанию - по п.2.2.1.

3.2.2. Приготовление ацетатного буферного раствора

136,0 г 3-водного уксуснокислого натрия растворяют в дистиллированной воде, прибавляют 120 см ледяной уксусной кислоты и доводят объем дистиллированной водой до 1 дм.

3.2.3. Приготовление раствора орто-фенантролина с массовой долей 0,25%

0,250 г орто-фенантролина растворяют в горячей (около 80 °С) дистиллированной воде, охлаждают и доводят объем дистиллированной водой до 100 см в мерной колбе.

3.2.4. Приготовление окрашивающей смеси

1 дм ацетатного буферного раствора смешивают со 100 см раствора орто-фенантролина. Смесь хранят в склянке из темного стекла не более 1 мес.

3.2.5. Приготовление раствора гидроксиламина гидрохлорида с массовой долей 2%

2,0 г гидроксиламина гидрохлорида растворяют в 98 см дистиллированной воды. Раствор хранят в склянке из темного стекла не более недели.

3.2.6. Приготовление раствора азотнокислого аммония с массовой долей 2% - по п.2.2.3.

3.2.7. Приготовление раствора железа массовой концентрации 1 мг/см (раствор А) - по п.2.2.4.

3.2.8. Приготовление раствора железа массовой концентрации 500 мкг/см (раствор В) - по п.2.2.6.

3.2.9. Приготовление растворов сравнения - по п.2.2.8.

3.3. Проведение испытания

3.3.1. Озоление растительного материала и растворение золы - по п.2.3.1.

3.3.2. Определение железа в растворе золы

Из растворов золы и растворов сравнения пипеткой или дозатором берут пробы по 2 см и помещают в пробирки, установленные в штативе, или другие технологические емкости. Из бюретки или дозатором приливают по 5 см раствора гидроксиламина гидрохлорида, перемешивают, выдерживают 5 мин, из бюретки или дозатором приливают по 10 см окрашивающей смеси и снова перемешивают. Оптическую плотность растворов измеряют в кювете толщиной просвечиваемого слоя 10 мм относительно первого раствора сравнения, не содержащего железо, при длине волны 510 нм или используя светофильтр с максимумом светопропускания в области 490-530 нм. Одновременно проводят контрольный опыт.

Если значение оптической плотности анализируемого раствора превышает значение оптической плотности пятого раствора сравнения, раствор золы разбавляют соляной кислотой, разбавленной 1:40, и повторяют описанные выше операции в том же порядке. При таком же разбавлении повторяют и контрольный опыт.

3.4. Обработка результатов

3.4.1. По результатам фотометрирования растворов сравнения строят градуировочный график, откладывая по оси абсцисс массовые концентрации железа в растворах сравнения в пересчете на массовые доли в растительном материале в млн, указанные в табл.2, а по оси ординат - соответствующие им значения оптической плотности. По градуировочному графику находят массовые концентрации железа в анализируемых растворах в пересчете на массовые доли в растительном материале в млн.

3.4.2. Массовую долю железа в воздушно-сухом растительном материале вычисляют по п.2.4.2

3.4.3. Допускаемые расхождения между результатами параллельных определений () и между результатами, полученными в разных условиях (), при доверительной вероятности =0,95 не должны превышать следующих значений:

; (6)

, (7)

где - среднее арифметическое результатов двух параллельных определений, млн;

- среднее арифметическое результатов двух испытаний, выполненных в разных условиях, млн.

Предельную погрешность результата анализа (), млн, при односторонней доверительной вероятности =0,95 вычисляют по формуле

, (8)

где - массовая доля железа, млн (результат единичного определения или среднее арифметическое результатов двух параллельных определений).

4. ФОТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ЖЕЛЕЗА С РОДАНИДОМ

Метод основан на сравнении оптической плотности красного комплексного соединения трехвалентного железа с роданидом, образующегося в растворах золы и растворах сравнения с известной концентрацией железа. Для полного переведения железа в трехвалентное состояние и стабилизации окраски в окрашенный раствор вводят перекись водорода.

