ГОСТ ISO 20649-2018

ОбозначениеГОСТ ISO 20649-2018
НаименованиеСмеси адаптированные для искусственного вскармливания детей раннего возраста и смеси для энтерального питания взрослых. Определение содержания хрома, селена и молибдена. Масс-спектрометрия с индуктивно связанной плазмой (ICP-MS)
СтатусДействует
Дата введения09.01.2019
Дата отмены-
Заменен на-
Код ОКС67.050, 67.120
Текст ГОСТа


ГОСТ ISO 20649-2018



МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ



СМЕСИ АДАПТИРОВАННЫЕ ДЛЯ ИСКУССТВЕННОГО ВСКАРМЛИВАНИЯ ДЕТЕЙ РАННЕГО ВОЗРАСТА И СМЕСИ ДЛЯ ЭНТЕРАЛЬНОГО ПИТАНИЯ ВЗРОСЛЫХ


Определение содержания хрома, селена и молибдена. Масс-спектрометрия с индуктивно связанной плазмой (ICP-MS)


Infant formula and adult nutritionals. Determination of chromium, selenium and molybdenum. Inductively coupled plasma mass spectrometry (ICP-MS)



МКС 67.050
67.120

Дата введения 2019-09-01

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0-2015 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2015 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным бюджетным научным учреждением "Федеральный исследовательский центр питания и биотехнологии" (ФГБНУ "ФИЦ питания и биотехнологии") на основе собственного перевода на русский язык англоязычной версии международного стандарта, указанного в пункте 5

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 мая 2018 г. N 109-П)

За принятие проголосовали:

Краткое наименование страны по
МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Беларусь

BY

Госстандарт Республики Беларусь

Киргизия

KG

Кыргызстандарт

Молдова

MD

Институт стандартизации Молдовы

Россия

RU

Росстандарт

Узбекистан

UZ

Узстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 августа 2018 г. N 515-ст межгосударственный стандарт ГОСТ ISO 20649-2018 введен в действие в качестве национального стандарта Российской Федерации с 1 сентября 2019 г.

5 Настоящий стандарт идентичен международному стандарту ISO 20649/IDF 235:2015* "Смеси адаптированные для искусственного вскармливания детей раннего возраста и смеси для энтерального питания взрослых. Определение содержания хрома, селена и молибдена. Масс-спектрометрия с индуктивно связанной плазмой (ICP-MS)" ["Infant formula and adult nutritionals - Determination of chromium, selenium and molybdenum - Inductively coupled plasma mass spectrometry (ICP-MS)", IDT].

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - .

Международный стандарт разработан Техническим комитетом по стандартизации ISO/TC 34 "Пищевые продукты", подкомитетом SC 5 "Молоко и молочные продукты" и Международной молочной федерацией (IDF) в сотрудничестве c AOAC INTERNATIONAL

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

ПРЕДУПРЕЖДЕНИЕ - Применение настоящего стандарта может включать использование веществ, оборудования и осуществление манипуляций, опасных для жизни. Настоящий стандарт не предусматривает рассмотрения всех проблем безопасности, связанных с его применением. Ответственность за соблюдение техники безопасности и охраны здоровья, а также установление соответствующих ограничений по применению настоящего стандарта несет пользователь.

1 Область применения

Настоящий стандарт устанавливает метод количественного определения хрома, селена и молибдена в смесях для детского питания и взрослых с применением масс-спектрометрии с индуктивно связанной плазмой (ICP-MS).

2 Сущность метода

Анализируемую пробу нагревают с азотной кислотой в микроволновой системе для минерализации пробы в закрытом контейнере при 200°С. Анализируемый раствор, содержащий минерализованную пробу, или его соответствующее разведение вносят в масс-спектрометр с индуктивно связанной плазмой (ИСП-МС), предварительно откалиброванный подкисленными стандартными калибровочными растворами. Ионизирующий буфер (калийный) применяется для минимизации эффектов легко ионизируемых элементов (ElEs), метанол добавляется для нормализации содержания углерода, а германий и теллур используются в качестве внутренних стандартов. Допускается совместное проведение анализов Cr/Mo/Se с одновременным определением любого или всех следующих элементов: Na, K, Р, Mg, Са, Fe, Zn, Cu, Mn. Ионизирующий буфер не добавляется, если калибровочные стандарты уже содержат Na, K, Mg и/или Са [1].

