ГОСТ 31745-2012

ОбозначениеГОСТ 31745-2012
НаименованиеПродукты пищевые. Определение содержания полицеклических ароматических углеводородов методом высокоэффективной жидкостной хроматографии
СтатусДействует
Дата введения07.01.2013
Дата отмены-
Заменен на-
Код ОКС67.080.10
Текст ГОСТа


ГОСТ 31745-2012


МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ПРОДУКТЫ ПИЩЕВЫЕ

Определение содержания полициклических ароматических углеводородов методом высокоэффективной жидкостной хроматографии

Food products. Determination of PAHs content by HPLC method

МКС 67.080.10

Дата введения 2013-07-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Атлантический научно-исследовательский институт рыбного хозяйства и океанографии" (ФГУП "Атлант НИРО")

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 15 ноября 2012 г. N 42)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Киргизия

KG

Кыргызстандарт

Молдова

MD

Молдова-Стандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

Узбекистан

UZ

Узстандарт

(Поправка).

4 Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. N 1746-ст межгосударственный стандарт ГОСТ 31745-2012 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2013 г.

5 Настоящий стандарт подготовлен на основе применения ГОСТ Р 53152-2008*

________________

* Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. N 1746-ст национальный стандарт ГОСТ Р 53152-2008 отменен с 15 февраля 2015 г.

6 ВВЕДЕН ВПЕРВЫЕ

7 ИЗДАНИЕ (Ноябрь 2019 г.) с Поправкой (ИУС 6-2019)

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

Настоящий стандарт распространяется на продовольственное сырье и пищевые продукты и устанавливает метод определения массовых долей полициклических ароматических углеводородов с применением высокоэффективной жидкостной хроматографии (ВЭЖХ).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 4166 Реактивы. Натрий сернокислый. Технические условия

ГОСТ 6709 Вода дистиллированная. Технические условия

ГОСТ 7631 Рыба, нерыбные объекты и продукция из них. Методы определения органолептических и физических показателей

ГОСТ 8756.0 Продукты пищевые консервированные. Отбор проб и подготовка их к испытаниям

ГОСТ 9147 Посуда и оборудование лабораторные фарфоровые. Технические условия

ГОСТ 9293 Азот газообразный и жидкий. Технические условия

ГОСТ 9968 Метилен хлористый технический. Технические условия

ГОСТ 12026 Бумага фильтровальная лабораторная. Технические условия

ГОСТ 18300* Спирт этиловый ректификованный технический. Технические условия

_________________

* В Российской Федерации действует ГОСТ Р 55878-2013.

ГОСТ 20289 Реактивы. Диметилформамид. Технические условия

ГОСТ 24104** Весы лабораторные. Общие технические требования

________________

** В Российской Федерации действует ГОСТ Р 53228-2008.

ГОСТ 24363 Реактивы. Калия гидроокись. Технические условия

ГОСТ 25336 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 29228 (ИСО 835-80) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 2. Пипетки градуированные без установленного времени ожидания

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящего стандарта в ссылочный документ на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

3.1 полициклические ароматические углеводороды; ПАУ: Группа органических полициклических соединений, молекулы которых построены из конденсированных бензольных ядер (двух и более), а также включающие пятичленные циклы.

4 Отбор проб

Отбор и подготовку лабораторной пробы к испытаниям проводят в соответствии с ГОСТ 7631, ГОСТ 8756.0.

Допускается хранить подготовленную пробу в замороженном состоянии без доступа кислорода при температуре не выше 18°С не более 7 сут.

Из объединенной лабораторной пробы для испытания отбирают две параллельные навески.

5 Сущность метода

Сущность метода заключается в щелочном гидролизе пробы, экстракции углеводородов гексаном из гидролизованного продукта, селективном выделении фракции полициклических ароматических углеводородов диметилформамидом, повторной экстракции ПАУ гексаном из разбавленного водного раствора диметилформамида, очистке полученной фракции от мешающих примесей на колонке с сефадексом или силикагелем с последующим количественным определением выделенных углеводородов высокоэффективной жидкостной хроматографией.

Метод позволяет провести определение 16 веществ (приоритетных загрязнителей по ЕРА).

Предел обнаружения массовых долей ПАУ в анализируемых продуктах составляет от 0,1 до 5 мкг/кг для различных ПАУ.

6 Средства измерений, оборудование, реактивы, материалы

Хроматограф жидкостный любой марки с флуориметрическим детектором (диапазон длин волн возбуждения 230-280 нм, диапазон длин волн регистрации 310-500 нм) с программным обеспечением для регистрации и обработки хроматограмм.

Колонка хроматографическая для ВЭЖХ длиной 150-250 мм и диаметром 2,1-4,6 мм с обращенной фазой С18 специально предназначенная для разделения ПАУ, имеющая эффективность не менее 5000 теоретических тарелок по пикам ПАУ.

Баня водяная лабораторная любой марки, имеющая диапазон температур от 20°С до 100°С.

Весы лабораторные общего назначения высокого или специального класса точности с наибольшим пределом взвешивания 200 или 210 г и ценой деления 0,1 мг по ГОСТ 24104.

Испаритель ротационный любой марки.

Насос водоструйный лабораторный по ГОСТ 25336.

Дефлегматор 250-19/26-29/32 ТС по ГОСТ 25336.

Воронка делительная ВД-1-250 и ВД-1-500 по ГОСТ 25336.

Воронка стеклянная ВФО 100-14/23 по ГОСТ 25336.

Воронка Бюхнера по ГОСТ 9147.

Колбы конические 1-250, 1-500 по ГОСТ 25336.