4.1. Аппаратура, материалы и реактивы

4.1.1. Для подготовки проб к испытанию и их минерализации - по п.2.1.1.

4.1.2. Для определения железа в растворе золы применяют:

фотоэлектроколориметр или спектрофотометр, позволяющий работать в интервале длин волн 450-490 нм;

весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г и 4-го класса точности с наибольшим пределом взвешивания 500 г по ГОСТ 24104;

штатив для пробирок;

пробирки со шлифом вместимостью 20-25 см по ГОСТ 25336;

колбы мерные с пришлифованными пробками 2-го класса точности вместимостью 50, 100 и 1000 см по ГОСТ 1770;

пипетку 2-го класса точности вместимостью 2 см или дозатор той же вместимости с погрешностью дозирования не более 1%, изготовленный из материала, не загрязняющего раствор железом;

бюретки с краном 2-го класса точности вместимостью 50 и 100 см или дозаторы вместимостью 5 и 10 см с погрешностью дозирования не более 1%, изготовленные из материала, не загрязняющего раствор железом;

бюретку с краном 2-го класса точности вместимостью 10 см, пипетку 2-го класса точности с одной меткой вместимостью 100 см и пипетки градуированные 2-го класса точности вместимостью 5, 25 см;

цилиндры мерные вместимостью 10, 25, 100, 500, 1000 см по ГОСТ 1770;

стакан химический вместимостью 200 см по ГОСТ 25336;

стекло часовое диаметром 9-12 см;

воронку стеклянную лабораторную диаметром 75 мм по ГОСТ 25336;

фильтры обеззоленные, "красная" или "белая лента" диаметром 12,5 см;

капельницу;

кислоту соляную по ГОСТ 3118, х.ч., разбавленную дистиллированной водой 1:20 и 1:40 по объему;

калий роданистый по ГОСТ 4139, х.ч.;

перекись водорода по ГОСТ 10929, х.ч., раствор с массовой долей 30%;

железоаммонийные квасцы по НТД, х.ч.;

аммоний азотнокислый по ГОСТ 22867, х.ч.;

воду дистиллированную по ГОСТ 6709.

4.2. Подготовка к испытанию

4.2.1. Подготовка проб к испытанию - по п.2.2.1.

4.2.2. Приготовление раствора роданистого калия с массовой долей 15%

150,0 г роданистого калия растворяют в 850 см дистиллированной воды.

4.2.3. Приготовление раствора азотнокислого аммония с массовой долей 2% - по п.2.2.3.

4.2.4. Приготовление раствора железа массовой концентрации 1 мг/см (раствор А) - по п.2.2.4.

4.2.5. Приготовление раствора железа массовой концентрации 500 мкг/см (раствор В) - по п.2.2.6.

4.2.6. Приготовление растворов сравнения - по п.2.2.8.

4.3. Проведение испытания

4.3.1. Озоление растительного материала и растворение золы - по п.2.3.1.

4.3.2. Определение железа в растворе золы

Из растворов золы и растворов сравнения пипеткой или дозатором берут пробы по 2 см и помещают в пробирки, установленные в штативе, или другие технологические емкости. Из бюреток или дозатором приливают по 10 см раствора соляной кислоты, разбавленной 1:20, по 5 см раствора роданистого калия, по 1 капле перекиси водорода (из капельницы) и перемешивают.

Оптическую плотность растворов измеряют не ранее чем через 5 мин и не позднее чем через 30 мин после прибавления перекиси водорода в кювете с толщиной просвечиваемого слоя 10 мм относительно первого раствора сравнения, не содержащего железо, при длине волны 480 нм или, используя светофильтр с максимумом светопропускания в области 450-490 нм.