3 Реактивы и материалы

Во время проведения анализа, если не указано иное, используются только реагенты признанной степени чистоты и дистиллированная или деионизированная вода или вода эквивалентной чистоты.

3.1 Вода очищенная, 18 МОм/см.

3.2 Кислота азотная концентрированная (), 65-70%, для анализа следов металлов.

3.3 Перекись водорода (), 30%, х.ч.

3.4 Метанол, чистота 99,99%, особо чистый для подбора матрицы.

3.5 Раствор калия в азотной кислоте, с массовой концентрацией =10000 мг/дм для подбора матрицы.

Раствор калия может быть заменен многоэлементными стандартами, которые содержат калий, при условии, что одновременно определяются также другие основные элементы.

3.6 Стандартные образцы

3.6.1 Многоэлементный стандартный раствор*, содержащий Cr, Mo, Se, в азотной кислоте, =2 мг/дм, = 2 мг/дм и = 1 мг/дм или эквивалентный.

3.6.2 Многоэлементный стандартный раствор*, содержащий Ge, Те, в азотной кислоте, =5 мг/дм и =5 мг/дм или эквивалентный.

_______________

* Например High-Purity™ Standards - подходящий стандарт, доступный на коммерческой основе. Информация предоставляется для удобства пользователей настоящего стандарта и не является рекламой названного продукта. Могут быть использованы стандарты эквивалентного качества, если можно показать, что они приводят к таким же результатам.

3.6.3 Стандартный эталонный образец** или другой подходящий стандартный эталонный образец, служащий в качестве контроля для этого анализа.

_______________

** Стандартный эталонный образец SRM 1849а из Национального института стандартов и технологий (NIST).

3.7 Приготовление стандартных растворов

Готовят промежуточные рабочие растворы из стандартных растворов с концентрацией 40 нг/смдля Cr и Мо и 20 нг/см для Se с использованием мерных пипеток для приготовления стандартов (см. 6.6). Возможно использование базового стандартного раствора смеси элементов в азотной кислоте. Готовят три многоэлементных рабочих стандартных раствора, содержащих 0,8; 4,0 и 20 нг/см Cr и Мо и 0,4; 2,0 и 10 нг/см Se, а также раствор сравнения, с внутренними стандартами Ge и Те с концентрацией 50 нг/см, в . Раствор Ge используется в качестве внутреннего стандарта для Cr и Мо, а раствор Те используется для Se.

4 Оборудование и лабораторная посуда

4.1 Система пробоподготовки микроволновая. Используют готовую микроволновую систему пробоподготовки, предназначенную для лабораторного использования при температуре от 0 до 300°С с герметично закрывающимися контейнерами и регулируемой температурой. Подбирают контейнеры для разложения проб, которые будут выдерживать максимально возможное давление, так как пробы, а также карбонаты, могут способствовать значительному увеличению давления во время минерализации. Систему подключают к вытяжной вентиляции в соответствии с рекомендациями производителя.

ПРЕДОСТЕРЕЖЕНИЕ - Во время работы микроволновой системы пробоподготовки горячий раствор кислоты находится под давлением. Используйте соответствующую защиту для лица и лабораторную одежду.

4.2 ИСП-МС. Масс-спектрометр с индуктивно связанной плазмой (ИСП масс-спектрометр) с ячейками соударения и источником водорода и гелия.

4.3 Различная пластиковая лабораторная посуда и пипетки. Одноразовые пластиковые пробирки/пробирки для автосемплера для хранения растворов проб, мерные пипетки класса А для приготовления стандартов, дозатор переменного объема на 1000 мм или фиксированного объема на 500 мм для добавления внутренних стандартов, откалиброванные на используемый объем.