Колба градуированная 50-14/23 по ГОСТ 25336.

Колбы мерные 2-10-2, 2-100-2, 2-200-2 по ГОСТ 25336.

Колонка хроматографическая стеклянная длиной не менее 20 см и диаметром 1,0 см с резервуаром вместимостью не менее 20 см.

Микрошприцы хроматографические двух видов: на 10 мкл с ценой деления 0,1 мкл и на 100 мкл с ценой деления 1,0 мкл.

Пипетки 1-1-1, 1-1-2, 2-1-5 по ГОСТ 29228.

Стакан химический В-1-100 или В-1-150 по ГОСТ 25336.

Стаканы для взвешивания (бюксы) по ГОСТ 25336.

Цилиндры мерные 1-100, 1-250 или 3-100, 3-250 по ГОСТ 25336.

Холодильник водяной по ГОСТ 25336.

Азот газообразный по ГОСТ 9293.

Ацетонитрил по документу, действующему на территории государства, принявшего стандарт, ос.ч.

Бумага фильтровальная лабораторная по ГОСТ 12026.

Вода дистиллированная по ГОСТ 6709.

н-Гексан по документу, действующему на территории государства, принявшего стандарт, ос.ч.

Диметилформамид по ГОСТ 20289, х.ч.

Калия гидроокись по ГОСТ 24363, х.ч.

Натрий сернокислый, безводный, по ГОСТ 4166.

Спирт этиловый ректификованный по ГОСТ 18300.

Силикагель, размер частиц 60-200 мкм.

Хлористый метилен по ГОСТ 9968, х.ч.

Стандартные образцы состава раствора в ацетонитриле определяемых ПАУ массовой концентрации 100 или 200 мкг/см и погрешностью аттестованного значения не более ±2% или чистые вещества, массовая доля основного вещества не менее 98%.

Волокнистый кварцевый материал СКВ по документу, действующему на территории государства, принявшего стандарт.

Шпатели, стеклянные палочки, стеклянные капилляры.

Допускается применение других средств измерений с метрологическими характеристиками и оборудования с техническими характеристиками, а также других реактивов и материалов по качеству не ниже указанных в настоящем стандарте.

7 Проведение испытаний

7.1 Подготовка к испытанию

7.1.1 Очистка растворителей

Растворители при необходимости перегоняют общепринятым способом.

7.1.2 Приготовление исходных растворов индивидуальных ПАУ

В бюксы отвешивают по (10,0±0,1) мг каждого индивидуального ПАУ. Навески количественно переносят в мерные колбы вместимостью 100 см, затем объем раствора доводят до метки ацетонитрилом.

При использовании ГСО состава раствора в ацетонитриле массовой концентрацией 200 мкг/см отбирают 1 см и смешивают с равным объемом ацетонитрила.

Полученные растворы имеют массовую концентрацию 100 мкг/см. Растворы хранят плотно закрытыми в темном холодном месте не более 3 мес.

7.1.3 Приготовление рабочих растворов индивидуальных ПАУ

Отбирают 0,5 см исходного раствора индивидуального ПАУ в мерную колбу вместимостью 10 см и объем раствора доводят до метки ацетонитрилом. Полученные рабочие растворы имеют массовую концентрацию 5 мкг/см. Рабочие растворы допускается хранить плотно закрытыми в темном месте при температуре 4°С - 6°С не более одного месяца.

7.1.4 Приготовление градуировочных растворов

Для приготовления градуировочных растворов смеси индивидуальных ПАУ в мерные колбы вместимостью 100 см переносят приведенные в таблице 1 объемы рабочих растворов индивидуальных ПАУ массовой концентрацией 5 мкг/см, затем доводят объем до метки ацетонитрилом. Градуировочные растворы допускается хранить плотно закрытыми в темном месте при температуре 4°С-6°С не более одного месяца.

Таблица 1

Наименование индивидуального ПАУ

Объем исходного раствора, см

Массовая концентрация в градуировочном растворе, мкг/см

Раствор
N 1

Раствор
N 2

Раствор
N 3

Раствор
N 1

Раствор
N 2

Раствор
N 3

Нафталин

1

5

10

0,05

0,25

0,5

Аценафтилен

0,4

2

4

0,02

0,1

0,2

Флуорен

0,4

2

4

0,02

0,1

0,2

Аценафтен

0,4

2

4

0,02

0,1

0,2

Фенантрен

0,1

0,5

1

0,005

0,025

0,05

Антрацен

0,4

2

4

0,02

0,1

0,2

Флуорантен

0,1

0,5

1

0,005

0,025

0,05

Пирен

0,2

1

2

0,01

0,05

0,1

Хризен

0,4

2

4

0,02

0,1

0,2

Бенз(а)антрацен

0,4

2

4

0,02

0,1

0,2

Бенз(b)флуорантен

0,1

0,5

1

0,005

0,025

0,05

Бенз(k)флуорантен

0,1

0,5

1

0,005

0,025

0,05

Бенз(а)пирен

0,2

1

2

0,01

0,05

0,1

Дибенз(а,h)антрацен

0,4

2

4

0,02

0,1

0,2

Бенз(g,h,i)перилен

0,2

1

2

0,01

0,05

0,1

Индено(1,2,3-с,d)пирен

0,4

2

4

0,02

0,1

0,2

Бенз(b)хризен

0,4

2

4

0,02

0,1

0,2

7.1.5 Градуировка хроматографа

Градуировку хроматографа выполняют, используя градуировочные растворы, приготовленные по 7.1.4, с добавлением внутреннего стандарта. В качестве внутреннего стандарта используют бенз(b)хризен.

