ГОСТ 22000-86

ОбозначениеГОСТ 22000-86
НаименованиеТрубы бетонные и железобетонные. Типы и основные параметры
СтатусДействует
Дата введения06.30.1986
Дата отмены-
Заменен на-
Код ОКС91.080.40
Текст ГОСТа

ГОСТ 22000-86

Группа Ж33

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ТРУБЫ БЕТОННЫЕ И ЖЕЛЕЗОБЕТОННЫЕ

Типы и основные параметры

Concrete and reinforced concrete pipes. Types and basic parameters

ОКП 58 6200

Дата введения 1986-07-01

Постановлением Государственного комитета СССР по делам строительства от 30 декабря 1985 г. N 272 срок введения установлен с 01.07.1986 г.

ВЗАМЕН ГОСТ 22000-76

ПЕРЕИЗДАНИЕ. Ноябрь 1989 г.

1. Настоящий стандарт распространяется на сборные бетонные и железобетонные трубы, изготовляемые различными способами и предназначенные для прокладки подземных безнапорных и напорных трубопроводов, транспортирующих жидкости.

Стандарт устанавливает типы, основные размеры и параметры труб, которые следует предусматривать в разрабатываемых новых и пересматриваемых действующих стандартах, технических условиях и проектной документации на трубы конкретных типов.

Стандарт не распространяется на водопропускные трубы, укладываемые под насыпями автомобильных и железных дорог, и дренажные трубы.

Применяемые в стандарте термины и их пояснения приведены в справочном приложении.

2. Трубы в зависимости от расчетного режима работы транспортируемой жидкости в трубопроводе подразделяют на безнапорные и напорные.

2.1. Безнапорные трубы подразделяют на следующие типы:

Т

- цилиндрические раструбные с круглым отверстием и стыковыми соединениями уплотняемыми герметиками или другими материалами;

ТП

- то же, с подошвой;

ТС

- цилиндрические раструбные с круглым отверстием, со ступенчатой стыковой поверхностью втулочного конца трубы и стыковыми соединениями, уплотняемыми при помощи резиновых колец;

ТСП

- то же, с подошвой;

ТБ

- цилиндрические раструбные с круглым отверстием, с упорным буртиком на стыковой поверхности втулочного конца трубы и стыковыми соединениями, уплотняемыми при помощи резиновых колец;

ТБП

- то же, с подошвой;

ТФП

- с подошвой, фальцевые, с круглым отверстием и стыковыми соединениями, уплотняемыми герметиками или другими материалами;

ТО

- то же, с овоидальным отверстием;

ТЭ

- то же, с эллиптическим отверстием.

2.2. Напорные трубы подразделяют на следующие типы:

ТН

- цилиндрические раструбные с круглым отверстием и стыковыми соединениями уплотняемыми при помощи резиновых колец;

ТНП

- то же, с полимерным сердечником;

ТНС

- то же, со стальным сердечником.

2.3. Условные обозначения типов бетонных труб (в отличие от железобетонных) дополняют прописной буквой "Б" перед буквой "Т".

3. Диаметр условного прохода и полезная длина труб с круглым отверстием должны соответствовать указанным в табл.1.

