ГОСТ 20910-90

ОбозначениеГОСТ 20910-90
НаименованиеБетоны жаростойкие. Технические условия
СтатусЗаменен
Дата введения06.30.1991
Дата отмены
Заменен наГОСТ 20910-2019
Код ОКС91.100.30
Текст ГОСТа


ГОСТ 20910-90

Группа Ж13

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР


БЕТОНЫ ЖАРОСТОЙКИЕ

Технические условия

Refractory concretes.
Specifications

ОКП 57 4600, 57 6700, 58 0000

Дата введения 1991-07-01

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона (НИИЖБ) Госстроя СССР

РАЗРАБОТЧИКИ

В.В.Жуков, д-р техн. наук (руководитель темы); А.Ф.Милованов, д-р техн. наук; К.Д.Некрасов, д-р техн. наук; Н.П.Жданова, канд. техн. наук; А.П.Тарасова, канд. техн. наук; Г.В.Чехний, канд. техн. наук; И.М.Дробященко, канд. техн. наук; И.А.Тихомирова; В.И.Пименова; С.П.Абрамова; И.Н.Нагорняк

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного строительного комитета СССР от 12.10.90 N 86

3. Стандарт соответствует СТ СЭВ 1406-78, СТ СЭВ 3978-83, СТ СЭВ 6550-88

4. ВЗАМЕН ГОСТ 20956-75, ГОСТ 20955-75, ГОСТ 23283-78, ГОСТ 23521-79, ГОСТ 20910-82

5. Срок проверки - 1996 г.

6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, приложения

ГОСТ 310.2-76

1.5.4, 3.3

ГОСТ 969-77

1.5.1

ГОСТ 2642.0-86 - ГОСТ 2642.12-86

3.3

ГОСТ 5578-76

1.5.6

ГОСТ 7473-85

1.4.14-1.4.18, 2.5

ГОСТ 8335-81

Приложение 4

ГОСТ 9758-86

1.5.3, 3.3

ГОСТ 9759-83

1.5.6

ГОСТ 9760-86

1.5.6

ГОСТ 10060-87

3.1

ГОСТ 10178-85

1.5.1

ГОСТ 10180-89*

Приложения 2, 4

________________

* Вероятно, ошибка оригинала. Следует читать: ГОСТ 10180-90. - .

ГОСТ 10181.0-81

3.2

ГОСТ 10181.1-81

3.2

ГОСТ 10832-83

1.5.6

ГОСТ 11991-83

1.5.3, 1.5.6

ГОСТ 12730.2-84*

3.1

________________

* Вероятно, ошибка оригинала. Следует читать: ГОСТ 12730.2-78. - .

ГОСТ 12730.5-84

3.1

ГОСТ 12865-67

1.5.6

ГОСТ 13015.1-81

2.6

ГОСТ 13078-81

1.5.1

ГОСТ 13079-81

1.5.1

ГОСТ 13646-68

Приложение 7

ГОСТ 14828-69

Приложение 7

ГОСТ 18105-86

2.1, 2.2, приложение 2

ГОСТ 18481-81

Приложение 7

ГОСТ 20419-83

1.5.3, 1.5.6

ГОСТ 22685-77

Приложения 2, 4

ГОСТ 23037-78

1.5.3, 1.5.6

ГОСТ 23732-79

1.5.13

ГОСТ 24104-88

Приложения 5, 7

ГОСТ 25485-89

1.4.15

ГОСТ 25592-83

1.5.3, 1.5.6

ГОСТ 26134-84

3.1

ГОСТ 27005-86

2.2

ТУ 6-03-339-78

1.5.1

ТУ 6-08-01-1-81

1.5.2

ТУ 14-11-181-79

1.5.2

ТУ 14-13-7-72

Приложение 4

ТУ 14-261-73

1.5.6

ТУ 16.681.032-84

Приложения 2-6

ТУ 16.681.139-86

Приложения 2-6

ТУ 21-20-60-84

1.5.1

ТУ 25-02.792301-80

Приложение 4

ТУ 63-156-1-83

1.5.6

ТУ Лит. ССР 15-76

1.5.3, 1.5.6

ТУ Лит. ССР 49-80

1.5.3, 1.5.6

СТ СЭВ 1406-78

1.4.2

ОСП 72/87

1.4.13

Настоящий стандарт распространяется на жаростойкие бетоны (далее - бетоны), предназначенные для применения при эксплуатационных температурах до 1800 °С.

Требования настоящего стандарта следует соблюдать при разработке новых, пересмотре действующих стандартов, технических условий, проектной и технологической документации и при производстве сборных бетонных и железобетонных изделий и конструкций, монолитных и сборно-монолитных сооружений (далее - изделий, конструкций и сооружений) из этих бетонов.

Стандарт не распространяется на огнеупорные бетоны.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

1.1. Бетоны должны соответствовать требованиям настоящего стандарта и обеспечивать изготовление изделий, конструкций и возведение сооружений, удовлетворяющих требованиям стандартов или технических условий, нормам проектирования и проектной документации на эти изделия, конструкции и сооружения.

1.2. Основные параметры

1.2.1. Бетоны подразделяют:

по назначению - на конструкционные, теплоизоляционные;

по структуре - на плотные, тяжелые и легкие, ячеистые;

по виду вяжущего - на портландцементе и его разновидностях (быстротвердеющем портландцементе, шлакопортландцементе), на алюминатных цементах (глиноземистом и высокоглиноземистом), на силикатных вяжущих (жидком стекле с отвердителем, силикат-глыбе с отвердителем);

по виду тонкомолотой добавки - с шамотной, кордиеритовой, золошлаковой, керамзитовой, аглопоритовой, магнезиальной, периклазовой, алюмохромитовой;

по виду заполнителя - с шамотным, муллитокорундовым, корундовым, магнезиальным, карборундовым, кордиеритовым, кордиеритомуллитовым, муллитокордиеритовым, шлаковым, золошлаковым, базальтовым, диабазовым, андезитовым, диоритовым, керамзитовым, аглопоритовым, перлитовым, вермикулитовым, из боя бетона.