В условиях, позволяющих разделить все составные вещества калибровочной смеси (см. 7.2.4.1), записывают не менее трех хроматограмм для каждого градуировочного раствора.

Определяют среднеарифметическое значение площади пиков каждого индивидуального ПАУ, рассчитанное из трех хроматограмм.

Отдельно записывают не менее двух хроматограмм для каждого индивидуального ПАУ для определения времени удерживания, используя рабочие растворы, приготовленные по 7.1.3, объем инжекции 1-2 мкл. Стабильность времени удерживания считают удовлетворительной при расхождении между двумя значениями не более 5%.

Градуировочный коэффициент , определяемый экспериментально в зависимости от выбранных условий детектирования по хроматограмме стандартной смеси ПАУ, включающей бенз(b)хризен, для каждого индивидуального ПАУ рассчитывают по формуле

, (1)

где - масса введенного индивидуального ПАУ, мкг;

- площадь пика внутреннего стандарта, усл. ед.;

- масса внутреннего стандарта, мкг;

- площадь пика индивидуального ПАУ, усл. ед.

Градуировочный коэффициент рассчитывают для каждого индивидуального ПАУ. Его значения не должны отличаться от среднеарифметического более чем на 10%.

7.1.6 Подготовка хроматографических колонок для очистки проб

7.1.6.1 Заполнение колонки силикагелем

Силикагель предварительно подвергают дезактивации. Для этого к 50 г силикагеля, прокаленного при температуре 180°С-200°С, добавляют 3% (по массе) дистиллированной воды по капле и интенсивно встряхивают после добавления каждой капли. Затем оставляют в эксикаторе на время не менее 18 ч для дезактивации. После дезактивации заполняют колонку силикагелем массой (10,0±0,1) г, осторожно по стенке колонки заливают 25 см н-гексана, дают стечь н-гексану, не допуская высыхания верхнего слоя. Заполнять колонку необходимо очень аккуратно во избежание взмучивания и неравномерного заполнения колонки. Колонку готовят непосредственно перед очисткой и не используют повторно.

Каждую новую партию сорбента перед использованием необходимо проверить на качество деления. Для этого через колонку с подготовленным сорбентом пропускают 1 см градуировочного раствора N 2 или N 3 с добавлением очищенного экстракта рабочей пробы по 7.2, проводят процедуру очистки по 7.2.2, после чего анализируют с помощью высокоэффективной жидкостной хроматографии. Все индивидуальные ПАУ (особенно наиболее легкие и наиболее тяжелые), входящие в состав градуировочного раствора, не должны быть потеряны или перекрываться пиками мешающих их определению веществ. При неудовлетворительных результатах либо меняют партию сорбента, либо подбирают условия очистки, варьируя объем отбрасываемой фракции и элюата.

7.1.6.2 Заполнение хроматографической колонки сефадексом LH-20

(4,0±0,1) г сефадекса марки LH-20 взвешивают на аналитических весах и заливают 50 см этилового спирта, выдерживают для набухания не менее 3 ч, после чего осторожно переносят в колонку. Колонку необходимо заполнять одномоментно во избежание неравномерного заполнения колонки. Дают стечь спирту до высоты 1-2 мм над верхним слоем сорбента, после чего вносят экстракт.

Заполненную колонку допускается хранить и использовать повторно. Для повторного использования необходимо промыть колонку 50 см этилового спирта. Для хранения необходимо заполнить колонку этиловым спиртом, закупорить колонку пробкой и не допускать высыхания сорбента. В случае высыхания сефадекса рекомендуется приготовить новую колонку.

7.1.6.3 Приготовление раствора гидроокиси калия в этиловом спирте

В колбу вместимостью 150-200 см помещают (8,0±0,1) г гидроксида калия, добавляют 2 см дистиллированной воды и 98 см этилового спирта, перемешивают до полного растворения.

7.2 Проведение испытаний

7.2.1 Выделение ПАУ из продукта

Навеску продукта массой 10,0-20,0 г, взвешенную с точностью до 0,01 г, помещают в плоскодонную колбу вместимостью 250 см, добавляют 50 см спиртового раствора гидроокиси калия. Содержимое колбы перемешивают встряхиванием. Затем в пробу продукта и пробу контрольного опыта вносят по 10 мкл внутреннего стандарта - рабочего раствора бенз(b)хризена, приготовленного по 7.1.2 массовой концентрацией 5 мкг/см. Колбу соединяют с обратным холодильником и нагревают на водяной бане при температуре 85 °С-90 °С в течение 3 ч. Затем в колбу через холодильник добавляют 100 см дистиллированной воды. Реакционную смесь охлаждают до комнатной температуры и после охлаждения переносят в делительную воронку вместимостью 250 см. В случае если после гидролиза в реакционной массе остался нерастворимый осадок, его отделяют на воронке Бюхнера, промывая на фильтре 30 см горячего этилового спирта. Спирт после промывки добавляют в делительную воронку с реакционной смесью. В делительную воронку также добавляют 30 см н-гексана. Содержимое воронки встряхивают в течение 2 мин и оставляют для расслаивания. В случае образования эмульсии к смеси в делительной воронке добавляют 10-20 см этилового спирта. После расслаивания нижнюю водно-спиртовую фазу сливают в колбу, а верхний гексановый слой переливают в другую делительную воронку. Затем повторяют экстракцию ПАУ из водно-спиртовой фракции н-гексаном еще два раза по 30 см. Гексановые экстракты объединяют в делительной воронке и промывают дистиллированной водой трижды по 30 см, после чего экстракт фильтруют через слой безводного сульфата натрия в грушевидную колбу вместимостью 100 см. Раствор выпаривают на ротационном испарителе до объема 50 см при температуре водяной бани не выше 50°С.