Таблица 1

Тип трубы

Типоразмер трубы

Диаметр условного
прохода трубы, мм

Полезная длина
трубы, мм

Бетонные безнапорные трубы

БТ

БТ10.10

100

1000

БТ15.10

150

БТ20.15

200

1500

БТ25.15

250

БТ30.20

300

2000

БТ40.20

400

БТ50.25

500

2500

БТ60.25

600

БТ80.25

800

БТ100.25

1000

БТС и БТСП

БТС30.20

300

2000

БТС40.20

400

БТС50.25

500

2500

БТС60.25; БТСП60.25

600

БТС80.25; БТСП80.25

800

БТС100.25;БТСП100.25

1000

Железобетонные безнапорные трубы

Т и ТБ

Т40.50, ТБ40.50

400

5000

Т50.50, ТБ50.50

500

Т60.50, ТБ60.50

600

Т80.50, ТБ80.50

800

Т100.50,ТБ100.50

1000

Т120.50,ТБ120.50

1200

Т140.50,ТБ140.50

1400

Т160.50,ТБ160.50

1600

ТП и ТБП

ТП100.50,ТБП100.50

1000

5000

ТП120.50,ТБП120.50

1200

ТП140.50,ТБП140.50

1400

ТП160.50,ТБП160.50

1600

ТП200.45

2000

4500

ТП240.30

2400

3000

ТС и ТСП

ТС40.25

400

2500

ТС40.50

5000

ТС50.25

500

2500

ТС50.50

5000

ТС60.25

600

2500

ТС60.50

5000

ТС80.35

800

3500

ТС80.50

5000

ТС100.35, ТСП100.35

1000

3500

ТС-100.50,ТСП100.50

5000

ТС120.35, ТСП120.35

1200

3500

ТС120.50, ТСП120.50

5000

ТС140.35, ТСП140.35

1400

3500

ТС140.50, ТСП140.50

5000

ТС160.35, ТСП160.35

1600

3500

ТС160.50, ТСП160.50

5000

ТФП

ТПФ100.50

1000

5000

ТФП120.50

1200

ТФП140.50

1400

ТФП160.50

1600

ТФП200.45

2000

4500

ТФП240.30

2400

3000

Бетонные напорные трубы

БТН

БТН10.10

100

1000

БТН20.20

200

2000

БТН25.20

250

БТН30.20

300

БТН40.20

400

БТН50.25

500

2500

Железобетонные напорные трубы

ТН

ТН30.25

300

2500

ТН40.25

400

ТН50.25

500

2500

ТН50.50

5000

ТН60.25

600

2500

ТН60.50

5000

ТН80.35

800

3500

ТН80.50

5000

ТН100.35

1000

3500

ТН100.50

5000

ТН120.35

1200

3500

ТН120.50

5000

ТН140.50

1400

5000

ТН160.50

1600

ТН200.50

2000

ТН240.50

2400

Железобетонные напорные трубы с полимерным сердечником

ТНП

ТНП40.50

400

5000

ТНП50.50

500

ТНП60.50

600

ТНП80.50

800

ТНП100.50

1000

ТНП120.50

1200

Железобетонные напорные трубы со стальным сердечником

ТНC

ТНC25.50

250

5000

ТНC30.50

300

5000

ТНC30.100

10000

ТНC40.50

400

5000

ТНC40.100

10000

ТНC50.50

500

5000

ТНC50.100

10000

ТНC60.50

600

5000

ТНC60.100

10000

Примечания:

1. Допускается принимать трубы всех типов большей полезной длины, чем указано в табл.1. При этом их длину для труб диаметром условного прохода до 1600 мм включительно назначают кратной 500 мм, более 1600 мм - кратной 250 мм.

2. При соответствующем технико-экономическом обосновании допускается принимать:

трубы диаметрами условного прохода 1800 и 2200 мм, а также более 2400 мм для конкретных условий строительства трубопроводов;

внутренний диаметр труб, отличный от диаметра условного прохода трубы, указанного в табл.1, до плюс 6% - для труб диаметрами до 600 мм включительно и до плюс 3% - для труб диаметрами более 600 мм.

3. Допускается до 1 января 1990 г. принимать внутренний диаметр напорных труб со стальным сердечником, отличный от диаметра условного прохода, указанного в табл.1, до минус 7% - для труб диаметром 250 мм и до минус 2% - для труб диаметром 300 мм и более.

3.1. Полезную длину железобетонных безнапорных труб типов ТС и ТСП, равную 2500-3500 мм, следует принимать только для труб, предназначенных к изготовлению по технологии, допускающей полную немедленную распалубку.

3.2. Железобетонные напорные трубы типа ТН предусматривают с ненапрягаемой или напрягаемой арматурой. Предварительно напряженные трубы должны быть полезной длиной не менее 5000 мм.

3.3. Размеры стыковых поверхностей труб, соединяемых на резиновых кольцах круглого сечения, должны обеспечивать:

величину кольцевого зазора с учетом допускаемых отклонений диаметров рабочей части стыка в пределах (в процентах от диаметра сечения резинового кольца):

60-75 - для безнапорных труб,

50-70 - для низконапорных труб (п.5),

40-65 - для средне- и высоконапорных труб;

угол поворота трубопровода в стыковом соединении труб не менее 1°30';

удлинение резинового кольца при натяжении на 8-15%;

длину рабочей части стыка, уплотняемого резиновым кольцом способом качения, не менее 3,5 диаметра сечения кольца.