1.3. Наименования бетонов должны включать основные признаки: вид бетона (BR - бетон жаростойкий); вид вяжущего (Р - портландцемент, А - алюминатный цемент, S - силикатное вяжущее), класс бетона по прочности на сжатие (В1-В40) и класс бетона по предельно допустимой температуре применения (И3-И18).

Примеры:

1. BR Р В20 И12 - бетон жаростойкий на портландцементе, класса В20 по прочности на сжатие, температурой применения 1200 °С.

2. BR А В35 И16 - бетон жаростойкий на алюминатном цементе, класса В35 по прочности на сжатие, температурой применения 1600 °С.

3. BR S В25 И13 - бетон жаростойкий на силикатном вяжущем, класса В25 по прочности на сжатие, температурой применения 1300 °С.

1.4. Характеристики

1.4.1. Для бетонов конкретного назначения основными показателями качества являются:

прочность на сжатие;

предельно допустимая температура применения;

термостойкость (термическая стойкость);

водонепроницаемость;

морозостойкость;

средняя плотность;

усадка.

1.4.2. Прочность бетона в проектном возрасте характеризуют классом прочности на сжатие по СТ СЭВ 1406.

Для бетонов установлены следующие классы по прочности на сжатие: В1; В1,5; В2; В2,5; В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30; В35; В40.

Для изделий, конструкций и сооружений, запроектированных до ввода в действие СТ СЭВ 1406, показатели прочности бетона на сжатие характеризуют марками: М15; М20; М25; М35; М50; М75; М100; М150; М200; М250; М300; М350; М400; М450; М500.

Класс по прочности на сжатие В назначают и контролируют во всех случаях.

Примечание. Соотношение между классами бетона по прочности на сжатие и марками приведено в приложении 1.

1.4.3. При изготовлении сборных бетонных и железобетонных изделий, конструкций устанавливают отпускную прочность бетона, а при возведении монолитных конструкций и сооружений - прочность бетона в промежуточном возрасте.

Отпускная прочность бетона должна быть не менее 70% нормируемой, прочность бетона в промежуточном возрасте принимают по проектно-технической документации.

1.4.4. Для бетонов устанавливают следующие классы по предельно допустимой температуре применения согласно табл.1.

Таблица 1

Класс бетона по
предельно допустимой
температуре применения

Предельно
допустимая
температура
применения, °С

Класс бетона по
предельно допустимой
температуре применения

Предельно
допустимая
температура
применения, °С


И3


300


И12


1200

И6

600

И13

1300

И7

700

И14

1400

И8

800

И15

1500

И9

900

И16

1600

И10

1000

И17

1700

И11

1100

И18

1800

Классы бетонов по предельно допустимой температуре применения И13-И18 устанавливают только для не несущих изделий и конструкций.

1.4.5. Класс бетонов по предельно допустимой температуре применения определяют по значениям остаточной прочности и температуры деформации под нагрузкой, указанным в табл.2.

Таблица 2

Класс бетона по
предельно допустимой температуре применения


Вид вяжущего

Остаточная
прочность, %,
не менее

Температура, соответствующая проценту
деформации под нагрузкой, °С, не менее

4

40 или разрушению


И3


Р


80

S

80

-

-

И6

50

Р

40

И7


И8

Р, А

30

-

-

S

70

И9

Р

900

950

Р, А

30

1000

И10

1050

S

70

1000

Р, А

30

1080

И11

1150

S

70

1080

Р, А

30

1180

И12

1250

S

70

1180

А

30

И13

S

50

1270

1340

И14

1360

1420

И15

А

30

1450

И16

1510

S

70

-

И17


А


30

1600

И18

1650

Примечания:

1. Для бетонов классов И3-И8 температуры деформации под нагрузкой не определяют.

2. Для бетонов классов И15-И18 определяют температуру 4%-ной деформации.

1.4.6. Остаточная прочность бетона зависит от вида вяжущего, температуры нагрева и характеризуется процентным отношением прочности бетона после нагрева до предельно допустимой температуры применения для бетонов классов И3-И7 и после нагрева до температуры 800 °С для бетонов классов И8-И18 к прочности бетона в проектном возрасте.

1.4.7. Для бетонов, предназначенных для изготовления изделий, конструкций и сооружений, к которым предъявляют требования по термостойкости, устанавливают следующие марки по термостойкости: Т5; Т10; Т15; Т20; Т30; Т40 (водные теплосмены); Т10; Т15; Т20; Т25 (воздушные теплосме

ны).

1.4.8. Для бетонов со средней плотностью 1500 кг/ми более, предназначенных для изготовления конструкций и изделий, к которым предъявляют требования по водонепроницаемости, устанавливают следующие марки по водонепроницаемости: W2, W4, W6, W8.

1.4.9. Для бетонов со средней плотностью 1500 кг/ми более, предназначенных для изготовления конструкций и изделий, к которым предъявляются требования по морозостойкости, устанавливают следующие марки по морозостойкости: F15, F25, F35, F50, F75.

1.4.10. Установленные значения марок по водонепроницаемости и морозостойкости должны быть обеспечены в возрасте, указанном в проектно-технической документации.

1.4.11. Для легкого бетона устанавливают следующие марки по средней плотности в сухом состоянии: D300, D400, D500, D600, D700, D800, D900, D1000, D1100, D1200, D1300, D1400, D1500, D1600, D1700, D1800.

1.4.12. Для бетонов устанавливают требования по предельным значениям усадки после нагрева до предельно допустимой температуры применения бетонов классов И3-И12 и до температуры применения бетонов классов И13-И18, которые не должны превышать, %:

1,0 - для бетонов плотной структуры со средней плотностью 1500 кг/ми более;

1,5 - для бетонов плотной структуры со средней плотностью менее 1500 кг/м;

2,0 - для бетонов ячеистой структуры.

