ГОСТ 26602-85

ОбозначениеГОСТ 26602-85
НаименованиеОкна. Метод определения сопротивления теплопередаче
СтатусЗаменен
Дата введения01.01.1986
Дата отмены
Заменен наГОСТ 26602.1-99
Код ОКС91.060.50
Текст ГОСТа


ГОСТ 26602-85

Группа Ж39

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР


ОКНА

Метод определения сопротивления теплопередаче


Windows. Method for determination
of heat transfer resistance



ОКП 52 7100

Дата введения 1986-01-01

РАЗРАБОТАН Научно-исследовательским институтом строительной физики (НИИСФ) Госстроя СССР

Центральным научно-исследовательским и проектным институтом типового и экспериментального проектирования жилища (ЦНИИЭП жилища) Госгражданстроя

Московским научно-исследовательским и проектным институтом типового и экспериментального проектирования (МНИИТЭП) Мосгорисполкома

ИСПОЛНИТЕЛИ В.К.Савин, канд. техн. наук (руководитель темы); И.Н.Бутовский, канд. техн. наук; В.С.Беляев, канд. техн. наук; Е.И.Семенова, канд. техн. наук; К.П.Копылов, канд. техн. наук; А.Н.Лушников; Н.В.Шведов

ВНЕСЕН Научно - исследовательским институтом строительной физики (НИИСФ) Госстроя СССР

Директор В.А.Дроздов

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по делам строительства от 11 июля 1985 г. N 118

Настоящий стандарт распространяется на окна жилых, общественных, производственных и сельскохозяйственных зданий и сооружений, остекленные листовым стеклом или стеклопакетами, и устанавливает метод определения сопротивления теплопередаче в лабораторных условиях.

Метод может быть применен для определения сопротивления теплопередаче балконных дверей, фонарей, стеклоблоков и других светопрозрачных ограждающих конструкций, разделяющих помещения с различными температурно-влажностными режимами.

1. СУЩНОСТЬ МЕТОДА

1.1. Метод заключается в создании постоянного перепада температур воздуха по обе стороны испытываемого окна, установленного в климатической камере, в измерении температуры воздуха и поверхностей окна, а также плотности тепловых потоков, проходящих через него при стационарных условиях теплопередачи, и последующем вычислении приведенного сопротивления теплопередаче.



2. ОТБОР ОБРАЗЦОВ

2.1. Сопротивление теплопередаче определяют на образцах размером не более 3х3 м и не менее 0,6х1 м.

2.2. Образцами для испытания служат оконные блоки или другие светопрозрачные изделия, соответствующие требованиям стандартов или технических условий на эти изделия.

2.3. Сопротивление теплопередаче определяют на одном образце, отобранном из числа прошедших испытание на воздухопроницаемость по ГОСТ 25891-83.



3. АППАРАТУРА И ОБОРУДОВАНИЕ

3.1. Для испытания применяют:

климатическую камеру (черт.1), имеющую теплое и холодное отделения и оборудованную холодильными агрегатами по ГОСТ 7475-77 или ГОСТ 10890-75, нагревательным оборудованием по ГОСТ 13268-83, ГОСТ 16617-80 или ГОСТ 17083-81 и электроувлажнителем по ГОСТ 22787-77;

измеритель плотности теплового потока ИТП-11 (тепломер) по ГОСТ 25380-82. Допускается применять измерители теплового потока по ГОСТ 7076-78;

датчики температуры - термоэлектрические преобразователи (термопары) по ГОСТ 6616-74;

потенциометр постоянного тока по ГОСТ 9245-79 или милливольтметр по ГОСТ 9736-80;

стеклянные термометры по ГОСТ 112-78, ГОСТ 13646-68, ГОСТ 9177-74 или ГОСТ 215-73;

аспирационный психрометр;

сосуд Дьюара вместимостью 1,5 - 2 л;

щитовые 20-точечные переключатели типа ПНТ;

метеорологический недельный термограф М-16И по ГОСТ 6416-75;

метеорологический недельный гигрограф М21Н или М32Н.



Схема климатической камеры

I -теплое отделение камеры; II -холодное отделение камеры; III -машинный зал;
IV -помещение с измерительной аппаратурой; 1 -система автоматического сбора данных;
2 -нагревательные приборы; 3 -увлажняющее оборудование; 4 -испытываемое окно;
5 -испаритель; 6 -холодильная установка; 7 -утепленные герметичные двери; 8 -утеплитель

Черт. 1



4. ПОДГОТОВКА К ИСПЫТАНИЮ

4.1. Подготовку к испытанию начинают с составления программы испытаний, в которую включают требования к температуре воздуха в теплом и холодном отделениях климатической камеры, относительную влажность воздуха в ее теплом отделении, а также схему размещения термопар и тепломеров.