4.4 Весы лабораторные. Цена деления 0,0001 г.

5 Проведение испытания

5.1 Подготовка пробы

Готовят образцы смесей разведением около 25 г образца в 200 см теплой очищенной воды (60°С). Навеску 1,8 г восстановленного испытуемого раствора переносят в контейнер для разложения проб. Такая навеска представляет собой 0,2 г исходного образца смеси. 0,2 г эталонного образца SRM 1849а отвешивают непосредственно в контейнер для разложения проб. Жидкие пробы могут быть приготовлены путем взятия точной навески приблизительно 1 г анализируемого образца непосредственно в контейнер для разложения проб после перемешивания. Для проведения рекомендуемого одностадийного разложения проб (две стадии по программе микроволновой печи) добавляют 0,5 см 5000 нг/см раствора внутреннего стандарта Ge и Те при помощи дозатора, откалиброванного на используемый объем, для обеспечения по меньшей мере 0,8% точности. Чтобы максимально использовать преимущество внутреннего стандарта и тем самым повысить надежность этого метода, не следует добавлять внутренние стандарты в режиме онлайн в ходе анализа. В контейнер для разложения проб добавляют 5 см для анализа следов металлов, а затем 2 см . Контейнеры для разложения проб запечатывают в соответствии с инструкциями производителя и помещают их в микроволновую систему пробоподготовки. Температуру повышают линейно - от температуры окружающей среды до 180°С в течение 20 мин и поддерживают ее в течение 20 мин на этапе 1. На этапе 2 микроволновая система пробоподготовки автоматически переходит в температурный режим 200°С через 20 мин и поддерживает его в течение 20 мин (см. таблицу 1).

Таблица 1 - Параметры работы микроволновой системы пробоподготовки

N п/п

Наименование этапа

Условия

Этап 1 - Разложение пробы

1

Мощность

100% (1600 Вт)

2

Линейный нагрев

20 мин

3

Время удерживания

20 мин

4

Температура

180°С

5

Охлаждение

20 мин

Этап 2 - Разложение пробы

1

Мощность

100% (1600 Вт)

2

Линейный нагрев

20 мин

3

Время удерживания

20 мин

4

Температура

200°С

5

Охлаждение

20 мин

Для микроволновых систем пробоподготовки без двухступенчатой программы и там, где это более удобно, используют двухступенчатое разложение проб. Добавляют 0,5 см 5000 нг/см раствора внутреннего стандарта Ge и Те (при помощи откалиброванного дозатора, как указано выше) и 5 см для анализа следов металлов. Внутренние стандарты в ходе анализа в режиме онлайн не добавляют. Температуру повышают от комнатной до 200°С в течение 20 мин с соответствующими модели микроволновой печи настройками мощности и числом контейнеров. Охлаждают контейнеры в соответствии с инструкциями производителя, приблизительно 20 мин. Медленно открывают контейнеры, выпуская коричневые газы двуокиси азота.

ПРЕДОСТЕРЕЖЕНИЕ - Вентиляция должна проводиться в вытяжном шкафу, так как очень токсичен.

Добавляют 1 см и повторно минерализуют пробу путем изменения температуры от комнатной до 180°С в течение 15 мин. Температуру устанавливают на уровне 180°С и выдерживают в течение 15 мин, затем охлаждают в течение 20 мин до комнатной (25°С).

5.2 Приготовление испытуемого раствора

Добавляют приблизительно 20 см очищенной воды к содержимому контейнера с подготовленными пробами и переносят в пробирку для образцов вместимостью 50 см. Ополаскивают контейнер и переносят промывные воды в пробирку. 0,5 см метанола добавляют в пробирку для образцов и разбавляют до 50 см очищенной водой. Метанол может быть добавлен непосредственно в пробу в количестве 1% по объему.

5.3 Проведение измерений

В таблице 2 приведены параметры работы прибора в ходе анализа. Проводят анализ тестовых растворов с использованием ИСП МС-спектрометра, стандартизованного с применением указанных стандартных растворов. Ge используется как внутренний стандарт для Cr и Мо (плазмообразующий газ - гелий), а Те используется для Se (плазмообразующий газ - водород).