Если значение оптической плотности анализируемого раствора превышает значение оптической плотности пятого раствора сравнения, раствор золы разбавляют соляной кислотой, разбавленной 1:40, и повторяют описанные выше операции в том же порядке. При таком же разбавлении повторяют и контрольный опыт.

4.4. Обработка результатов

Обработка результатов - по п.3.4.

Текст документа сверен по:

Комбикорма. Часть 7.

Корма растительные.

Методы анализа:

Сборник ГОСТов. -

М.: ИПК Издательство стандартов, 2002

Другие госты в подкатегории

    ГОСТ 10199-2017

    ГОСТ 10199-81

    ГОСТ 10385-88

    ГОСТ 10386-72

    ГОСТ 10419-88

    ГОСТ 10471-63

    ГОСТ 10385-2014

    ГОСТ 10747-70

    ГОСТ 11008-64

    ГОСТ 11201-65

    ГОСТ 11202-65

    ГОСТ 11203-65

    ГОСТ 11246-96

    ГОСТ 11321-89

    ГОСТ 10471-96

    ГОСТ 11049-64

    ГОСТ 13299-71

    ГОСТ 13456-82

    ГОСТ 10974-95

    ГОСТ 11694-66

    ГОСТ 13496.0-80

    ГОСТ 13496.1-89

    ГОСТ 12220-96

    ГОСТ 13496.10-2017

    ГОСТ 13496.12-75

    ГОСТ 13496.0-2016

    ГОСТ 13496.13-2018

    ГОСТ 13496.14-87

    ГОСТ 13496.13-75

    ГОСТ 13496.15-85

    ГОСТ 13496.15-97

    ГОСТ 13496.10-74

    ГОСТ 13496.17-2019

    ГОСТ 13496.12-98

    ГОСТ 13496.15-2016

    ГОСТ 13496.17-95

    ГОСТ 13496.1-2019

    ГОСТ 11048-95

    ГОСТ 13496.2-91

    ГОСТ 13496.20-2014

    ГОСТ 13496.20-87

    ГОСТ 13496.18-85

    ГОСТ 13496.3-92

    ГОСТ 13496.5-2018

    ГОСТ 13496.5-70

    ГОСТ 13496.6-2017

    ГОСТ 13496.22-90

    ГОСТ 13496.7-92

    ГОСТ 13496.8-72

    ГОСТ 13496.6-71

    ГОСТ 13797-84

    ГОСТ 13496.9-96

    ГОСТ 13979.0-86

    ГОСТ 13979.1-68

    ГОСТ 13979.2-94

    ГОСТ 13496.4-2019

    ГОСТ 13979.4-68

    ГОСТ 13979.5-68

    ГОСТ 13979.3-68

    ГОСТ 13979.11-83

    ГОСТ 13496.7-97

    ГОСТ 13496.21-2015

    ГОСТ 13979.6-69

    ГОСТ 13496.1-98

    ГОСТ 13496.21-87

    ГОСТ 16955-71

    ГОСТ 13979.8-69

    ГОСТ 16955-2019

    ГОСТ 17256-71

    ГОСТ 17536-82

    ГОСТ 18057-88

    ГОСТ 18221-72

    ГОСТ 14107-75

    ГОСТ 13979.9-69

    ГОСТ 18221-99

    ГОСТ 14897-69

    ГОСТ 18221-2018

    ГОСТ 21055-96

    ГОСТ 21055-2019

    ГОСТ 2116-2000

    ГОСТ 2116-82

    ГОСТ 21904-76

    ГОСТ 22455-77

    ГОСТ 22834-87

    ГОСТ 22841-77

    ГОСТ 22842-88