3.4. Размеры резиновых колец круглого сечения в нерастянутом состоянии должны соответствовать указанным в табл.2.

Таблица 2


мм

Диаметр условного прохода трубы

Размеры резиновых колец для стыков труб, уплотняемых способом

качения

скольжения

Внутренний диаметр кольца

Диаметр сечения кольца

Внутренний диаметр кольца

Диаметр сечения кольца

100

110

14

-

-

200

212

14

-

-

250

264

17

240

16

300

340

24

280

400

450

380

500

545

480

600

660

570

800

835

740

16; 24

1000

1035

920

1200

1230

1140

1400

1440

1330

24

1600

1650

30

1520

30

2000

2070

1900

2400

2480

2280

Примечание. Допускается до 01.01.90 применять резиновые кольца размерами, отличными от указанных в табл.2, удовлетворяющие требованиям п.3.3.

4. Безнапорные трубы подразделяют на три группы по несущей способности:

первую -

при

расчетной

высоте

засыпки

грунтом

2 м;

вторую -

"

"

"

"

"

4 м;

третью -

"

"

"

"

"

6 м.

Допускается принимать железобетонные безнапорные трубы большей несущей способности для конкретных условий строительства трубопроводов.

4.1. Прочностные характеристики безнапорных труб должны обеспечивать их эксплуатацию при расчетной высоте засыпки (п.4) в усредненных условиях, которым соответствуют:

основание под трубой - грунтовое плоское для цилиндрических труб диаметрами условного прохода до 500 мм включительно и труб с подошвой всех диаметров или грунтовое профилированное с углом охвата 90° для цилиндрических труб диаметрами условного прохода более 500 мм;

засыпка - грунтом плотностью 1,8 т/м с нормальным уплотнением для цилиндрических труб диаметрами условного прохода до 800 мм включительно и труб с подошвой всех диаметров или повышенным уплотнением для цилиндрических труб диаметрами условного прохода более 800 мм;

временная нагрузка на поверхности земли А8 и НГ-60.

5. Напорные трубы в зависимости от значения расчетного внутреннего давления в трубопроводе подразделяют на группы и классы, указанные в табл.3

Таблица 3

Группа труб

Низконапорные

Средненапорные

Высоконапорные

Класс труб

Н1

Н3

Н5

Н10

Н15

Н20

Расчетное внутреннее давление, МПа (кгс/см)

0,1 (1)

0,3 (3)

0,5 (5)

1,0 (10)

1,5 (15)

2,0 (20)

5.1. Напорные трубы в зависимости от их конструкции следует предусматривать следующих классов:

Н1 и Н3 - типа БТН и типа ТН с ненапрягаемой арматурой;

Н3 и Н5 - типа ТНП;

Н5-Н20 - типа ТН с напрягаемой арматурой;

Н10-Н20 - типа ТНС.

5.2. Прочностные характеристики напорных труб должны обеспечивать их эксплуатацию с расчетными внутренними давлениями для соответствующего класса при высоте засыпки над трубой 2 м в усредненных условиях укладки, которым соответствуют:

основание под трубой - грунтовое профилированное с углом охвата 90°;

засыпка - грунтом плотностью 1,8 т/м с нормальным уплотнением;

временная нагрузка на поверхности земли НГ-60.

5.3. При условиях укладки напорных труб, обеспечивающих снижение значений внешних нагрузок на трубопровод, по согласованию потребителя с предприятием-изготовителем и проектной организацией - автором проекта трубопровода, допускается применять трубы классов Н1 и Н3 при внутреннем давлении, превышающем расчетные значения для каждого класса труб на 0,1 МПа (1 кгс/см), и трубы классов Н5, Н10, Н15 и Н20 при внутреннем давлении, превышающем расчетные значения для каждого класса труб на 0,3 МПа (3 кгс/см).

6. Коррозионную стойкость труб, предназначенных для эксплуатации в агрессивной среде, следует обеспечивать путем применения коррозионностойких материалов, выполнения конструктивных требований и технологических приемов (первичная защита), а также, при необходимости, путем защиты поверхностей труб (вторичная защита) согласно требованиям СНиП 2.03.11-85.