Режим работы с применением водорода в качестве плазмообразующего газа рекомендуется для определения низких уровней Se в смесях для детского питания, и в зависимости от модели прибора может оказаться невозможным легко переключаться между режимами гелия и водорода. В этом случае следуют инструкциям производителя прибора для перехода от гелиевого режима к водородному и анализируют Se отдельно от Cr и Мо. Следует проверить в отдельных экспериментах, что предел количественного определения (ПКО) для Se находится на уровне или ниже 10 нг/г при использовании альтернативного газа соударения/реакционного газа. Проводят анализ рабочих стандартных растворов Cr и Мо с концентрацией 4 нг/см и Se с концентрацией 2 нг/см или другого подходящего раствора для контроля качества с интервалом через 10 каждых проанализированных проб для контроля за изменением показаний прибора и линейностью. Результат должен быть в пределах 4% от номинальной концентрации стандарта. Обязательно проводят: анализ пробы без образца (проводят анализ, как и в случае обычного образца, и его измеренная концентрация должна быть менее половины наименьшей концентрации калибровочного стандартного раствора), повторный анализ одного и того же образца [относительная процентная разница (RPD) в пределах 10% для Cr, 7% для Se и 5% для Мо], анализ известных стандартных образцов, служащих в качестве контрольных образцов (проверка на извлекаемость в рамках контрольных пределов). Если какие-либо из этих проверок контроля качества не выполняются, результаты должны считаться недействительными. Порядок анализа должен быть следующим: анализ стандартных калибровочных растворов, затем следуют промывка, анализ пробы без образца, анализ стандартного образца, контрольного образца, анализируемой пробы, повторный анализ пробы (до 10 проб) и в заключение анализ стандартного образца.

Таблица 2 - Параметры работы ИСП масс-спектрометра

Типичные условия работы прибора

ВЧ-мощность, Вт

1600

ВЧ-напряжение, В

1,8

Глубина образца, мм

9

Напряжение первой линзы (экстрактора), В

0

Расход газа-носителя, дм/мин

0,9

Расход вспомогательного газа, дм/мин

0,2

Распылитель

Стеклянный концентрический

Температура распылительной камеры, °С

2

Интерфейсные конусы

Ni

Расход Не в ячейке, см/мин

4,5

Расход в ячейке, см/мин

4,2

Скорость работы насоса-распылителя, с

0,1 (=0,5 см/мин)

Аналит/внутренний стандарт/режим газа

, в режиме Не

в режиме

Например, "MicroMist". Это пример подходящего продукта, доступного на коммерческой основе. Информация предоставляется для удобства пользователей настоящего стандарта и не является рекламой названного продукта. Могут использоваться эквивалентные продукты, если они позволяют получать сходные результаты.

6 Расчеты

Коэффициенты отклика аналита по отношению к внутреннему стандарту измеряют при анализе многоэлементных рабочих стандартных растворов (см. 3.7), а наклон калибровочной кривой и пересечение автоматически вычисляют программным обеспечением с использованием невзвешенного линейного регрессионного анализа методом наименьших квадратов, чтобы получить наиболее подходящую линию. Затем в растворах образцов измеряют отношения отклика аналита к внутреннему стандарту, и расчетную концентрацию аналитического раствора умножают на соответствующий коэффициент разбавления, чтобы получить конечную концентрацию аналита в продукте.

7 Контроль качества результатов измерений

7.1 Линейность

Все калибровочные кривые строят с использованием невзвешенного линейного регрессионного анализа по методу наименьших квадратов и для каждой калибровочной кривой рассчитывают значения коэффициента корреляции (r). Каждую калибровочную кривую строят с использованием четырех многоэлементных стандартных растворов, включая контрольный стандартный раствор. Следует отметить, что все концентрации аналита в пробах находятся в линейном диапазоне калибровочной кривой и выше установленного нижнего предела линейности.