Упаренный экстракт переносят в делительную воронку вместимостью 250 см и добавляют к нему 50 см смеси диметилформамида с водой в соотношении 9:1. Интенсивно встряхивают смесь в течение 1 мин, после расслаивания фаз нижнюю сливают в плоскодонную колбу, а верхний гексановый слой снова подвергают экстракции, добавляя 50 см смеси диметилформамида и воды. Гексановый слой отбрасывают, объединенный диметилформамидный экстракт переносят в делительную воронку вместимостью 500 см, добавляют 100 см дистиллированной воды, встряхивают и проводят экстракцию из водной фазы н-гексаном трижды по 50 см. Водную фазу отбрасывают, а гексановый экстракт промывают водой три раза по 30 см, переносят в плоскодонную колбу, добавляют 10 г безводного сульфата натрия и выдерживают в течение 1 ч, после чего фильтруют в круглодонную колбу. н-Гексан выпаривают на ротационном испарителе до объема 1,0 см и остаток очищают на колонке с дезактивированным силикагелем (см. 7.2.2) или осторожно упаривают досуха потоком воздуха через вакуумный аллонж, соединенный с водоструйным насосом, остаток в колбе растворяют в 0,5 см этилового спирта и очищают на колонке с сефадексом (см. 7.2.3).

Одновременно проводят холостой опыт, проводя все стадии анализа с использованием реактивов по 7.2, но без навески продукта.

7.2.2 Очистка экстракта на хроматографической колонке с силикагелем

На подготовленную по 7.1.6.1 колонку с дезактивированным силикагелем пипеткой количественно переносят гексановый экстракт, полученный по 7.2.1, трижды промывая колбу гексаном по 0,5 см. Первую фракцию элюируют 25 см гексана и отбрасывают, вторую фракцию (ПАУ) элюируют 60 см смеси гексана и хлористого метилена в объемном соотношении 1:4. Полученный элюат упаривают на роторном испарителе до объема 2,0 см (но не менее 1,5 см) при температуре не выше 50°С, оставшийся растворитель удаляют потоком воздуха через вакуумный аллонж, соединенный с водоструйным насосом. Сухой остаток растворяют в 0,5 см ацетонитрила.

Далее выполняют количественный анализ с помощью высокоэффективной жидкостной хроматографии.

7.2.3 Очистка экстракта на хроматографической колонке с сефадексом LH-20

На подготовленную по 7.1.6.2 колонку пипеткой наносят экстракт, полученный по 7.2.1 в 0,5 см этилового спирта, трижды смывая его из колбы этиловым спиртом порциями по 0,5 см. Элюирование из колонки ПАУ проводят этиловым спиртом, первую фракцию 15 см отбрасывают, собирают следующую фракцию объемом 40 см в грушевидную колбу объемом 100 см. Спирт упаривают на роторном испарителе до объема не менее 0,5 см при температуре не выше 50°С, а остаток удаляют в потоке воздуха или азота. Сухой остаток растворяют в 0,5 см ацетонитрила.

Далее выполняют количественный анализ с помощью высокоэффективной жидкостной хроматографии.

7.2.4 Определение содержания индивидуальных ПАУ методом высокоэффективной жидкостной хроматографии

7.2.4.1 Условия хроматографии

Условия проведения хроматографического анализа подбираются в зависимости от вида применяемого жидкостного хроматографа и хроматографической колонки. Хроматографическая колонка должна быть специально предназначена для разделения ПАУ. Критерием возможности применения можно считать разделение на колонке таких пар индивидуальных ПАУ, как бенз(а)антрацен и хризен, а также бенз(g, h, i)перилен и индено(1,2,3-сd)пирен, которые на обычных колонках не делятся.

В качестве примера могут быть приведены следующие условия хроматографического определения ПАУ, выполненного на жидкостном хроматографе Shimadzu 2010А колонке ChromSep CP EcoSpher 4 РАН 250х3,0.

Подвижная фаза: ацетонитрил, вода.

Градиент: 3 мин ацетонитрил:вода (60:40), следующие 12 мин ацетонитрил от 60% до 100% и далее 100% ацетонитрил до окончания анализа.

Режим программирования по времени длин волн возбуждающего света и регистрации пиков приведен в таблице 2.

Таблица 2

Время, мин

Длина волны возбуждения, нм

Длина волны регистрации, нм

0,0-16,0

230

320

16,1-23,0

250

370

23,1-40,0

255

420

Объем вводимой пробы: 20 мкл.

7.2.4.2 Проведение измерений

Пробу продукта и пробу контрольного опыта хроматографируют дважды и рассчитывают среднеарифметическое значение площади пиков анализируемых полициклических ароматических углеводородов, включая внутренний стандарт.

8 Обработка результатов испытаний

На основании полученных данных рассчитывают массовую концентрацию каждого индивидуального ПАУ, мг/кг, в продукте по формуле

, (2)

где - масса внутреннего стандарта, введенного в пробу продукта и пробу контрольного образца, мкг;

- градуировочный коэффициент, установленный экспериментально в процессе градуировки и рассчитанный по формуле (1);

- площадь пика индивидуального ПАУ на хроматограмме пробы продукта, усл. ед.;

- площадь пика индивидуального ПАУ на хроматограмме пробы контрольного образца, усл. ед.;

- масса навески, взятая для анализа, г;

- площадь пика внутреннего стандарта на хроматограмме пробы продукта, усл. ед.;

- площадь пика внутреннего стандарта на хроматограмме пробы контрольного образца, усл. ед.