7. Стальные закладные изделия, предназначенные для устройства защиты трубопровода от электрокоррозии, вызываемой блуждающими токами, следует предусматривать:

во всех железобетонных предварительно напряженных напорных трубах независимо от условий их применения;

в остальных железобетонных безнапорных и напорных трубах - по требованию заказчика в соответствии с проектом защиты трубопровода от электрокоррозии.

8. Трубы следует обозначать марками в соответствии с требованиями ГОСТ 23009-78.

Марка трубы состоит из буквенно-цифровых групп, разделенных дефисами.

Первая группа содержит обозначение типа трубы и ее диаметр условного прохода в сантиметрах и полезную длину в дециметрах.

Во второй группе указывают:

группу по несущей способности безнапорных труб или класс напорных труб, обозначаемые арабскими цифрами;

обозначение класса напрягаемой арматуры (при необходимости);

применение напорной трубы при повышенном внутреннем давлении (п.5.3), обозначаемое строчной буквой "у".

В третью группу, при необходимости, включают дополнительные характеристики труб:

наличие закладных изделий для защиты железобетонных труб от электрокоррозии, обозначаемое строчной буквой "к";

характеристики труб, обеспечивающие их стойкость при эксплуатации в агрессивной среде, например, показатели проницаемости бетона, обозначаемые прописными буквами: "Н" - нормальной, "П" - пониженной и "О" - особо низкой проницаемости;

особенности конструкции труб, вызванные технологией их изготовления.

Пример условного обозначения (марки) бетонной безнапорной трубы типа БТС, диаметром условного прохода 300 мм, полезной длиной 2000 мм, второй группы по несущей способности:

БТС30.20-2

То же, железобетонной безнапорной трубы типа ТБП, диаметром условного прохода 1000 мм, полезной длиной 5000 мм, второй группы по несущей способности, имеющей закладные изделия для защиты от электрокоррозии:

ТВП100.50-2-к

То же, железобетонной предварительно напряженной напорной трубы типа ТН, диаметром условного прохода 1200 мм, полезной длиной 5000 мм, класса Н10, предназначенной для трубопроводов с внутренним давлением 1,3 МПа (13 кгс/см):

ТН120.50-10у


ПРИЛОЖЕНИЕ

Справочное

ТЕРМИНЫ, ПРИМЕНЯЕМЫЕ В НАСТОЯЩЕМ СТАНДАРТЕ, И ПОЯСНЕНИЯ

Безнапорные трубы - трубы, предназначенные для сооружения трубопроводов, по которым транспортируют жидкости самотеком, неполным сечением (до 0,95 внутреннего диаметра трубы).

Напорные трубы - трубы, предназначенные для сооружения трубопроводов, по которым транспортируют жидкости под давлением.

Раструбные трубы - трубы, имеющие на одном конце раструб, а на другом конце втулочную часть, входящую в раструб при монтаже трубопровода.

Фальцевые трубы - трубы, имеющие по торцам взаимно сопрягаемые поверхности в пределах толщины стенки трубы.

Трубы с подошвой - трубы, имеющие в рабочем положении снизу плоскую или другого очертания подошву.

Трубы с сердечником - трубы, в стенке которых имеется водонепроницаемый, как правило, тонкостенный металлический или из другого материала сердечник.

Диаметр условного прохода трубы - геометрический параметр поперечного сечения трубы, равный диаметру условного круглого прохода (без учета допускаемых отклонений), по которому проводят гидравлический расчет трубопровода.

Полезная длина трубы - длина трубы, фактически учитываемая при монтаже трубопроводов.

Стыковые поверхности - поверхности концевых участков труб, взаимно сопрягаемые при монтаже трубопроводов.

Расчетное внутреннее давление - наибольшее возможное по условиям эксплуатации давление в трубопроводе без учета его повышения при гидравлическом ударе или с повышением давления при гидравлическом ударе (с учетом действия противоударной арматуры), если его повышенное давление в сочетании с другими нагрузками окажет на трубопровод большее воздействие.

Нормальное уплотнение грунта - уплотнение грунта засыпки на высоту не менее 200 мм над трубой путем послойного (не более 200 мм) требования, обеспечивающего уплотнение грунта с коэффициентом не менее 0,85 ( равен отношению проектной плотности скелета грунта к максимальной его плотности, полученной методами, оговариваемыми ГОСТ 22733-77*).