4.2. Температуру и относительную влажность воздуха в климатической камере назначают в соответствии с климатическими условиями эксплуатации испытываемого окна.

4.3. Для составления схемы расположения термопар и тепломеров поверхность образца (оконного блока) предварительно разбивают на термически однородные зоны.

Пример разбивки на зоны оконного блока с двойным остеклением и спаренными переплетами и схемы размещения в них термопар и тепломеров приведен на черт.2.

При испытании других типов оконных блоков разбивку на зоны и составление схемы размещения термопар осуществляют по аналогии со схемой, приведенной на черт.2.

Схема размещения термопар и тепломеров

1 -окно; 2 -рабочий спай термодатчика; 3 -холодный спай; 4 -сосуд Дьюара; 5 -термометр, 0 °С;
6 -коммутатор; 7 -милливольтметр; 8 -транскриптор; 9 -электроуправляемая пишущая машинка;
10 -перфоратор; -термически однородные зоны


Черт. 2

4.4. В проем стены, разделяющей теплое и холодное отделения климатической камеры, устанавливают образец. Заделка образца в проеме должна быть выполнена в соответствии с проектом.

4.5. Для измерения температуры на поверхностях образца устанавливают термопары в соответствии с составленной схемой.

4.6. Для измерения температуры воздуха в теплом и холодном отделениях климатической камеры на расстоянии 150 см от поверхности стекла по вертикальной оси образца устанавливают с каждой стороны не менее трех термопар.

4.7. Для измерения плотности тепловых потоков устанавливают тепломеры в центре термически однородных зон.

4.8. Спай каждой термопары крепят к поверхности стекла при помощи прозрачной липкой ленты по ГОСТ 16214-70, а к непрозрачной поверхности - при помощи пластилина, толщина слоя которого должна быть не более 2 мм.

Тепломеры крепят при помощи вазелина, наносимого тонким слоем на поверхность тепломера.

4.9. Для измерения относительной влажности воздуха в теплом отделении камеры устанавливают гигрометр на расстоянии 150 см от пола в центре помещения.

4.10. Нагревательные приборы располагают в теплом отделении камеры таким образом, чтобы исключить лучистый теплообмен между приборами и поверхностью образца.

Не допускается располагать нагревательные приборы под образцом.

4.11. Термопары и тепломеры подключают к системе автоматического сбора данных, обеспечивающей возможность вывода информации на печатающее устройство или перфоленту (см.черт.2). Перфоленту вводят в ЭВМ, где обрабатывают полученные данные.

4.12. До проведения испытаний все измерительные и регулирующие приборы должны быть оттарированы.

5. ПРОВЕДЕНИЕ ИСПЫТАНИЙ

5.1. После проверки готовности к испытанию оборудования и аппаратуры в отделениях климатической камеры устанавливают температуру и влажность воздуха, указанные в программе испытаний.

5.2. Измерение температуры и плотности тепловых потоков производят после установления стационарного режима теплопередачи. Режим теплопередачи следует считать стационарным, если результаты двух последовательных с интервалом 3 ч измерений температуры на поверхностях стекла и переплета со стороны теплого отделения отличаются друг от друга не более чем на 0,3°С, а колебания влажности воздуха в теплом отделении камеры составляют не более 5%.

5.3. Измерение температуры и плотности тепловых потоков проводят не менее десяти раз после установления стационарного режима.

Влажность воздуха в теплом отделении камеры измеряют по окончании температурных измерений, одновременно отмечая наличие конденсата или наледи на стекле, переплете и брусках коробки.

5.4. Плотность тепловых потоков, проходящих через испытываемый образец, определяют по ГОСТ 25380-82.

5.5. Результаты измерений заносят в журнал испытаний, форма которого приведена в рекомендуемом приложении 1.



6. ОБРАБОТКА РЕЗУЛЬТАТОВ

6.1. За расчетные значения температуры и плотности тепловых потоков для каждой термически однородной зоны принимают средние арифметические значения измеренных величин.

6.2. Приведенное сопротивление теплопередаче , кв.м·°С/Вт , определяют по формуле

где - площади поверхности светопропускающей и непрозрачной частей образца, кв.м;

- приведенные сопротивления теплопередаче светопропускающей и непрозрачной частей образца, кв.м·°С/Вт .

6.3. Приведенное сопротивление теплопередаче светопропускающей и не прозрачной части , кв.м·°С/Вт , определяют по формуле



где - число однородных зон в светопропускающей (непрозрачной) части образца;

- площадь i-й однородной зоны;

- сопротивление теплопередаче i-й однородной зоны, кв.м·°С/Вт.