Результат анализа представляют в виде (), мг/кг при 0,95,

где - среднеарифметическое двух параллельных определений;

- граница интервала, в котором абсолютная погрешность измерений находится с доверительной вероятностью 0,95.

Характеристику погрешности вычисляют по формуле

, (3)

где - граница интервала, в котором относительная погрешность измерений находится с доверительной вероятностью 0,95%.

Расхождение между результатами двух параллельных определений не должно превышать следующей разности

, (4)

где , и - результаты двух параллельных определений и их среднеарифметическое значение;

- предел повторяемости, %.

В противном случае испытания повторяют до получения удовлетворительных результатов. Результаты округляют до второй значащей цифры. За окончательный результат испытания принимают среднеарифметическое значение двух параллельных определений и с тем же числом значащих цифр.

9 Метрологические характеристики

Метод обеспечивает получение результатов измерения с метрологическими характеристиками, не превышающими значений, приведенных в таблице 3.

Таблица 3

В процентах

Наименование определяемого компонента

Граница интервала, в котором относительная погрешность находится с доверительной вероятностью 0,95,

Предел повторяемости

Предел воспроизводимости

Нафталин

42

40

62

Аценафтилен

34

33

50

Флуорен

35

34

50

Аценафтен

37

36

55

Фенантрен

40

38

57

Антрацен

42

40

60

Флуорантен

35

34

50

Пирен

38

37

55

Хризен

40

38

57

Бенз(а)антрацен

38

36

55

Бенз(b)флуорантен

35

34

50

Бенз(k)флуорантен

35

34

50

Бенз(а)пирен

40

38

57

Дибенз(а,h)антрацен

40

38

57

Бенз(g,h,i)перилен

40

38

57

Индено(1,2,3-с,d)пирен

40

38

57

10 Протокол испытаний

Протокол испытаний должен содержать следующую информацию:

- всю информацию, необходимую для исчерпывающей идентификации пробы;

- метод испытаний и определяемый элемент со ссылкой на настоящий стандарт;

- результаты испытаний с указанием единиц измерений;

- дату отбора пробы и способ отбора (если он известен);

- дату окончания проведения испытаний;

- информацию о выполнении требований к повторяемости результатов;

- все детали проведения испытаний, не оговоренные в настоящем стандарте или не считающиеся обязательными, а также все инциденты, наблюдавшиеся при проведении испытаний, которые могли повлиять на конечный результат.

УДК 664.854:537.635:006.354

МКС 67.080.10

Ключевые слова: пищевые продукты, определение содержания, полициклические ароматические углеводороды, высокоэффективная жидкостная хроматография

Электронный текст документа

и сверен по:

, 2019

Другие госты в подкатегории

    ГОСТ 12325-66

    ГОСТ 12326-66

    ГОСТ 13010-67

    ГОСТ 13011-67

    ГОСТ 12003-76

    ГОСТ 13031-67

    ГОСТ 12231-66

    ГОСТ 13341-77

    ГОСТ 13342-77

    ГОСТ 13340.1-77

    ГОСТ 1016-90

    ГОСТ 13907-86

    ГОСТ 13908-68

    ГОСТ 13634-2017

    ГОСТ 13340.2-77

    ГОСТ 13799-2016

    ГОСТ 15877-70

    ГОСТ 13799-81

    ГОСТ 15979-70

    ГОСТ 16524-70

    ГОСТ 15842-90

    ГОСТ 16270-70

    ГОСТ 16524-2017

    ГОСТ 16729-71

    ГОСТ 16730-71

    ГОСТ 16525-70

    ГОСТ 1633-73

    ГОСТ 16731-71

    ГОСТ 1683-2017

    ГОСТ 16732-71

    ГОСТ 1683-71

    ГОСТ 17111-88

    ГОСТ 1721-85

    ГОСТ 1722-85

    ГОСТ 16440-89

    ГОСТ 1723-86

    ГОСТ 1724-85

    ГОСТ 1726-85

    ГОСТ 1726-2019

    ГОСТ 1725-2019

    ГОСТ 1725-85

    ГОСТ 16831-71

    ГОСТ 16830-71

    ГОСТ 16832-71

    ГОСТ 16833-71

    ГОСТ 1750-86

    ГОСТ 17472-72

    ГОСТ 17471-2013

    ГОСТ 17472-2013

    ГОСТ 17471-83

    ГОСТ 17649-72

    ГОСТ 15849-89

    ГОСТ 18077-72

    ГОСТ 16834-81

    ГОСТ 18077-2013

    ГОСТ 16835-81

    ГОСТ 20450-2019

    ГОСТ 16833-2014

    ГОСТ 19215-73

    ГОСТ 18611-2013

    ГОСТ 21405-75

    ГОСТ 20450-75

    ГОСТ 21536-76

    ГОСТ 21569-76

    ГОСТ 20144-74

    ГОСТ 18224-72

    ГОСТ 18078-72

    ГОСТ 21570-76

    ГОСТ 18316-95

    ГОСТ 18611-73

    ГОСТ 21922-76

    ГОСТ 21921-76

    ГОСТ 18224-2013

    ГОСТ 1723-2015

    ГОСТ 21920-76

    ГОСТ 21920-2015

    ГОСТ 18316-2013

    ГОСТ 21832-76

    ГОСТ 21833-76

    ГОСТ 17421-82

    ГОСТ 17649-2014

    ГОСТ 21714-76

    ГОСТ 24433-80

    ГОСТ 25896-83

    ГОСТ 21122-75

    ГОСТ 21715-76

    ГОСТ 26313-84

    ГОСТ 22371-77

    ГОСТ 26324-84

    ГОСТ 21713-76

    ГОСТ 26323-2014

    ГОСТ 2654-86

    ГОСТ 2654-2017

    ГОСТ 26766-85

    ГОСТ 26767-85

    ГОСТ 26545-85

    ГОСТ 26832-86

    ГОСТ 27166-86

    ГОСТ 26323-84

    ГОСТ 27569-87

    ГОСТ 26768-85

    ГОСТ 21715-2013

    ГОСТ 27572-87

    ГОСТ 27572-2017

    ГОСТ 27819-88

    ГОСТ 27853-88

    ГОСТ 27573-87

    ГОСТ 24283-2014

    ГОСТ 28322-2014

    ГОСТ 26188-2016

    ГОСТ 25555.3-82

    ГОСТ 24283-80

    ГОСТ 27198-87

    ГОСТ 27573-2013

    ГОСТ 28432-90

    ГОСТ 28502-90

    ГОСТ 28501-90

    ГОСТ 28275-94

    ГОСТ 28472-90

    ГОСТ 28676.11-90

    ГОСТ 25555.1-82

    ГОСТ 28649-90

    ГОСТ 26188-84

    ГОСТ 28741-90

    ГОСТ 28373-94

    ГОСТ 28372-93

    ГОСТ 25555.4-91

    ГОСТ 29031-91

    ГОСТ 29187-91

    ГОСТ 25555.0-82

    ГОСТ 29181-91

    ГОСТ 29030-91

    ГОСТ 28562-90

    ГОСТ 25555.5-91

    ГОСТ 31713-2012

    ГОСТ 28561-90

    ГОСТ 31782-2012

    ГОСТ 31652-2012

    ГОСТ 26181-84

    ГОСТ 28467-90

    ГОСТ 31784-2012

    ГОСТ 31821-2022

    ГОСТ 31788-2012

    ГОСТ 31672-2012

    ГОСТ 29206-91

    ГОСТ 29032-91

    ГОСТ 29059-91

    ГОСТ 25555.2-91

    ГОСТ 31712-2012

    ГОСТ 31822-2012

    ГОСТ 32063-2013

    ГОСТ 31821-2012

    ГОСТ 31916-2012

    ГОСТ 31853-2012

    ГОСТ 31823-2012

    ГОСТ 31855-2012

    ГОСТ 32065-2013

    ГОСТ 31854-2012

    ГОСТ 32147-2013

    ГОСТ 32081-2013

    ГОСТ 32095-2013

    ГОСТ 32000-2012

    ГОСТ 32218-2013

    ГОСТ 31852-2012

    ГОСТ 32099-2013

    ГОСТ 32684-2014

    ГОСТ 32283-2013

    ГОСТ 30349-96

    ГОСТ 30669-2000

    ГОСТ 32285-2013

    ГОСТ 32689.3-2014

    ГОСТ 32284-2013

    ГОСТ 30670-2000

    ГОСТ 32742-2014

    ГОСТ 32217-2013

    ГОСТ 32689.1-2014

    ГОСТ 32790-2014

    ГОСТ 24556-89

    ГОСТ 32741-2014

    ГОСТ 32286-2013

    ГОСТ 32788-2014

    ГОСТ 32789-2014

    ГОСТ 25999-83

    ГОСТ 28038-89

    ГОСТ 32001-2012

    ГОСТ 32114-2013

    ГОСТ 32811-2014

    ГОСТ 32856-2014

    ГОСТ 32688-2014

    ГОСТ 32879-2014