1.4.13. Составы бетонов подбирают по методикам, пособиям и рекомендациям научно-исследовательских институтов, утвержденных в установленном порядке. При этом бетоны по удельной активности естественных радионуклидов должны соответствовать требованиям п.1.4 Основных санитарных правил ОСП-72/87*, утвержденных Минздравом СССР.

________________

* На территории Российской Федерации документ не действует. Действуют ОСПОРБ-99/2010. - .

1.4.14. Бетонные смеси в соответствии с ГОСТ 7473 и в зависимости от степени готовности подразделяют на готовые к употреблению и сухие.

1.4.15. Бетонные смеси для бетонов плотной структуры приготовляют по ГОСТ 7473, а для бетонов ячеистой структуры - по ГОСТ 25485.

1.4.16. Бетонные смеси для бетонов, кроме ячеистых, должны соответствовать маркам по удобоукладываемости Ж1-Ж4 ГОСТ 7473, принимаемым по технологической документации.

1.4.17. В бетонную смесь, приготовленную на портландцементе, допускается введение пластифицирующих добавок при условии сохранения заданных свойств бетона. При этом марка по удобоукладываемости бетонной смеси должна быть не более П3 по ГОСТ 7473.

1.4.18. Бетонную смесь, приготовленную на портландцементе и высокоглиноземистом цементе, а также бетонную смесь, приготовленную на жидком стекле и глиноземистом цементе при температуре наружного воздуха не выше 20 °С, транспортируют в соответствии с требованиями ГОСТ 7473.

Время от приготовления бетонной смеси на основе жидкого стекла и глиноземистого цемента до ее укладки не должно превышать 30 мин.

Бетонную смесь на основе жидкого стекла и глиноземистого цемента при температуре наружного воздуха выше 20 °С приготовляют на месте укладки.

1.5. Материалы

1.5.1. Для приготовления бетонов в качестве вяжущих применяют:

портландцемент, быстротвердеющий портландцемент, шлакопортландцемент по ГОСТ 10178;

глиноземистый цемент по ГОСТ 969;

высокоглиноземистый цемент по ТУ 21-20-60* или ТУ 6-03-339;

________________

* Документ в информационных продуктах не содержится. За информацией о документе Вы можете обратиться в Службу поддержки пользователей. - .

жидкое стекло по ГОСТ 13078;

силикат-глыбу по ГОСТ 13079.

1.5.2. Для бетонов на жидком стекле и силикат-глыбе в качестве отвердителя применяют кремнефтористый натрий по ТУ 6-08-01-1 или феррохромовый шлак по ТУ 14-11-181 и другие материалы, удовлетворяющие требованиям стандартов или технических условий и обеспечивающие получение бетона с заданными характеристиками.

1.5.3. Для бетонов на портландцементе и жидком стекле в качестве тонкомолотых добавок, устойчивых к воздействию высоких температур, принимают:

шамотные по ГОСТ 23037;

кордиеритовые по ГОСТ 20419;

золошлаковые смеси ТЭС по ГОСТ 25592;

керамзитовые по ГОСТ 9758;

аглопоритовые по ГОСТ 11991;

бетонные из дробленых жаростойких бетонов по ТУ Лит. ССР 49 или ТУ Лит. ССР 15.

Для бетонов на жидком стекле, кроме указанных добавок, допускается применять магнезиальную добавку по ГОСТ 23037.

1.5.4. Тонкость помола добавок для бетона должна быть такой, чтобы при просеивании через сито N 008 по ГОСТ 310.2 проходило не менее 50% взятой пробы.

1.5.5. В тонкомолотых добавках содержание свободных оксида кальция СаО и оксида магния МgО в сумме не должно превышать 3%, а карбонатов - 2%.

1.5.6. Для бетонов в качестве заполнителей применяют шамотные, муллитокорундовые и магнезиальные материалы по ГОСТ 23037, а также другие материалы в соответствии с табл.3.


Таблица 3

Вид заполнителя

Нормативный
документ

Содержание химических
компонентов, %


Кордиеритовый


ГОСТ 20419


Кордиерит - не менее 30, МgО - от 12 до 14, FеО - не более 2,5

Кордиеритомуллитовый

ГОСТ 20419

Кордиерит - не менее 40, МgО - от 6 до 7,
FеО - не более 2,5

Муллитокордиеритовый

ГОСТ 20419

Кордиерит - не менее 15, МgО - от 3 до 4,
FеО - не более 2,5

Карборундовый

ТУ 14-261
ТУ 63-156-1

-

Доменный, литой отвальный и гранулированный шлак

ГОСТ 5578

СаО + МgО - в сумме не более 48, в т.ч. МgО - не более 10, сульфатов в пересчете на SО - не более 5, свободных СаО и МgО - в сумме не более 2

Золошлаковая смесь

ГОСТ 25592

SiC + AlO - в сумме не менее 75, в т.ч. SiO - не менее 40, сульфатов в пересчете на SO - не более 3, свободных СаО и МgО - в сумме не более 4, потери при прокаливании - не более 5

Керамзитовый, аглопоритовый

ГОСТ 9759
ГОСТ 11991

Свободные СаО и МgО - в сумме не более 2, карбонатов - не более 2

Шлаковая пемза

ГОСТ 9760

-

Перлитовый

ГОСТ 10832

-

Вермикулитовый

ГОСТ 12865

-

Бетонный из лома жаростойких бетонов с шамотным заполнителем на портландцементе

ТУ Лит. ССР 49

СаО - не более 41, АlO - не менее 14

То же, на жидком стекле

ТУ Лит. ССР 15

NаО - не более 4

1.5.7. В качестве заполнителей, устойчивых к воздействию высоких температур, допускается применять:

кусковой огнеупор первичного обжига и дробленые некондиционные огнеупорные изделия;

вторичные огнеупоры и жаростойкие бетоны, загрязненность которых шлаком, углем, металлом, а также динасовыми и хромомагнезитовыми материалами не должна превышать 0,5%.