6.4. Сопротивление теплопередаче i-й однородной зоны , кв.м·°С/Вт определяют по формуле

где и -термические сопротивления соответственно внутренней и наружной поверхности i-й зоны, кв.м·°С/Вт ;

- термическое сопротивление конструкции i-й зоны, кв.м·°С/Вт;

- средние за период измерений температуры соответственно внутреннего и наружного воздуха, °С;

- средние за период измерений температуры соответственно внутренней и наружной поверхностей i-й зоны, °С;

- средняя за период измерений плотность теплового потока, проходящего через i-ю зону, Вт/кв.м.

6.5. Допускается определять приведенное сопротивление теплопередаче окон и других светопрозрачных ограждающих конструкций по приведенному тепловому потоку в соответствии с рекомендуемым приложением 2.


ПРИЛОЖЕНИЕ 1
Рекомендуемое

ФОРМА ЖУРНАЛА ИСПЫТАНИЙ

Тип окна ____________________________________________________

Температура в теплом отделении камеры , °С ________________

Температура в холодном отделении камеры , °С _______________

(Левая часть таблицы)


Номер
термически
однородной зоны


Площадь
i-зоны
,
кв.м



Номер
термо- датчиков


Текущие
значения температур поверхностей


Средняя
температура
однородной зоны


Номер
датчиков
тепловых
потоков

Текущие
значения
плотности
тепловых
потоков

мВ

Вт/кв.м

мВ

°С

мВ

°С

°С

Продолжение (правая часть таблицы)

Средняя плотность тепло- вого потока однород- ной зоны

Теку- щие значе- ния относи- тельной влаж-


Термические сопротив- ления поверхностей


Термическое сопротивление конструкции


Сопроти- вление теплопе- редаче


Приведенное
сопротивление
теплопередаче


Вт/кв.м

ности воздуха,

%

кв.м·°С/Вт


ПРИЛОЖЕНИЕ 2
Рекомендуемое

Определение приведенного сопротивления теплопередаче окон
и других светопрозрачных ограждающих конструкций
по приведенному тепловому потоку

1. Для определения приведенного теплового потока, проходящего через светопрозрачную ограждающую конструкцию, используют климатическую камеру, которая оснащена вспомогательной камерой (см. чертеж настоящего приложения).

Внутри вспомогательной камеры устанавливают электронагреватель по ГОСТ 18476-81 для поддержания заданной постоянной температуры воздуха, равной температуре воздуха в теплом отделении климатической камеры.

2. Значение приведенного теплового потока определяют по расходу электроэнергии, измеряемому с помощью электросчетчика по ГОСТ 6570-75.

3. После установления стационарного режима производят не менее десяти измерений температур.

4. Приведенное сопротивление теплопередаче , кв.м·°С/Вт , определяют по формуле


где и -температуры воздуха во вспомогательной камере и в холодном отделении климатической камеры, °С;

- приведенный тепловой поток, Вт/кв.м, определяемый по формуле

где и - показания электросчетчика в начале и в конце испытания, Вт;

- продолжительность испытаний, ч;

- теплопроводность теплоизоляционного материала, Вт/(кв.м·°С);

- толщина слоя теплоизоляционного материала, м;

- площадь поверхности теплоизоляционного материала;

- площадь испытываемого образца, кв.м.

Схема установки вспомогательной камеры
и размещения испытываемой светопрозрачной конструкции

1 - стена, разделяющая в климатической камере теплое отделение от холодного;

2 - испытываемая светопрозрачная конструкция; 3- вспомогательная камера, стенки
которой состоят из внешних фанерных обшивок и внутреннего слоя из пенополистирола;

4 - эффектный теплоизоляционный материал (пенополистирол); 5 - смотровое окно
с четверным остекленением; 6 - нагреватель с экраном; 7 - подставка.