    ГОСТ 32810-2014

    ГОСТ 32115-2013

    ГОСТ 32873-2014

    ГОСТ 32909-2014

    ГОСТ 32787-2014

    ГОСТ 32791-2014

    ГОСТ 32877-2014

    ГОСТ 32882-2014

    ГОСТ 32786-2014

    ГОСТ 32857-2014

    ГОСТ 33318-2015

    ГОСТ 33314-2015

    ГОСТ 33316-2015

    ГОСТ 32896-2014

    ГОСТ 32878-2014

    ГОСТ 32875-2014

    ГОСТ 32874-2014

    ГОСТ 33315-2015

    ГОСТ 30710-2001

    ГОСТ 32883-2014

    ГОСТ 33440-2015

    ГОСТ 33443-2015

    ГОСТ 29270-95

    ГОСТ 3343-2017

    ГОСТ 33309-2015

    ГОСТ 33476-2015

    ГОСТ 3343-89

    ГОСТ 33457-2015

    ГОСТ 33540-2015

    ГОСТ 33551-2015

    ГОСТ 33317-2015

    ГОСТ 33562-2015

    ГОСТ 33485-2015

    ГОСТ 33823-2016

    ГОСТ 33494-2015

    ГОСТ 33882-2016

    ГОСТ 33801-2016

    ГОСТ 33884-2016

    ГОСТ 33479-2015

    ГОСТ 33492-2015

    ГОСТ 33313-2015

    ГОСТ 33931-2016

    ГОСТ 33916-2016

    ГОСТ 33851-2016

    ГОСТ 33854-2016

    ГОСТ 33276-2015

    ГОСТ 33278-2015

    ГОСТ 33438-2015

    ГОСТ 33279-2015

    ГОСТ 33954-2016

    ГОСТ 32146-2013

    ГОСТ 33932-2016

    ГОСТ 34112-2017

    ГОСТ 34125-2017

    ГОСТ 33952-2016

    ГОСТ 33915-2016

    ГОСТ 34126-2017

    ГОСТ 34114-2017

    ГОСТ 34129-2017

    ГОСТ 33953-2016

    ГОСТ 33499-2015

    ГОСТ 34113-2017

    ГОСТ 34212-2017

    ГОСТ 33946-2016

    ГОСТ 34214-2017

    ГОСТ 34216-2017

    ГОСТ 34215-2017

    ГОСТ 33977-2016

    ГОСТ 34217-2017

    ГОСТ 33985-2016

    ГОСТ 34218-2017

    ГОСТ 34128-2017

    ГОСТ 33460-2015

    ГОСТ 34219-2017

    ГОСТ 33437-2015

    ГОСТ 34220-2017

    ГОСТ 34267-2017

    ГОСТ 34268-2017

    ГОСТ 34271-2017

    ГОСТ 32690-2014

    ГОСТ 34266-2017

    ГОСТ 33332-2015

    ГОСТ 32709-2014

    ГОСТ 34301-2017

    ГОСТ 34298-2017

    ГОСТ 34269-2017

    ГОСТ 34270-2017

    ГОСТ 34313-2017

    ГОСТ 34306-2017

    ГОСТ 32835-2014

    ГОСТ 34300-2017

    ГОСТ 34324-2017

    ГОСТ 34127-2017

    ГОСТ 34323-2017

    ГОСТ 34148-2017

    ГОСТ 34299-2017

    ГОСТ 34130-2017

    ГОСТ 34403-2018

    ГОСТ 34402-2018

    ГОСТ 34320-2017

    ГОСТ 34447-2018

    ГОСТ 34340-2017

    ГОСТ 34111-2017

    ГОСТ 34318-2017

    ГОСТ 34459-2018

    ГОСТ 34325-2017

    ГОСТ 34322-2017

    ГОСТ 4427-82

    ГОСТ 4.458-2019

    ГОСТ 4428-82

    ГОСТ 4429-82

    ГОСТ 6014-68

    ГОСТ 3858-73

    ГОСТ 6828-89

    ГОСТ 34319-2017

    ГОСТ 6829-89

    ГОСТ 6830-89

    ГОСТ 34460-2018

    ГОСТ 6829-2015

    ГОСТ 5531-70

    ГОСТ 6882-88

    ГОСТ 33835-2016

    ГОСТ 7176-85

    ГОСТ 7177-2022

    ГОСТ 7177-80

    ГОСТ 7176-2017

    ГОСТ 7178-85

    ГОСТ 6929-88

    ГОСТ 7178-2015

    ГОСТ 7009-88

    ГОСТ 5312-2014

    ГОСТ 7180-73

    ГОСТ 7181-73

    ГОСТ 7586-71

    ГОСТ 7587-71

    ГОСТ 7588-71

    ГОСТ 7061-88

    ГОСТ 7589-71

    ГОСТ 7967-87

    ГОСТ 7694-71

    ГОСТ 7694-2015

    ГОСТ 7968-89

    ГОСТ 7975-2013

    ГОСТ 7231-90

    ГОСТ 7975-68

    ГОСТ 34570-2019

    ГОСТ 7977-87

    ГОСТ 816-2017

    ГОСТ 7177-2015

    ГОСТ 8756.10-70

    ГОСТ 816-91

    ГОСТ 33914-2016

    ГОСТ 33975-2016

    ГОСТ 33462-2015

    ГОСТ 8756.18-2017

    ГОСТ 7967-2015

    ГОСТ 8756.11-70

    ГОСТ 34314-2017

    ГОСТ 34461-2018

    ГОСТ 8756.12-91

    ГОСТ 8756.10-2015

    ГОСТ 8756.9-78

    ГОСТ 34409-2018

    ГОСТ 34151-2017

    ГОСТ 34408-2018

    ГОСТ 8756.11-2015

    ГОСТ 8756.9-2016

    ГОСТ ISO 23392-2013

    ГОСТ 8756.8-85

    ГОСТ 34411-2018

    ГОСТ 7194-81

    ГОСТ Р 50419-92

    ГОСТ 8756.1-2017

    ГОСТ ISO 17240-2017

    ГОСТ Р 50420-92

    ГОСТ 34228-2017

    ГОСТ ISO 762-2013

    ГОСТ Р 50520-93

    ГОСТ Р 50521-93

    ГОСТ 34410-2018

    ГОСТ Р 50519-93

    ГОСТ 34229-2017

    ГОСТ ISO 763-2011

    ГОСТ Р 50421-92

    ГОСТ Р 50525-93