________________

* На территории Российской Федерации документ не действует. Действует ГОСТ 22733-2002. - .

Повышенное уплотнение грунта - уплотнение грунта засыпки на высоту не менее 200 мм над трубой путем трамбования, обеспечивающего уплотнение грунта с коэффициентом не менее 0,93.

Электронный текст документа

и сверен по:

М.: Издательство стандартов,1990

Другие госты в подкатегории

    ГОСТ 1005-68

    ГОСТ 11047-72

    ГОСТ 11118-73

    ГОСТ 12504-67

    ГОСТ 11047-90

    ГОСТ 12805-78

    ГОСТ 13015.0-83

    ГОСТ 13015.1-81

    ГОСТ 13015.3-81

    ГОСТ 13015.2-81

    ГОСТ 13015.4-84

    ГОСТ 12767-2016

    ГОСТ 13578-68

    ГОСТ 11024-84

    ГОСТ 13579-2018

    ГОСТ 17079-2021

    ГОСТ 1005-86

    ГОСТ 17005-82

    ГОСТ 13579-78

    ГОСТ 17079-88

    ГОСТ 11118-2009

    ГОСТ 18128-2018

    ГОСТ 18886-73

    ГОСТ 18128-82

    ГОСТ 18048-80

    ГОСТ 18048-2018

    ГОСТ 10629-88

    ГОСТ 19010-82

    ГОСТ 17538-82

    ГОСТ 17580-82

    ГОСТ 19570-74

    ГОСТ 11024-2012

    ГОСТ 19804-2021

    ГОСТ 19804-2012

    ГОСТ 19231.1-83

    ГОСТ 18980-2015

    ГОСТ 19804-91

    ГОСТ 13580-85

    ГОСТ 19804.1-79

    ГОСТ 18979-90

    ГОСТ 19231.0-83

    ГОСТ 17625-83

    ГОСТ 17538-2016

    ГОСТ 18980-90

    ГОСТ 18979-2014

    ГОСТ 19330-91

    ГОСТ 20425-2016

    ГОСТ 20372-2015

    ГОСТ 20213-2015

    ГОСТ 20425-75

    ГОСТ 19804.7-83

    ГОСТ 20213-89

    ГОСТ 20850-84

    ГОСТ 19804.3-80

    ГОСТ 20182-74

    ГОСТ 21520-89

    ГОСТ 21562-76

    ГОСТ 21506-2013

    ГОСТ 21924.2-84

    ГОСТ 20372-90

    ГОСТ 21509-76

    ГОСТ 20850-2014

    ГОСТ 21924.3-84

    ГОСТ 19804.4-78

    ГОСТ 21174-75

    ГОСТ 19804.6-83

    ГОСТ 22406-77

    ГОСТ 22131-76

    ГОСТ 21924.0-84

    ГОСТ 21924.1-84

    ГОСТ 22701.3-77

    ГОСТ 22701.4-77

    ГОСТ 22701.2-77

    ГОСТ 22701.0-77

    ГОСТ 23009-78

    ГОСТ 22701.7-81

    ГОСТ 22695-77

    ГОСТ 19804.5-83

    ГОСТ 23118-78

    ГОСТ 22160-76

    ГОСТ 22687.0-85

    ГОСТ 23117-91

    ГОСТ 23157-78

    ГОСТ 23342-91

    ГОСТ 22701.5-77

    ГОСТ 22930-87

    ГОСТ 23119-78

    ГОСТ 23613-79

    ГОСТ 22904-93

    ГОСТ 23121-78

    ГОСТ 22362-77

    ГОСТ 23444-79

    ГОСТ 23972-80

    ГОСТ 24022-80

    ГОСТ 22687.3-85

    ГОСТ 24258-88

    ГОСТ 23899-79

    ГОСТ 24155-2016

    ГОСТ 23682-79

    ГОСТ 24547-81

    ГОСТ 24476-80

    ГОСТ 24587-81

    ГОСТ 23486-79

    ГОСТ 24155-80

    ГОСТ 24694-81

    ГОСТ 24893-2016

    ГОСТ 24594-81