Текст документа сверен по:

Госстрой СССР -

М.: Издательство стандартов, 1985

Другие госты в подкатегории

    ГОСТ 11024-72

    ГОСТ 11118-65

    ГОСТ 11690-66

    ГОСТ 12504-2015

    ГОСТ 12504-80

    ГОСТ 15884-70

    ГОСТ 12506-81

    ГОСТ 11214-86

    ГОСТ 14624-69

    ГОСТ 1808-71

    ГОСТ 16289-86

    ГОСТ 11214-2003

    ГОСТ 12767-94

    ГОСТ 23009-2016

    ГОСТ 21519-84

    ГОСТ 23344-78

    ГОСТ 21096-75

    ГОСТ 23747-79

    ГОСТ 18853-73

    ГОСТ 23747-2014

    ГОСТ 23908-79

    ГОСТ 23747-88

    ГОСТ 24546-81

    ГОСТ 14624-84

    ГОСТ 24698-81

    ГОСТ 24584-81

    ГОСТ 24699-81

    ГОСТ 24700-81

    ГОСТ 21519-2003

    ГОСТ 23120-2016

    ГОСТ 23166-99

    ГОСТ 25062-81

    ГОСТ 25097-82

    ГОСТ 12.1.046-2014

    ГОСТ 24741-2016

    ГОСТ 24699-2002

    ГОСТ 23404-86

    ГОСТ 23120-78

    ГОСТ 25097-2002

    ГОСТ 26601-85

    ГОСТ 24033-80

    ГОСТ 19091-2012

    ГОСТ 23166-2021

    ГОСТ 24033-2018

    ГОСТ 27936-88

    ГОСТ 26892-86

    ГОСТ 28786-90

    ГОСТ 28799-90

    ГОСТ 26602.4-99

    ГОСТ 27563-87

    ГОСТ 30247.2-97

    ГОСТ 28786-2019

    ГОСТ 24700-99

    ГОСТ 30353-2022

    ГОСТ 30734-2020

    ГОСТ 28089-2012

    ГОСТ 26602.3-99

    ГОСТ 28089-89

    ГОСТ 26602.5-2001

    ГОСТ 26602.2-99

    ГОСТ 30353-95

    ГОСТ 30777-2001

    ГОСТ 24940-2016

    ГОСТ 26253-84

    ГОСТ 26602.4-2012

    ГОСТ 30734-2000

    ГОСТ 30777-2012

    ГОСТ 31310-2005

    ГОСТ 30970-2014

    ГОСТ 26253-2014

    ГОСТ 30972-2002

    ГОСТ 30970-2002

    ГОСТ 33125-2014

    ГОСТ 31174-2003

    ГОСТ 30109-94

    ГОСТ 31173-2003

    ГОСТ 31462-2021

    ГОСТ 33393-2015

    ГОСТ 30971-2002

    ГОСТ 4.251-79

    ГОСТ 31462-2011

    ГОСТ 5088-78

    ГОСТ 30674-99

    ГОСТ 5090-2016

    ГОСТ 475-78

    ГОСТ 31173-2016

    ГОСТ 5089-2011

    ГОСТ IEC 60335-2-83-2013

    ГОСТ 6629-88

    ГОСТ IEC 60335-2-103-2013

    ГОСТ 8717.1-84

    ГОСТ 30971-2012

    ГОСТ 33792-2016

    ГОСТ 5089-2003

    ГОСТ Р 57788-2017

    ГОСТ Р 52749-2007

    ГОСТ 33793-2016

    ГОСТ Р 56379-2015

    ГОСТ Р 58891-2020

    ГОСТ Р 58898-2020

    ГОСТ 26602.1-99

    ГОСТ Р 58899-2020

    ГОСТ 26254-84

    ГОСТ 475-2016

    ГОСТ Р 58950-2020

    ГОСТ Р 59134-2020

    ГОСТ Р 58908.12-2020

    ГОСТ Р 59198-2020

    ГОСТ 26824-2018

    ГОСТ Р 59040-2020

    ГОСТ Р 58903-2020

    ГОСТ 4.220-82

    ГОСТ Р 59579-2021

    ГОСТ Р 59495-2021

    ГОСТ Р 59281-2020

    ГОСТ Р 59687-2022

    ГОСТ Р 59685-2021

    ГОСТ Р 59583-2021

    ГОСТ Р 59688-2022

    ГОСТ Р 59615-2021

    ГОСТ Р 59690-2021

    ГОСТ Р 59689-2022

    ГОСТ Р 70022-2022

    ГОСТ Р 70048-2022

    ГОСТ Р 70076-2022

    ГОСТ Р 59696-2021

    ГОСТ Р 55908-2013

    ГОСТ Р 59043-2020

    ГОСТ Р ИСО 19322-2022

    ГОСТ Р 70091-2022

    ГОСТ 4.226-83

    ГОСТ Р 70047-2022

    ГОСТ Р 57842-2017

    ГОСТ Р 54850-2011

    ГОСТ 31174-2017

    ГОСТ Р 58324-2018

    ГОСТ Р 56734-2015

    ГОСТ 31168-2014

    ГОСТ Р 56926-2016

    ГОСТ 33392-2015

    ГОСТ 8717.0-84

    ГОСТ Р 58883-2020