    ГОСТ 18691-88

    ГОСТ 23423-89

    ГОСТ 23462-2019

    ГОСТ 23462-95

    ГОСТ 23637-90

    ГОСТ 23513-79

    ГОСТ 19651-74

    ГОСТ 13496.19-2015

    ГОСТ 24596.0-2015

    ГОСТ 24596.0-81

    ГОСТ 24596.1-2015

    ГОСТ 24596.1-81

    ГОСТ 23638-90

    ГОСТ 17290-71

    ГОСТ 24230-80

    ГОСТ 23999-80

    ГОСТ 24596.12-2015

    ГОСТ 24596.12-96

    ГОСТ 24596.11-96

    ГОСТ 24596.11-2015

    ГОСТ 13496.4-93

    ГОСТ 13979.7-78

    ГОСТ 13496.19-93

    ГОСТ 24596.10-2015

    ГОСТ 24596.5-2015

    ГОСТ 24596.5-81

    ГОСТ 24596.3-2015

    ГОСТ 24596.6-2015

    ГОСТ 24596.10-96

    ГОСТ 24596.4-2015

    ГОСТ 24596.4-81

    ГОСТ 24596.6-81

    ГОСТ 2081-92

    ГОСТ 24596.3-81

    ГОСТ 24596.2-2015

    ГОСТ 25344-82

    ГОСТ 25311-82

    ГОСТ 24596.9-2015

    ГОСТ 24596.2-81

    ГОСТ 24596.9-81

    ГОСТ 24596.7-81

    ГОСТ 26502-85

    ГОСТ 26177-84

    ГОСТ 26226-95

    ГОСТ 24596.8-81

    ГОСТ 26573.0-85

    ГОСТ 26573.0-2017

    ГОСТ 24596.7-2015

    ГОСТ 26573.2-85

    ГОСТ 24596.8-2015

    ГОСТ 26573.3-85

    ГОСТ 26657-85

    ГОСТ 26826-86

    ГОСТ 26176-2019

    ГОСТ 27262-87

    ГОСТ 26573.3-2014

    ГОСТ 27548-87

    ГОСТ 27548-97

    ГОСТ 27149-95

    ГОСТ 27978-88

    ГОСТ 26180-84

    ГОСТ 27547-87

    ГОСТ 26176-91

    ГОСТ 27995-88

    ГОСТ 26657-97

    ГОСТ 28075-89

    ГОСТ 28078-89

    ГОСТ 28074-89

    ГОСТ 26573.1-93

    ГОСТ 27997-88

    ГОСТ 28254-89

    ГОСТ 28255-89

    ГОСТ 28256-89

    ГОСТ 27996-88

    ГОСТ 28254-2014

    ГОСТ 28189-89

    ГОСТ 28460-2014

    ГОСТ 28460-90

    ГОСТ 28497-2014

    ГОСТ 28497-90

    ГОСТ 23423-2017

    ГОСТ 28409-89

    ГОСТ 26570-95

    ГОСТ 28758-90

    ГОСТ 28672-90

    ГОСТ 28736-90

    ГОСТ 28824-90

    ГОСТ 28902-91

    ГОСТ 28458-90

    ГОСТ 29136-91

    ГОСТ 30131-96

    ГОСТ 28001-88

    ГОСТ 28396-89

    ГОСТ 28758-97

    ГОСТ 28901-91

    ГОСТ 26573.2-2014

    ГОСТ 30823-2002

    ГОСТ 28612-90

    ГОСТ 30502-97

    ГОСТ 30503-97

    ГОСТ 30504-97

    ГОСТ 31484-2012

    ГОСТ 30483-97

    ГОСТ 29113-91

    ГОСТ 30257-95

    ГОСТ 31482-2012

    ГОСТ 31640-2012

    ГОСТ 30692-2000

    ГОСТ 31673-2012

    ГОСТ 31481-2012

    ГОСТ 31809-2012

    ГОСТ 31485-2012

    ГОСТ 31486-2012

    ГОСТ 31878-2012