7.2 Предел количественного определения (ПКО)

ПКО - это наименьшая концентрация аналита в пробе, которая может быть надежно определена прибором. Значение ПКО обычно определяется путем умножения среднего стандартного отклонения (СО) результатов анализов 10 минерализованных пустых образцов на коэффициент 10, а инструментальный ПКО рассчитывается путем умножения инструментального ПО (предела обнаружения) на 3 (см. ссылку [2]). Однако в этом методе полезный или практический ПКО определяют как нижнее линейное предельное значение калибровочной кривой, поскольку точность и прецизионность измерений образцов ниже этого значения были бы неопределенными. Почти все обогащенные минералами пищевые продукты могут быть приготовлены с коэффициентом разбавления, так что Cr, Se и Мо будут присутствовать в аналитическом растворе с концентрацией выше ПКО.

7.3 Подбор матрицы с метанолом

Наличие углерода (органических соединений) в аналитических растворах вызывает усиление сигнала Se при анализе с помощью ИСП-МС (см. ссылки [3], [4], [5]). Для определения оптимальной концентрации метанола (источника углерода), необходимого для компенсации усиления сигнала Se, различные концентрации метанола добавляют как к калибровочным стандартным растворам, так и к минерализованным образцам.

7.4 Эффекты легко ионизируемых элементов (ElEs)*

_________________

* В бумажном оригинале слово "ElEs" в наименовании пункта 7.4 выделено курсивом. - .

Многие пищевые продукты содержат значительные уровни ElEs, таких как Са, Na, K и Mg. Поэтому для определения каких-либо изменений концентраций аналитов были проанализированы контрольные растворы и растворы, содержащие 4 нг/см Cr и Мо и 2 нг/см Se, как с ElEs, так и без них.

7.5 Специфичность

Специфичность метода заключается в его способности точно измерять аналит в присутствии других компонентов в матрице образца, которые могут вызывать спектральные помехи. Чтобы продемонстрировать специфичность метода, контрольные растворы без предварительной минерализации были дополнены многоэлементными растворами с концентрациями в пробах, которые являются репрезентативными для пищевых продуктов в случае ICP-MS анализа. Используют стандартный режим с применением в качестве плазмообразующего газа - для Se и Не - для Cr и Мо.

7.6 Точность

Точность демонстрируют путем анализа трех стандартных эталонных материалов (SRM), полученных из NIST, в течение двух разных дней, измерения степени извлечения в 10 продуктах питания в течение трех разных дней и сравнения результатов для 10 продуктов питания, полученных этим методом, с результатами, полученными другими валидированными методами - атомной эмиссионной спектроскопией с индуктивно связанной плазмой (ИСП-АЭС) (ICP-AES) и атомно-флуоресцентной спектрометрии (АФС) (AFS). Добавку аналитов проводят на уровне от 50 до 200% от концентрации аналита в каждом продукте.

7.7 Прецизионность

Значения относительного стандартного отклонения (RSD) в течение дня и в разные дни определяют путем анализа нескольких пищевых продуктов и двух внутрилабораторных контрольных образцов. Прецизионность в течение дня определяют путем анализа образцов в двух повторностях в каждый день, а прецизионность в разные дни измеряют с использованием средних результатов повторных образцов, анализируемых каждый день в течение 10 разных дней.

7.8 Устойчивость и робастность

Для определения устойчивости метода лабораторные контрольные образцы анализировали два аналитика в течение 10 дней. Кроме того, образец SRM 1849, полученный из NIST, был проанализирован в трех повторностях с различной массой навески образца и с различными внутренними стандартами.

7.9 Воспроизводимость

Восемь лабораторий предоставили межлабораторный протокол испытания данного метода на семи пробах, представленных как слепые повторности (всего 14 образцов и контроль SRM 1849а, который был известен). Были представлены четыре страны и пять моделей ICP-MS от трех основных поставщиков. Результаты показали среднее RSDR 9,3% для Cr, 5,3% для Мо и 6,5% для Se, со средним значением коэффициента Хорвитца 0,35 между всеми тремя аналитами и образцами.