1.5.8. Не допускается загрязнение добавок и заполнителей другими материалами, способными снизить его эксплуатационные свойства или привести к разрушению бетона после нагрева (известняк, гранит, доломит, магнезит и др.).

1.5.9. Заполнитель для бетонов в зависимости от крупности зерен подразделяют на:

мелкий - песок с зернами размером от 0 до 5 мм;

крупный - щебень с зернами размером от 5 до 20 мм.

1.5.10. Зерновой состав заполнителей для бетонов должен удовлетворять требованиям, приведенным в табл.4.

Таблица 4


Размер отверстий
контрольных сит, мм


Полные остатки на контрольных ситах, %
по массе, для заполнителей крупностью

до 5 мм

от 5 до 20 мм

20

-

0-5

10

0

30-60

5

0-5

95-100

2,5

10-40

-

1,25

20-60

-

0,63

40-85

-

0,315

60-95

-

0,16

80-100

-

1.5.11. Средняя насыпная плотность пористых заполнителей должна быть в пределах, указанных в табл.5.

Таблица 5


Заполнитель

Средняя насыпная плотность, кг/м, для фракций

до 5 мм

от 5 до 20 мм


Шамотный легковесный


400-1200


300-800

Муллитокорундовый легковесный

Не более 1400

Не более 900

Корундовый легковесный

Не более 1400

Не более 900

Керамзитовый

-

400-800

Перлитовый

100-500

300-500

Вермикулитовый

Не более 200

-

1.5.12. Допускается применение других материалов, не указанных в пп.1.5.1.-1.5.7, качество которых должно удовлетворять требованиям стандартов или технических условий и обеспечивать получение бетона, отвечающего заданным физико-техническим характеристикам, приведенным в настоящем стандарте.

1.5.13. Вода для приготовления бетонов должна отвечать требованиям ГОСТ 23732.

2. ПРИЕМКА

2.1. Приемку бетонов производят партиями. Объем и состав партии принимают по ГОСТ 18105.

2.2. Приемку бетона по прочности в проектном возрасте и остаточной прочности производят при подборе каждого нового номинального состава бетона, а в дальнейшем - не реже одного раза в месяц, а также при изменении состава бетона, технологии производства и качества используемых материалов.

Приемку бетона по отпускной прочности и прочности в промежуточном возрасте производят от каждой партии по ГОСТ 18105, а для легких и ячеистых бетонов - и по средней плотности по ГОСТ 27005.

2.3. Периодические испытания по показателю удельной активности естественных радионуклидов проводят не реже одного раза в год, а также при изменении качества применяемых материалов.

2.4. При необходимости, оценку бетона по предельно допустимой температуре применения, термостойкости, водонепроницаемости, морозостойкости и усадке проводят в соответствии с требованиями стандарта и технических условий на бетон конструкций конкретного вида.

2.5. Бетонные смеси принимают по ГОСТ 7473, стандартам или техническим условиям на бетонные смеси конкретных видов.

2.6. Приемку бетонов по качеству для сборных бетонных и железобетонных изделий и конструкций производят по ГОСТ 13015.1 и стандартам или техническим условиям на конкретные изделия или конструкции, а бетонов по качеству для монолитных конструкций и сооружений - и по нормам проектирования и проектно-технической документации.

3. МЕТОДЫ КОНТРОЛЯ

3.1. Физико-механические свойства бетонов определяют:

прочность бетона на сжатие в проектном возрасте, отпускную прочность, прочность в промежуточном возрасте и остаточную прочность - по приложению 2;

класс бетона по предельно допустимой температуре применения - по приложению 4;

термостойкость - по приложению 5;

водонепроницаемость - по ГОСТ 12730.5;

морозостойкость - по ГОСТ 10060 или ГОСТ 26134;

среднюю плотность - по ГОСТ 12730.2;

усадку - по приложению 6.

3.2. Жесткость и подвижность бетонной смеси определяют по ГОСТ 10181.0 и ГОСТ 10181.1.

3.3. Проверку качества добавок и заполнителей проводят на:

устойчивость при воздействии высоких температур - по приложению 3;

тонкость помола добавок - по ГОСТ 310.2;

среднюю плотность пористых заполнителей - по ГОСТ 9758;

химический состав добавок - по ГОСТ 2642.0 - ГОСТ 2642.12;

активность отвердителя - по приложению 7.

3.4. Проверку удельной активности естественных радионуклидов, содержащихся в материалах для бетонов, проводят в соответствии с методиками, утвержденными Минздравом СССР.

ПРИЛОЖЕНИЕ 1
Справочное

СООТНОШЕНИЕ МЕЖДУ КЛАССАМИ БЕТОНА ПО ПРОЧНОСТИ НА СЖАТИЕ И МАРКАМИ ПРИ НОРМАТИВНОМ КОЭФФИЦИЕНТЕ ВАРИАЦИИ, РАВНОМ 13,5% ДЛЯ ТЯЖЕЛЫХ И ЛЕГКИХ БЕТОНОВ И 18% - ДЛЯ ЯЧЕИСТЫХ БЕТОНОВ

Класс бетона
по прочности

Средняя плотность
бетона данного
класса ,
кгс/см

Ближайшая марка
бетона по прочности

Отклонение ближайшей марки бетона
от средней прочности класса,
, %

B1

14,5

M15

-3,7

B1,5

21,7

M20

+15,2

B2

28,9

M25

+13,6

B2,5

36,2

M35

+3,2

B3,5

46

M50

+9,1

B5

65,5

M75

+14,5

B7,5

98,2

M150

+1,8

B10

131

M150

+14,5

B12,5

163,7

M150

-8,4

B15

196,5

M200

+1,8

B20

261,9

M250

-4,5

B25

327,4

M350

+6,9

B30

392,9

M400

+1,8

B35

458,4

M450

-1,8

B40

523,9

M550

+5,1

B45

589,4

M600

+1,8

B50

654,8

M700

+6,9

Примечание. Среднюю прочность бетона каждого класса определяют при нормативном коэффициенте вариации, равном 13,5% для тяжелых и легких бетонов, по формуле

(1)

и 18% для ячеистых бетонов по формуле

, (2)

где - численное значение класса бетона по прочности, МПа;

0,0981 - переходный коэффициент от МПа к кгс/см.