    ГОСТ 31675-2012

    ГОСТ 32040-2012

    ГОСТ 31653-2012

    ГОСТ 32041-2012

    ГОСТ 31674-2012

    ГОСТ 32045-2012

    ГОСТ 32897-2014

    ГОСТ 32933-2014

    ГОСТ 33482-2015

    ГОСТ 32904-2014

    ГОСТ 32044.1-2012

    ГОСТ 32201-2013

    ГОСТ 32250-2013

    ГОСТ 34109-2017

    ГОСТ 32905-2014

    ГОСТ 34152-2017

    ГОСТ 33427-2015

    ГОСТ 32193-2013

    ГОСТ 31480-2012

    ГОСТ 33428-2015

    ГОСТ 34104-2017

    ГОСТ 4808-87

    ГОСТ 31483-2012

    ГОСТ 606-75

    ГОСТ 80-62

    ГОСТ 34249-2017

    ГОСТ 8056-79

    ГОСТ 8056-96

    ГОСТ 80-96

    ГОСТ 9265-72

    ГОСТ 9267-68

    ГОСТ 8057-95

    ГОСТ 9268-90

    ГОСТ 34209-2017

    ГОСТ 34044-2016

    ГОСТ 32195-2013

    ГОСТ 9268-2015

    ГОСТ 34284-2017

    ГОСТ 68-74

    ГОСТ 32194-2013

    ГОСТ 33978-2016

    ГОСТ 32343-2013

    ГОСТ 32251-2013

    ГОСТ ISO/TS 17764-1-2015

    ГОСТ 32015-2012

    ГОСТ ISO/TS 17764-2-2015

    ГОСТ 32043-2012

    ГОСТ 31982-2012

    ГОСТ EN 15791-2015

    ГОСТ ISO 11085-2016

    ГОСТ 34141-2017

    ГОСТ 34140-2017

    ГОСТ Р 50257-92

    ГОСТ Р 50258-92

    ГОСТ ISO 6497-2014

    ГОСТ ISO 12099-2017

    ГОСТ 34535-2019

    ГОСТ ISO 14797-2016

    ГОСТ Р 50852-96

    ГОСТ ISO 6491-2016

    ГОСТ ISO 6865-2015

    ГОСТ 34449-2018

    ГОСТ Р 51166-98

    ГОСТ Р 51095-97

    ГОСТ ISO 6493-2015

    ГОСТ ISO 16472-2014

    ГОСТ ISO 15914-2016

    ГОСТ ISO 13906-2013

    ГОСТ Р 51038-97

    ГОСТ Р 51419-99

    ГОСТ ISO 5983-2-2016

    ГОСТ Р 51418-99

    ГОСТ Р 50817-95

    ГОСТ ISO 6495-1-2017

    ГОСТ Р 51422-99

    ГОСТ Р 51551-2000

    ГОСТ ISO 6498-2014

    ГОСТ Р 51426-2016

    ГОСТ Р 51849-2001

    ГОСТ Р 51850-2001

    ГОСТ Р 51851-2001

    ГОСТ Р 51426-99

    ГОСТ Р 51899-2002

    ГОСТ Р 52254-2004

    ГОСТ Р 51424-99

    ГОСТ Р 52255-2004

    ГОСТ Р 52346-2005

    ГОСТ 33486-2015

    ГОСТ 28178-89

    ГОСТ Р 52356-2005

    ГОСТ ISO 17372-2016

    ГОСТ Р 52528-2006

    ГОСТ Р 51421-99

    ГОСТ Р 51420-99

    ГОСТ 34108-2017

    ГОСТ Р 51425-99

    ГОСТ Р 51417-99

    ГОСТ ISO 9831-2017

    ГОСТ Р 51116-97

    ГОСТ Р 52833-2007

    ГОСТ Р 52812-2007

    ГОСТ Р 52337-2005

    ГОСТ Р 51416-99

    ГОСТ Р 53011-2008

    ГОСТ Р 52838-2007

    ГОСТ Р 51423-99

    ГОСТ 32042-2012