Приложение А
(справочное)


Данные по прецизионности

Данные, приведенные в таблице А.1, были получены в межлабораторном исследовании и опубликованы в 2015 году [6] в соответствии с [7] и гармонизированным протоколом АОAC-IUРАС для совместных исследовательских процедур с целью оценки точных характеристик метода анализа [8]. Метод продемонстрировал отличную производительность в восьми лабораториях, на семи повторностях двух образцов и пяти различных моделях ИСП масс-спектрометров. Номинально в этом исследовании участвовали восемь лабораторий, хотя для некоторых аналитов с некоторыми матрицами может быть менее восьми результатов из-за исключения резко отклоняющихся значений (Cr проанализировали на трех матрицах семь лабораторий, Мо проанализировали на двух матрицах семь лабораторий, a Se проанализировали все восемь лабораторий, предоставив по крайней мере один параллельный результат для всех матриц).

Более подробную информацию о проверке метода можно найти на странице http://standards.iso.org/iso/20649.

Таблица А.1 - Данные по прецизионности, полученные для хрома, молибдена и селена

Проба

1

2

3

4

5

6

7

Сред-
нее

Хром (ПКО=20 нг/г)

Средний результат (нг/г)

16

48

140

130

30

24

<<20

Повторяемость относительного стандартного отклонения, RSDr, %

3,4

4,7

2,1

7,0

5,5

3,8

<ПКО

4,4

Воспроизводимость относительного стандартного отклонения, RSDR, %

12,1

7,1

5,8

8,1

9,2

13,4

<ПКО

9,3

Значение коэффициента Хорвитца

0,57

0,39

0,27

0,37

0,48

0,67

<ПКО

0,46

Молибден (ПКО=20 нг/г)

Средний результат (нг/г)

33

63

190

150

30

18

20

Повторяемость относительного стандартного отклонения, RSDr, %

1,0

1,6

1,2

1,0

3,3

1,7

3,3

1,9

Воспроизводимость относительного стандартного отклонения, RSDR, %

7,9

3,1

3,8

3,0

4,6

7,9

6,7

5,3

Значение коэффициента Хорвитца

0,42

0,18

0,19

0,14

0,24

0,38

0,33

0,27

Селен (ПКО=10 нг/г)

Средний результат (нг/г)

24

30

133

93

24

23

27

Повторяемость относительного стандартного отклонения, RSDr, %

6,1

5,9

4,7

2,3

3,8

6,4

2,4

4,5

Воспроизводимость относительного стандартного отклонения, RSDR, %

6,1

7,2

5,0

8,1

7,3

9,3

2,5

6,5

Значение коэффициента Хорвитца

0,31

0,37

0,23

0,36

0,37

0,46

0,13

0,32

Молочный белок для взрослых.

Смесь сухая для взрослых, низкожировая.

Смесь для взрослых, высокожировая, готовая к употреблению.

Смесь для взрослых, высокобелковая, готовая к употреблению.

Сухая детская смесь.

Смесь аминокислот для детей.

Сухая детская молочная смесь.

Концентрации в образцах указаны на продукт, готовый к употреблению (25 г порошка, разведенного в 200 см воды).

Библиография

[1]

АОАС INTERNATIONAL Official Method 2011.19 Determination of Chromium, Selenium, and Molybdenum in Infant Formula and Adult Nutritional Products by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) First Action 2011

(Официальный метод АОХА 2011.19 Определение хрома, селена и молибдена в детском питании и пищевых продуктах для взрослых с помощью индуктивно связанной плазмы в масс-спектрометрии (ICP-MS). Первая редакция, 2011)

[2]

IUPAC. Pesticides report 36. Glossary of terms relating to pesticides (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68 pp.1167-1193

[ИЮПАК. Отчет о пестицидах 36. Глоссарий терминов, касающихся пестицидов (Рекомендации ИЮПАК 1996). Теоретическая и прикладная химия 1996, 68 стр., 1167-1193]

[3]

Kralj P., Verber M. Investigations into Nonspectroscopic Effects of Organic Compounds in Inductively Coupled Plasma Mass Spectrometry. Acta Chim. Slov. 2003, 50 pp.633-644