ПРИЛОЖЕНИЕ 2
Обязательное

МЕТОД ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ БЕТОНА

1. ОБРАЗЦЫ

1.1. Прочность бетона на сжатие определяют на образцах, изготовленных по ГОСТ 10180.

1.2. Отбор проб - по ГОСТ 18105.

1.3. Время от момента приготовления бетонной смеси до изготовления образцов для бетонов на жидком стекле и глиноземистом цементе, а также для всех бетонов со средней плотностью 1500 кг/ми менее не должно превышать 30 мин.

Для бетонов со средней плотностью св. 1500 кг/мна портландцементе, шлакопортландцементе, быстротвердеющем портландцементе и высокоглиноземистом цементе перерыв между приготовлением бетонной смеси и изготовлением образцов не должен превышать 1 ч.

1.4. Температура бетонной смеси в момент приготовления для бетонов ячеистой структуры на портландцементе, высокоглиноземистом цементе и силикат-глыбе должна быть не менее 30 °С и не более 50 °С, а для бетонов на глиноземистом цементе и жидком стекле - не более 20 °С.

2. СРЕДСТВА КОНТРОЛЯ

2.1. Изготовление образцов производят в формах, отвечающих требованиям ГОСТ 22685.

2.2. Для проведения испытаний применяют:

сушильный электрический шкаф типа СНОЛ - по ТУ 16.681.032;

камерную электрическую печь типа СНОЛ - по ТУ 16.681.139;

сетчатые стеллажи для размещения образцов и оборудование для испытания образцов - по ГОСТ 10180;

ванну с крышкой для выдержки образцов над водой.

3. ПОДГОТОВКА К ИСПЫТАНИЯМ И ИСПЫТАНИЯ

3.1. Для определения прочности бетона на сжатие:

в проектном возрасте;

отпускной;

промежуточном возрасте;

остаточной, а также при необходимости прочности бетона в горячем состоянии образцы подготовляют и испытывают в соответствии с ГОСТ 10180 и настоящим приложением.

3.2. Прочность бетона на сжатие в проектном возрасте определяют после режимов твердения и сушки в соответствии с табл.6.

3.3. Отпускную прочность бетона и прочность бетона в промежуточном возрасте определяют после режимов твердения в соответствии с табл.6.

3.4. Для установления остаточной прочности определяют прочность бетона после нагрева до предельно допустимой температуры применения для бетонов классов И3-И7 и до температуры нагрева 800 °С - для бетонов классов И8-И18.

Нагреву подвергают образцы бетона после температурно-влажностного режима твердения и сушки согласно табл.6.

Таблица 6

Температурно-влажностный режим твердения

Температурный режим сушки

Бетоны


Выдержка

Подъем
темпе-
ратуры

Изотермический
прогрев

Подъем
темпе-
ратуры

Тем-
пера-
тура,
°С

От-
но-
си-
тель-
ная
влаж-
ность,
%

Вре- мя

Ско-
рость,
°С/ч

Вре-
мя,
ч

Тем-
пера-
тура,
°С

От-
носи-
тель-
ная
влаж-
ность,
%

Вре-
мя,
ч

Осты-
вание,
ч, не
менее

ско-
рость,
°С/ч

вре-
мя,
ч

Суш-
ка
при (105±5)
°С, ч

Ос-
ты-
ва-
ние,
ч

сут

ч


Плотной структуры на:
портландцементе быстротвердеющем портландцементе,
шлако- портландцементе и высокоглинозе-
мистом цементе


20±5


90-100


7


-


-


-


-


-


-


-


50


2


48


4

жидком стекле

Более 15

Менее
70

3

-

-

-

-

-

-

-

50

2

48

4

глиноземистом
цементе

7-25

90-100

3

-

-

-

-

-

-

-

50

2

48

4

Ячеистой структуры на:

глиноземистом
цементе

20±5

90-100

3

-

-

-

-

-

-

-

50

2

48

4

силикат-глыбе

20±5

90-100

-

2

30-40

4

174

100

6

4

50

2

48

4

плотной и ячеистой структуры на:

портландцементе, шлакопорт-
ландцементе и
высокоглинозе-
мистом цементе

20±5

90-100

-

2

20-25

4

80-90

100

6

4

50

2

48

4

Образцы бетона нагревают в камерной электрической печи со скоростью подъема температуры 150 °С/ч, выдержкой при требуемой температуре 4 ч и остыванием вместе с печью до комнатной температуры.

После остывания образцы бетона помещают на сетчатый стеллаж, расположенный в ванне над водой. Слой воды в ванне должен быть не менее 10 см. Расстояние от нижней поверхности образцов бетона до уровня воды и от верхней поверхности образцов до крышки ванны должно быть (4±1) см. Образцы выдерживают в ванне 7 сут, затем вынимают, осматривают и определяют прочность на сжатие по ГОСТ 10180.

Если после нагрева или выдержки над водой в образцах появились трещины, дутики или околы, то бетон бракуют.

3.5. Остаточную прочность бетона на сжатие , %, определяют по формуле

, (3)

где - прочность бетона на сжатие после нагрева по п.3.4;

- прочность бетона на сжатие в проектном возрасте.