    ГОСТ 24741-81

    ГОСТ 24524-80

    ГОСТ 20054-82

    ГОСТ 24547-2016

    ГОСТ 23118-2012

    ГОСТ 24893.1-81

    ГОСТ 25098-87

    ГОСТ 24893.2-81

    ГОСТ 23118-99

    ГОСТ 25098-2016

    ГОСТ 24839-2012

    ГОСТ 24839-81

    ГОСТ 25627-83

    ГОСТ 24581-81

    ГОСТ 25697-83

    ГОСТ 25628.1-2016

    ГОСТ 25116-82

    ГОСТ 25772-2021

    ГОСТ 24992-2014

    ГОСТ 25697-2018

    ГОСТ 24992-81

    ГОСТ 25628.3-2016

    ГОСТ 25912.1-83

    ГОСТ 25912.0-83

    ГОСТ 25912.2-83

    ГОСТ 23858-79

    ГОСТ 25912.3-83

    ГОСТ 19804.2-79

    ГОСТ 25885-83

    ГОСТ 26047-83

    ГОСТ 25912.0-91

    ГОСТ 25884-83

    ГОСТ 26071-84

    ГОСТ 26138-84

    ГОСТ 26301-84

    ГОСТ 26429-85

    ГОСТ 25772-83

    ГОСТ 25628.2-2016

    ГОСТ 26067.1-83

    ГОСТ 25912.1-91

    ГОСТ 26067.0-83

    ГОСТ 25912.2-91

    ГОСТ 25912.3-91

    ГОСТ 26992-86

    ГОСТ 26992-2016

    ГОСТ 25628-90

    ГОСТ 26919-86

    ГОСТ 26434-85

    ГОСТ 26434-2015

    ГОСТ 26815-86

    ГОСТ 27215-2013

    ГОСТ 24893.0-81

    ГОСТ 25459-82

    ГОСТ 28737-90

    ГОСТ 27108-86

    ГОСТ 25912.4-91

    ГОСТ 27108-2016

    ГОСТ 27812-2005

    ГОСТ 28737-2016

    ГОСТ 28042-2013

    ГОСТ 26816-86

    ГОСТ 30643-98

    ГОСТ 31938-2022

    ГОСТ 27579-88

    ГОСТ 32016-2012

    ГОСТ 32486-2021

    ГОСТ 32488-2013

    ГОСТ 23118-2019

    ГОСТ 28042-89

    ГОСТ 32494-2021

    ГОСТ 30974-2002

    ГОСТ 33079-2014

    ГОСТ 28015-89

    ГОСТ 14098-2014

    ГОСТ 27215-87

    ГОСТ 32499-2013

    ГОСТ 32487-2015

    ГОСТ 3808.1-2019

    ГОСТ 26819-86

    ГОСТ 31310-2015

    ГОСТ 4.250-79

    ГОСТ 4981-87

    ГОСТ 22687.2-85

    ГОСТ 4.208-79

    ГОСТ 4.221-82

    ГОСТ 33081-2014

    ГОСТ 31251-2003

    ГОСТ 6786-80

    ГОСТ 32492-2015

    ГОСТ 7285-71

    ГОСТ 6927-2018

    ГОСТ 6785-80

    ГОСТ 7319-2019

    ГОСТ 7741-55

    ГОСТ 8020-90

    ГОСТ 6428-2018

    ГОСТ 8242-88

    ГОСТ 6428-83

    ГОСТ 25912-2015

    ГОСТ 8579-57

    ГОСТ 8020-2016

    ГОСТ 8829-85

    ГОСТ 34277-2017

    ГОСТ 9491-60

    ГОСТ 31251-2008

    ГОСТ 33080-2014

    ГОСТ 8829-2018

    ГОСТ 9574-2018

    ГОСТ 32047-2012

    ГОСТ 8484-82

    ГОСТ 9574-90

    ГОСТ 948-2016

    ГОСТ 33082-2014

    ГОСТ 9561-2016

    ГОСТ 9561-91

    ГОСТ 948-84

    ГОСТ 8829-94

    ГОСТ 31938-2012

    ГОСТ 7740-55

    ГОСТ Р 55658-2013

    ГОСТ 9818-2015

    ГОСТ 21506-87

    ГОСТ Р 52664-2006

    ГОСТ Р 52664-2010

    ГОСТ 9818-85

    ГОСТ Р 56506-2015