    ГОСТ 8756.22-80

    ГОСТ ISO 2173-2013

    ГОСТ Р 50903-96

    ГОСТ 32689.2-2014

    ГОСТ Р 50475-93

    ГОСТ 34230-2017

    ГОСТ Р 51619-2000

    ГОСТ Р 51603-2000

    ГОСТ Р 51782-2001

    ГОСТ ISO 750-2013

    ГОСТ ISO 6558-2-2019

    ГОСТ Р 51653-2000

    ГОСТ Р 50476-93

    ГОСТ Р 51806-2001

    ГОСТ Р 50528-93

    ГОСТ Р 51783-2001

    ГОСТ Р 51809-2001

    ГОСТ ISO 9526-2017

    ГОСТ Р 51808-2001

    ГОСТ Р 51811-2001

    ГОСТ Р 51926-2002

    ГОСТ Р 51810-2001

    ГОСТ Р 52474-2005

    ГОСТ Р 51808-2013

    ГОСТ 8756.21-89

    ГОСТ Р 52141-2003

    ГОСТ Р 51620-2000

    ГОСТ Р 52622-2006

    ГОСТ Р 52647-2006

    ГОСТ Р 53023-2008

    ГОСТ Р 53082-2008

    ГОСТ Р 50522-93

    ГОСТ Р 52183-2003

    ГОСТ Р 51934-2002

    ГОСТ Р 53084-2008

    ГОСТ Р 52477-2005

    ГОСТ Р 52476-2005

    ГОСТ ISO 5519-2019

    ГОСТ Р 52475-2005

    ГОСТ Р 52829-2007

    ГОСТ Р 53127-2008

    ГОСТ Р 53086-2008

    ГОСТ Р 52817-2007

    ГОСТ Р 53216-2008

    ГОСТ Р 53596-2009

    ГОСТ Р 53071-2008

    ГОСТ Р 53088-2008

    ГОСТ Р 53215-2008

    ГОСТ Р 53118-2008

    ГОСТ Р 51621-2000

    ГОСТ Р 52827-2007

    ГОСТ ISO 2448-2013

    ГОСТ Р 53884-2010

    ГОСТ Р 50479-93

    ГОСТ Р 53956-2010

    ГОСТ Р 53589-2009

    ГОСТ Р 53958-2010

    ГОСТ Р 51655-2000

    ГОСТ Р 53972-2010

    ГОСТ Р 53959-2010

    ГОСТ Р 51654-2000

    ГОСТ Р 53186-2008

    ГОСТ Р 53967-2010

    ГОСТ Р 53137-2008

    ГОСТ Р 53885-2010

    ГОСТ Р 53036-2008

    ГОСТ Р 53990-2010

    ГОСТ Р 54050-2010

    ГОСТ 8756.13-87

    ГОСТ Р 54643-2011

    ГОСТ EN 12014-5-2014

    ГОСТ Р 54046-2010

    ГОСТ Р 54031-2010

    ГОСТ Р 54677-2011

    ГОСТ Р 54648-2011

    ГОСТ Р 54680-2011

    ГОСТ Р 54683-2011

    ГОСТ Р 54347-2011

    ГОСТ Р 54678-2011

    ГОСТ Р 54066-2010

    ГОСТ Р 54690-2011

    ГОСТ Р 54691-2011

    ГОСТ Р 54067-2010

    ГОСТ Р 54689-2011

    ГОСТ Р 54036-2010

    ГОСТ Р 54693-2011

    ГОСТ Р 54694-2011

    ГОСТ Р 54692-2011

    ГОСТ Р 52052-2003

    ГОСТ Р 54688-2011

    ГОСТ Р 54696-2011

    ГОСТ Р 54698-2011

    ГОСТ Р 54037-2010

    ГОСТ Р 54695-2011

    ГОСТ Р 54679-2011

    ГОСТ Р 54701-2011

    ГОСТ Р 53152-2008

    ГОСТ Р 54068-2010

    ГОСТ Р 54702-2011

    ГОСТ Р 54752-2011

    ГОСТ Р 54681-2011

    ГОСТ Р 54703-2011

    ГОСТ Р 54903-2012

    ГОСТ Р 54697-2011

    ГОСТ Р 55465-2013

    ГОСТ Р 55462-2013

    ГОСТ Р 54699-2011

    ГОСТ Р 55464-2013

    ГОСТ Р 55463-2013

    ГОСТ Р 55644-2013

    ГОСТ Р 55650-2013

    ГОСТ Р 55652-2013

    ГОСТ Р 55870-2013

    ГОСТ Р 53766-2009

    ГОСТ Р 55643-2013

    ГОСТ Р 55478-2013

    ГОСТ Р 55726-2013

    ГОСТ Р 55885-2013

    ГОСТ Р 55822-2013

    ГОСТ Р 54491-2011

    ГОСТ Р 54700-2011

    ГОСТ Р 55904-2013

    ГОСТ Р 55886-2013

    ГОСТ Р 54741-2011

    ГОСТ Р 56557-2015

    ГОСТ Р 55907-2013

    ГОСТ Р 54682-2011

    ГОСТ Р 55910-2013

    ГОСТ Р 55905-2013

    ГОСТ Р 56559-2015

    ГОСТ Р 56637-2015

    ГОСТ Р 56562-2015

    ГОСТ Р 55903-2013

    ГОСТ Р 55909-2013

    ГОСТ Р 56563-2015

    ГОСТ Р 53693-2009

    ГОСТ Р 56751-2015

    ГОСТ Р 56565-2015

    ГОСТ Р 57976-2017

    ГОСТ Р 56672-2015

    ГОСТ Р 59660-2021

    ГОСТ Р 56821-2015

    ГОСТ Р 56768-2015

    ГОСТ Р 56558-2015

    ГОСТ Р 59662-2021

    ГОСТ Р 54497-2011

    ГОСТ Р 59661-2021

    ГОСТ Р 53773-2010

    ГОСТ Р 59663-2021

    ГОСТ Р 55906-2013

    ГОСТ Р 58012-2017

    ГОСТ Р 56767-2015

    ГОСТ Р 56822-2015

    ГОСТ Р 56827-2015

    ГОСТ Р 53138-2008

    ГОСТ Р 56820-2015

    ГОСТ Р 56636-2015

    ГОСТ Р ИСО 763-2008

    ГОСТ Р ИСО 17240-2010

    ГОСТ Р 53694-2009

    ГОСТ EN 12014-2-2014

    ГОСТ Р 53139-2008

    ГОСТ Р 55625-2013

    ГОСТ Р 55624-2013

    ГОСТ Р 55626-2013