3.6. Прочность бетона на сжатие для каждой требуемой температуры нагрева не выше указанной в табл.7 определяют после режимов твердения и сушки в соответствии с табл.6 и после нагрева в камерной печи в соответствии с п.3.4 в охлажденном состоянии.

Прочность бетона на сжатие в нагретом состоянии принимают равной прочности бетона после нагрева до температуры, указанной в табл.7.

Прочность бетона на сжатие для несущих конструкций в нагретом состоянии () бетонов классов по предельно допустимым температурам, указанным в табл.7, определяют по формуле

, (4)

где - прочность бетона на сжатие после нагрева до температуры, указанной в табл.7;

- температура, при которой определяют прочность бетона на сжатие в нагретом состоянии, °С;

- температура, указанная в табл.7, при которой определяют прочность бетона на сжатие после нагрева, °С;

- предельно допустимая температура применения.

Таблица 7

Класс бетона по предельно допустимой температуре
применения

Температура нагрева
, °С

И3

300

И6

600

И7

700

И8, И9, И10, И11

800

И12, И13, И14

900

3.7. В журнал заносят результаты испытаний образцов бетона по ГОСТ 10180, а также показатели:

вид и класс бетона по предельно допустимой температуре применения и по прочности на сжатие;

температуру нагрева образцов;

прочность в проектном возрасте и остаточную прочность.

ПРИЛОЖЕНИЕ 3
Обязательное

МЕТОД ОПРЕДЕЛЕНИЯ УСТОЙЧИВОСТИ ЗАПОЛНИТЕЛЕЙ И ДОБАВОК ПРИ ВОЗДЕЙСТВИИ ВЫСОКИХ ТЕМПЕРАТУР

Сущность метода состоит в проверке способности заполнителей и добавок не разрушаться при нагреве, а также после него.

1. ОТБОР ПРОБ

1.1. Для проверки устойчивости заполнителей и тонкомолотых добавок отбирают пробы от каждой партии указанных материалов из нескольких мест, но не менее чем из трех.

1.2. Пробу заполнителя отбирают в объеме 10 л, методом квартования уменьшают ее до 5 л. Пробу тонкомолотой добавки отбирают в объеме 5 л, методом квартования уменьшают ее до 1 л.

2. СРЕДСТВА КОНТРОЛЯ

2.1. Для проведения испытаний применяют:

сушильный электрический шкаф типа СНОЛ по ТУ 16.681.032;

камерную электрическую печь типа СНОЛ по ТУ 16.681.139;

ванну с крышкой для выдержки образцов над водой;

сетчатые стеллажи для размещения образцов.

3. ПОДГОТОВКА К ИСПЫТАНИЯМ И ИСПЫТАНИЯ

3.1. Для испытания необходимо иметь заполнитель, приготовленный дроблением шамотного кирпича и рассеянного на фракции 0-5 и 5-20 мм в соответствии с требованиями пп.1.5.7 и 1.5.9 настоящего стандарта.

3.2. Приготовляют бетонную смесь, состоящую из портландцемента, проверяемой добавки и чистого шамотного заполнителя в долях 1:0,3:4.

3.3. Из бетонной смеси изготовляют шесть образцов-кубов с ребром длиной 7 или 10 см. Образцы выдерживают в условиях согласно табл.4.

3.4. Три образца испытывают после высушивания при температуре (105±5) °С.

3.5. Для бетонов марок И8-И16 нагревают три образца до температуры 800 °С; бетоны других марок нагревают до предельно допустимой температуры применения.

3.6. Тонкомолотую добавку считают пригодной, если после нагрева и последующей выдержки над водой в течение 7 сут образцы не имеют дутиков, трещин, а остаточная прочность отвечает требованиям п.1.4.5 настоящего стандарта.

3.7. Для проверки качества заполнителя приготовляют бетонную смесь, состоящую из портландцемента, добавки и проверяемого заполнителя (1:0,3:4); возможна проверка на рабочем составе.

3.8. Изготовление, хранение, испытание образцов, а также оценку пригодности заполнителя осуществляют в соответствии с пп.3.3-3.6 настоящего приложения.

3.9. Керамзитовый заполнитель допускается проверять прокаливанием и последующим кипячением.

3.10. Среднюю пробу керамзитового гравия массой 0,5 кг прокаливают в течение 3 ч при температуре 800 °С.

3.11. Прокаленную пробу керамзита после остывания помещают в сосуд, заливают водой и кипятят в течение 4 ч. После остывания воду сливают, а керамзит рассыпают тонким слоем на металлический лист, выбирают разрушенные зерна и взвешивают.

3.12. Партию керамзита считают пригодной для применения в качестве заполнителя в бетоне, если разрушенные зерна в высушенном состоянии до постоянной массы составят не более 5% первоначальной навески.

3.13. Окончательное заключение о пригодности керамзита составляют после получения результатов испытания, предусмотренных пп.3.7-3.8 настоящего приложения.

ПРИЛОЖЕНИЕ 4
Обязательное

МЕТОД ОПРЕДЕЛЕНИЯ ТЕМПЕРАТУР, СООТВЕТСТВУЮЩИХ 4 И 40%-НОЙ ДЕФОРМАЦИЯМ ПОД НАГРУЗКОЙ

По настоящему методу определяют температуры, соответствующие 4 и 40%-ной деформациям под нагрузкой, для установления класса бетона по предельно допустимой температуре применения в соответствии с требованиями табл.2.

1. ОБРАЗЦЫ

1.1. Температуры, соответствующие 4 и 40%-ной деформациям под нагрузкой при высоких температурах, определяют на образцах-цилиндрах диаметром (36±1) мм и высотой (50±1) мм.

1.2. Образцы изготовляют в формах, удовлетворяющих требованиям ГОСТ 22685, или выпиливают из средней части контрольных неармированных блоков и изделий в соответствии с ГОСТ 10180.