    ГОСТ Р 56589-2015

    ГОСТ Р 56705-2015

    ГОСТ Р 56591-2015

    ГОСТ Р 56288-2014

    ГОСТ Р 56600-2015

    ГОСТ Р 56710-2015

    ГОСТ Р 56711-2015

    ГОСТ Р 57157-2016

    ГОСТ Р 57158-2016

    ГОСТ Р 57159-2016

    ГОСТ Р 53629-2009

    ГОСТ 32486-2015

    ГОСТ Р 57161-2016

    ГОСТ Р 57160-2016

    ГОСТ Р 57176-2016

    ГОСТ Р 56733-2020

    ГОСТ Р 57182-2016

    ГОСТ Р 57183-2016

    ГОСТ Р 57264-2016

    ГОСТ Р 57289-2016

    ГОСТ Р 57263-2016

    ГОСТ Р 57290-2016

    ГОСТ Р 57291-2016

    ГОСТ 32943-2014

    ГОСТ Р 57292-2016

    ГОСТ Р 57339-2016

    ГОСТ Р 57341-2016

    ГОСТ Р 57340-2016

    ГОСТ Р 57346-2016

    ГОСТ Р 57350-2016

    ГОСТ Р 56733-2015

    ГОСТ Р 57357-2016

    ГОСТ Р 57360-2016

    ГОСТ Р 57352-2016

    ГОСТ Р 57359-2016

    ГОСТ Р 57998-2017

    ГОСТ Р 57999-2017

    ГОСТ Р 57265-2020

    ГОСТ Р 58001-2017

    ГОСТ Р 58000-2017

    ГОСТ Р 58154-2018

    ГОСТ Р 57351-2016

    ГОСТ Р 58323-2018

    ГОСТ Р 58386-2019

    ГОСТ Р 58459-2019

    ГОСТ Р 58561-2019

    ГОСТ Р 58558-2019

    ГОСТ Р 58572-2019

    ГОСТ 33762-2016

    ГОСТ Р 58562-2019

    ГОСТ Р 57790-2017

    ГОСТ Р 57786-2017

    ГОСТ Р 58752-2019

    ГОСТ Р 58699-2019

    ГОСТ Р 58774-2019

    ГОСТ Р 58965-2020

    ГОСТ Р 59106-2020

    ГОСТ Р 59009-2020

    ГОСТ Р 59214-2020

    ГОСТ Р 58933-2020

    ГОСТ Р 58959-2020

    ГОСТ Р 59614-2021

    ГОСТ Р 59600-2021

    ГОСТ Р 59652-2021

    ГОСТ Р 59242-2020

    ГОСТ Р 59655-2021

    ГОСТ Р 59275-2020

    ГОСТ Р 59654-2021

    ГОСТ Р 53628-2009

    ГОСТ Р 59893-2021

    ГОСТ Р 59656-2021

    ГОСТ Р 59913-2021

    ГОСТ Р 59664-2021

    ГОСТ Р 58960-2020

    ГОСТ Р 70006-2022

    ГОСТ Р 59784-2022

    ГОСТ Р 56728-2015

    ГОСТ Р 59922-2021

    ГОСТ Р 70041-2022

    ГОСТ Р 70132-2022

    ГОСТ Р 70069-2022

    ГОСТ Р 70202-2022

    ГОСТ Р 70306-2022

    ГОСТ Р ИСО 11003-1-2017

    ГОСТ Р 59924-2021

    ГОСТ Р 70192-2022

    ГОСТ Р ИСО 11003-2-2017

    ГОСТ Р ИСО 3898-2016

    ГОСТ Р 58559-2019

    ГОСТ Р ИСО 8970-2017

    ГОСТ Р ИСО 12494-2016

    ГОСТ Р 70228-2022

    ГОСТ Р ИСО 4355-2016

    ГОСТ 22687.1-85

    ГОСТ 31384-2017

    ГОСТ 32017-2012

    ГОСТ Р 55338-2012

    ГОСТ Р 59894-2021

    ГОСТ Р 57265-2016

    ГОСТ 8717-2016

    ГОСТ 6482-88

    ГОСТ Р 56378-2015

    ГОСТ Р ИСО 13824-2013

    ГОСТ Р ИСО 10137-2016

    ГОСТ Р 54858-2011

    ГОСТ Р 56298-2014

    ГОСТ Р 52751-2007

    ГОСТ Р 56297-2014

    ГОСТ Р 56296-2014