    ГОСТ Р 53899-2010

    ГОСТ Р 53153-2008

    ГОСТ Р 53799-2010

    ГОСТ Р 53900-2010

    ГОСТ Р 52699-2006

    ГОСТ Р 50928-96

    ГОСТ Р 53901-2010

    ГОСТ Р 53902-2010

    ГОСТ Р 53903-2010

    ГОСТ Р 51636-2000

    ГОСТ Р 54319-2011

    ГОСТ Р 54379-2011

    ГОСТ Р 54078-2010

    ГОСТ Р 54492-2011

    ГОСТ Р 53097-2008

    ГОСТ Р 54079-2010

    ГОСТ Р 54629-2011

    ГОСТ Р 54630-2011

    ГОСТ Р 52839-2007

    ГОСТ Р 54632-2011

    ГОСТ Р 53985-2010

    ГОСТ Р 53024-2008

    ГОСТ Р 54954-2012

    ГОСТ Р 53027-2008

    ГОСТ Р 53214-2008

    ГОСТ ISO 14718-2017

    ГОСТ Р 55301-2012

    ГОСТ Р 53862-2010

    ГОСТ Р 55452-2021

    ГОСТ Р 54631-2011

    ГОСТ Р 55453-2013

    ГОСТ Р 55453-2022

    ГОСТ Р 52698-2006

    ГОСТ Р 55452-2013

    ГОСТ Р 52471-2005

    ГОСТ Р 54951-2012

    ГОСТ Р 55984-2014

    ГОСТ Р 55576-2013

    ГОСТ Р 54901-2012

    ГОСТ Р 55986-2022

    ГОСТ Р 54949-2012

    ГОСТ Р 54950-2012

    ГОСТ Р 55985-2014

    ГОСТ Р 55986-2014

    ГОСТ Р 56058-2014

    ГОСТ Р 55586-2013

    ГОСТ Р 56383-2015

    ГОСТ Р 56912-2016

    ГОСТ Р 56913-2016

    ГОСТ Р 52347-2005

    ГОСТ Р 57059-2016

    ГОСТ Р 51637-2000

    ГОСТ Р 55987-2014

    ГОСТ Р 52147-2003

    ГОСТ Р 55449-2013

    ГОСТ Р 56915-2016

    ГОСТ Р 51116-2017

    ГОСТ Р 54639-2011

    ГОСТ Р 55448-2013

    ГОСТ Р 57199-2016

    ГОСТ Р 55569-2013

    ГОСТ Р 57253-2016

    ГОСТ Р 57197-2016

    ГОСТ Р 57254-2016

    ГОСТ Р 55979-2014

    ГОСТ Р 55970-2014

    ГОСТ Р 58145-2018

    ГОСТ Р 57850-2017

    ГОСТ Р 58425-2019

    ГОСТ Р 70178-2022

    ГОСТ Р 59369-2021

    ГОСТ Р ИСО/ТУ 22004-2008

    ГОСТ Р ИСО 22000-2007

    ГОСТ Р ИСО 22005-2009

    ГОСТ Р 57482-2017

    ГОСТ Р 57543-2017

    ГОСТ Р ИСО 7088-2013

    ГОСТ Р ИСО 734-2021

    ГОСТ Р 56372-2015

    ГОСТ Р 55447-2013

    ГОСТ Р 56374-2015

    ГОСТ Р ИСО 6497-2011

    ГОСТ Р 52741-2007

    ГОСТ Р 56375-2015

    ГОСТ Р 57196-2016

    ГОСТ Р 57198-2016

    ГОСТ Р 57244-2016

    ГОСТ Р 54035-2010

    ГОСТ Р 56373-2015

    ГОСТ Р 57124-2016

    ГОСТ Р 50929-96

    ГОСТ Р ИСО 16634-1-2011

    ГОСТ Р 57200-2016

    ГОСТ Р 57201-2016

    ГОСТ Р 54032-2010

    ГОСТ Р ИСО 30024-2012

    ГОСТ Р 53244-2008

    ГОСТ Р 57221-2016

    ГОСТ Р ИСО 27085-2012