[4]

Gammelgaard В., Jons O. Determination of selenium in urine by inductively coupled plasma mass spectrometry: interferences and optimization. J.Anal. At.Spectrom. 1999, 14 pp.867-874

[5]

Feldmann I., Jakubowski N., Thomas C, Stuewer D. (1999) Fresenius' J. Anal. Chem. 365, 415-421 J., AOAC Int. 95, 588(2012), AOAC SMPR 2011.009, J. AOAC Int. 95, 297(2012)

[6]

ОМА 2011.19, Determination of Chromium, Selenium, and Molybdenum in Infant Formula and Adult Nutritional Products - Inductively Coupled Plasma-Mass Spectrometry: Collaborative Study

(ОМА 2011.19. Определение содержания хрома, селена и молибдена в детском питании и продуктах питания для взрослых. Масс-спектрометрия с индуктивно связанной плазмой: совместное исследование)

[7]

ISO 5725-2:1994,

Accuracy (trueness and precision) of measurement methods and results - Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method [Точность (правильность и прецизионность) методов и результатов измерений. Часть 2. Основной метод определения повторяемости и воспроизводимости стандартного метода измерений]*

_______________

* Официальный перевод стандарта находится в Федеральном информационном фонде стандартов.

[8]

AOAC INTERNATIONAL. AOAC Official Methods Program, Associate Referee's Manual on development Study, Review, an Approval Process. Part IV AOAC Guidelines for Collaborative Studies, 1995, pp.23-51

(АОХА. Программа официальных методов АОХА. Руководство по разработке, оценке, процессу утверждения. Часть IV. Рекомендации АОХА по совместным исследованиям, 1995. С.23-51)

УДК 613.22:664:543.544.5.068.7:006.354

МКС 67.050

IDT

67.120

Ключевые слова: масс-спектрометрия с индуктивно связанной плазмой, ИСП-МС, хром, селен, молибден, смеси адаптированные для искусственного вскармливания детей раннего возраста, смеси для энтерального питания взрослых




Электронный текст документа
и сверен по:

, 2018

Другие госты в подкатегории

    ГОСТ 15113.3-77

    ГОСТ 15113.4-2021

    ГОСТ 15113.2-77

    ГОСТ 15113.4-77

    ГОСТ 16080-2019

    ГОСТ 15113.8-77

    ГОСТ 23455-79

    ГОСТ 26313-2014

    ГОСТ 26671-2014

    ГОСТ 26671-85

    ГОСТ 25555.5-2014

    ГОСТ 15113.5-77

    ГОСТ 26889-86

    ГОСТ 25555.1-2014

    ГОСТ 15113.7-77

    ГОСТ 15113.9-77

    ГОСТ 26929-94

    ГОСТ 26928-86

    ГОСТ 26935-86

    ГОСТ 26971-86

    ГОСТ 31671-2012

    ГОСТ 31694-2012

    ГОСТ 15113.6-77

    ГОСТ 31903-2012

    ГОСТ 32014-2012

    ГОСТ 31644-2012

    ГОСТ 26186-84

    ГОСТ 26930-86

    ГОСТ 32164-2013

    ГОСТ 32161-2013

    ГОСТ 30178-96

    ГОСТ 32163-2013

    ГОСТ 31669-2012

    ГОСТ 31643-2012

    ГОСТ 26934-86

    ГОСТ 32834-2022

    ГОСТ 31707-2012

    ГОСТ 30538-97

    ГОСТ 32800-2014

    ГОСТ 26927-86

    ГОСТ 31660-2012

    ГОСТ 32712-2014

    ГОСТ 32249-2013

    ГОСТ 32223-2013

    ГОСТ 26933-86

    ГОСТ 33312-2015

    ГОСТ 32798-2014

    ГОСТ 33163-2014

    ГОСТ 33303-2015

    ГОСТ 34110-2017

    ГОСТ 26932-86

    ГОСТ 32711-2014

    ГОСТ 32799-2014

    ГОСТ 28038-2013

    ГОСТ 32771-2014

    ГОСТ 26931-86

    ГОСТ 32780-2014

    ГОСТ 32841-2014

    ГОСТ 32919-2014

    ГОСТ 33616-2015

    ГОСТ 33277-2015

    ГОСТ 34462-2018

    ГОСТ 33615-2015

    ГОСТ 34815-2021

    ГОСТ 34844-2022

    ГОСТ 32797-2014

    ГОСТ 34868-2022

    ГОСТ 5667-65

    ГОСТ 5667-2022

    ГОСТ 5669-96

    ГОСТ 34533-2019

    ГОСТ 8756.0-70

    ГОСТ 34596-2019

    ГОСТ 8756.17-70

    ГОСТ 5512-50

    ГОСТ 8756.4-70

    ГОСТ 8756.1-79

    ГОСТ 33971-2016

    ГОСТ 34677-2020

    ГОСТ 33634-2015

    ГОСТ 31983-2012

    ГОСТ 34139-2017

    ГОСТ 34138-2017

    ГОСТ EN 13804-2013

    ГОСТ EN 14152-2013

    ГОСТ 34164-2017

    ГОСТ 34592-2019

    ГОСТ 34136-2017

    ГОСТ 5698-51

    ГОСТ 34678-2020

    ГОСТ 32834-2014

    ГОСТ 5668-68

    ГОСТ EN 15111-2015

    ГОСТ EN 14083-2013

    ГОСТ 34427-2018

    ГОСТ 34137-2017

    ГОСТ 33824-2016

    ГОСТ EN 12857-2015

    ГОСТ EN 12823-2-2014

    ГОСТ EN 15505-2013

    ГОСТ 33780-2016

    ГОСТ 34285-2017

    ГОСТ EN 15086-2015

    ГОСТ EN 14122-2013

    ГОСТ EN 15607-2015

    ГОСТ EN 15835-2013

    ГОСТ Р 52610-2006

    ГОСТ Р 53150-2008

    ГОСТ EN 16155-2015

    ГОСТ Р 52416-2005

    ГОСТ Р 53912-2010

    ГОСТ EN 14164-2014

    ГОСТ Р 54015-2010

    ГОСТ EN 15850-2013

    ГОСТ 32903-2014

    ГОСТ EN 12822-2014

    ГОСТ Р 54017-2010

    ГОСТ EN 14148-2015

    ГОСТ Р 53183-2008

    ГОСТ Р 54016-2010

    ГОСТ EN 15652-2015

    ГОСТ ISO 20637-2018

    ГОСТ Р 53601-2009

    ГОСТ Р 54058-2010

    ГОСТ Р 53182-2008

    ГОСТ EN 12821-2014

    ГОСТ Р 54685-2011

    ГОСТ Р 55578-2013

    ГОСТ ISO 20634-2018

    ГОСТ Р 70296-2022

    ГОСТ Р 55518-2013

    ГОСТ ISO 20647-2018

    ГОСТ ISO 8587-2015

    ГОСТ Р 54743-2011

    ГОСТ Р 54390-2011

    ГОСТ EN 12856-2015

    ГОСТ Р ЕН 13804-2010

    ГОСТ ISO 20633-2018

    ГОСТ Р 54635-2011

    ГОСТ Р 54684-2011

    ГОСТ Р 54894-2012

    ГОСТ Р 55339-2012

    ГОСТ Р 51301-99

    ГОСТ Р 53992-2010

    ГОСТ Р ЕН 15829-2011

    ГОСТ Р 54634-2011

    ГОСТ EN 14663-2014

    ГОСТ Р ЕН 12857-2010

    ГОСТ Р 54904-2012

    ГОСТ Р 56931-2016

    ГОСТ Р ЕН 14130-2010

    ГОСТ Р 54637-2011

    ГОСТ Р 53991-2010

    ГОСТ Р 56201-2014

    ГОСТ Р ЕН 12856-2010

    ГОСТ Р 57513-2017

    ГОСТ Р ИСО 21571-2014