1.3. Верхнее и нижнее основания образцов должны быть отшлифованы корундовым диском.

Отклонение от перпендикулярности основания и боковой поверхности цилиндра не должно превышать 0,5 мм. Отклонение от перпендикулярности определяют по ГОСТ 10180.

2. СРЕДСТВА КОНТРОЛЯ

Для испытаний применяют:

муфельную печь по ТУ 16.681.139;

электрический шкаф по ТУ 16.681.032;

электрическую криптоловую печь с механическим устройством для нагружения образца и измерения деформации по ТУ 14-13-7;

оптический пирометр по ГОСТ 8335;

платино-платинородиевую термопару по ТУ 25-02.792301.

2.2. Электрическая криптоловая печь и механическое устройство для нагружения образца и измерения деформации должны обеспечивать:

равномерный подъем температуры со скоростью 5 °С/мин и рабочую температуру печи не менее 1700 °С;

вертикальную передачу нагрузки на образец;

измерение деформации образца с погрешностью ±0,1 мм;

сжатие образца не менее чем на 20 мм.

3. ПОДГОТОВКА К ИСПЫТАНИЯМ И ИСПЫТАНИЯ

3.1. Перед загрузкой с механического устройства криптоловой печи необходимо снять характеристики холостого хода. Твердение и сушку изготовленных образцов осуществляют в соответствии с требованиями табл.4. Образцы из бетона на жидком стекле дополнительно подвергают термообработке по режиму: подъем до температуры 800 °С со скоростью 200 °С/ч, выдержка при 800 °С 1 ч и охлаждение до температуры воздуха в помещении.

3.2. Для определения температуры деформации бетона под нагрузкой испытывают один образец.

3.3. Нагрузку на образец выбирают таким образом, чтобы в поперечном сечении образца, перпендикулярном к действию сжимающей силы, создать напряжения, равные МПа:

0,2 - для бетонов средней плотности 1500 кг/ми более;

0,15 - для бетонов средней плотности от 1000 до 1500 кг/м;

10 - для бетонов средней плотности менее 1000 кг/м.

3.4. Образец устанавливают на стержень по центру печи так, чтобы середина его высоты находилась в центре визирной трубки, используемой для измерения температуры образца. Сверху и снизу образца между стержнями и образцом устанавливают угольные прокладки диаметром 50 и толщиной 10 мм. Сверху образца устанавливают стержень и механическое устройство для нагружения и измерения деформации образца.

3.5. Скорость подъема температуры при испытании не должна превышать, °С/мин: 10 - при нагреве до 800 °С; 5 - при нагреве св. 800 °С.

3.6. Температуру измеряют:

платино-платинородиевой термопарой при нагреве до 1300 °С;

параллельно термопарой и оптическим пирометром при нагреве от 1000 до 1300 °С;

оптическим пирометром при нагреве св. 1300 °С.

При измерении температуры горячий спай термопары следует располагать на уровне середины высоты образца бетона; спай не должен касаться внутренней нагреваемой поверхности печи.

Оптическим пирометром измеряют температуру боковой поверхности бетонного образца через визирную трубку из высокоогнеупорного материала внутренним диаметром 10-12 мм, установленную в футеровке печи в середине зоны наименьшей температуры нагрева. Снаружи трубку закрывают заслонкой, открываемой только на время измерения температуры.

3.7. После достижения температуры 400 °С температуру и деформацию бетонного образца измеряют каждые 5 мин.

Результаты измерений записывают в журнал. Испытание заканчивают в тот момент, когда деформация бетонного образца достигнет 40%-ной первоначальной его высоты или произойдет разрушение образца.

3.8. Результаты определения деформаций под нагрузкой оформляют в виде диаграммы "Температура - деформация" (черт.1).

Диаграмма "Температура - деформация"


1 - кривая для бетонного образца с пластичным разрушением; 2 - то же, с хрупким разрушением

Черт.1

3.9. На диаграмме "Температура - деформация" отмечают температуру:

начала размягчения, определяемую по точке НР, лежащей на 3 мм ниже наивысшего положения этой кривой;

соответствующую 4%-ной деформации бетонного образца, определяемую по точке, лежащей на 20 мм ниже наивысшего положения кривой;

соответствующую 40%-ной деформации бетонного образца, определяемую по точке, лежащей на 200 мм ниже наивысшего положения кривой;

при которой произошло внезапное разрушение образца.

Температурный интервал размягчения определяют, как разность между температурой, соответствующей 40%-ной деформации образца (или температурой разрушения ТР), и температурой начала размягчения.

3.10. Результаты испытания округляют до целых десятков градусов Цельсия.

В журнале испытаний отмечают внешний вид образца после испытания (например, бочкообразный, оплавленный, с трещинами на поверхности и т.п.).

3.11. Результаты испытания признают недействительными и испытания повторяют, если при визуальном осмотре испытанного бетонного образца обнаружено:

грибовидная форма, свидетельствующая о неравномерном нагреве образца по высоте;

перекос - смещение в сторону верхнего основания относительно нижнего на 4-5 мм или разница в высоте образца по его периметру более 2 мм;

одностороннее оплавление или другие признаки неравномерного нагрева образца.

3.12. Погрешность определения результатов испытаний по данной методике не должна превышать ±20 °С.

3.13. Форма журнала записи образцов определения температуры деформации бетона под нагрузкой приведена в табл.8.

3.14. Температуры 4 и 40%-ной деформации должны быть не ниже значений, приведенных в табл.2 для данного класса бетона по предельно допустимой температуре применения.

Таблица 8

Маркировка образца
и вид жаростойкого
бетона

Время отсчета
по приборам

Температура,
°С

Деформации
образца,
мм

Примечание

кален-
дарное

истекшее
от начала испытания

по термо-
паре

по пиро-
метру


ПРИЛОЖЕНИЕ 5
Обязательное

МЕТОД ОПРЕДЕЛЕНИЯ ТЕРМОСТОЙКОСТИ БЕТОНА

Сущность метода заключается в определении способности образцов бетона выдерживать резкие смены температур от предельно допустимой температуры применения до 20 °С для классов по предельно допустимой температуре применения бетонов И3-И7 и от 800 °С до 20 °С - для классов бетонов И8-И18.

1. ОБРАЗЦЫ

Изготовляют три бетонные образца-куба с ребром длиной 7 см из бетонной смеси рабочего состава.

2. СРЕДСТВА КОНТРОЛЯ

Для испытания применяют:

сушильный электрический шкаф типа СНОЛ по ТУ 16.681.032;

камерную электрическую печь типа СНОЛ по ТУ 16.681.139;

весы технические по ГОСТ 24104;

ванну вместимостью 10 л.

3. ПОДГОТОВКА К ИСПЫТАНИЯМ И ИСПЫТАНИЯ

3.1. Образцы после изготовления выдерживают в условиях согласно табл.6, затем подвергают визуальному осмотру и взвешивают.

Образцы, на которых обнаруживают трещины, бракуют.

3.2. Для бетонов средней плотности 1500 кг/ми более термостойкость определяют в водных теплосменах в следующем порядке.

3.2.1. Образцы помещают в печь, предварительно разогретую до расчетной температуры, и выдерживают при этой температуре 40 мин. Колебания температуры в печи допускаются в пределах ±20 °С. Время отсчитывают с момента, когда в печи установится необходимая температура.

3.2.2. По истечении 40 мин образцы вынимают из печи и погружают в ванну вместимостью 10 л с водой комнатной температуры.

3.2.3. Образцы охлаждают в воде в течение 5 мин, после чего вынимают из воды и выдерживают при температуре (20±5) °С в течение 10 мин. Затем нагревание повторяют. После каждой теплосмены воду в ванне необходимо менять.

3.3. Для бетонов средней плотности менее 1500 кг/ми ячеистой структуры термическую стойкость определяют в воздушных теплосменах в следующем порядке.

3.3.1. После высушивания образцы помещают в печь, предварительно разогретую до расчетной температуры, и выдерживают при той температуре 1 ч. Колебания температуры в печи допускаются в пределах ±20 °С.

3.3.2. Через 1 ч образцы вынимают из печи и охлаждают струей воздуха комнатной температуры из вентилятора в течение 20 мин. Затем нагревание повторяют.

3.4. Каждый нагрев и охлаждение в воде или на воздухе являются теплосменой. После каждой теплосмены остывшие образцы осматривают, отмечают появление трещин, характер разрушения (выкрошивание или окол материала) и определяют потери в массе.

3.5. Число теплосмен, вызвавших разрушение образцов или потерю бетоном 20% первоначальной массы, принимают за термическую стойкость бетона в водных или воздушных теплосменах.

ПРИЛОЖЕНИЕ 6
Обязательное

МЕТОД ОПРЕДЕЛЕНИЯ УСАДКИ ЖАРОСТОЙКИХ БЕТОНОВ

Сущность метода заключается в определении изменения размеров образца бетона после нагрева до предельно допустимой температуры применения бетонов классов И3-И12 и до температуры эксплуатации - для бетонов классов И13-И18.

1. ОБРАЗЦЫ

Изготовляют три бетонные образца-куба с ребром длиной 7 см из бетонной смеси рабочего состава. Образцы выдерживают в условиях согласно табл.6. Из бетонов ячеистой структуры образцы выпиливают из затвердевших изделий, конструкций или контрольных блоков.

2. СРЕДСТВА КОНТРОЛЯ

Для испытаний принимают:

штатив с индикатором часового типа с ценой деления 0,01 мм и ходом штока 10 мм, приведенный на черт.2;

сушильный электрический шкаф типа СНОЛ по ТУ 16.681.032;

камерную электрическую печь типа СНОЛ по ТУ 16.681.139.

Схема штатива с индикатором часового типа


1 - основание; 2 - стойка; 3 - кронштейн; 4 - шаровая опора; 5 - индикатор

Черт.2


3. ПОДГОТОВКА К ИСПЫТАНИЯМ И ИСПЫТАНИЯ

3.1. После режима твердения в соответствии с табл.6 образцы измеряют с помощью индикатора часового типа. Среднее значение трех измерений принимают за размер образца после твердения ().

3.2. Затем образцы термообрабатывают по режиму: подъем до (105±5) °С со скоростью 50 °С/ч, выдержка при (105±5) °С 48 ч и охлаждение до температуры воздуха в помещении.

3.3. После сушки образцы нагревают до температуры эксплуатации. Скорость подъема температуры - 150 °С/ч, время выдержки - 4 ч.

3.4. После нагревания и охлаждения образцов до температуры воздуха в помещении их подвергают визуальному осмотру. При наличии поверхностных трещин шириной раскрытия более 0,1 мм или признаков оплавления образцы бракуют.

Образцы измеряют согласно п.3.1 и определяют среднее значение трех измерений образца после нагревания ().

3.5 Усадку , %, вычисляют по формуле

, (5)

где - среднее значение размера образца после твердения, мм;

- среднее значение размера образца после нагревания, мм.

Если деформации усадки превышают значения, указанные в п.1.5.8, то бетон бракуют.

ПРИЛОЖЕНИЕ 7
Обязательное

МЕТОД ОПРЕДЕЛЕНИЯ АКТИВНОСТИ ОТВЕРДИТЕЛЯ

Сущность метода состоит в проверке способности отвердителя обеспечивать затвердение жидкого стекла.

1. ОТБОР ПРОБ

1.1. Для проверки активности отвердителя отбирают пробы от каждой партии указанного отвердителя из нескольких мест, но не менее чем из трех.

1.2. Пробу отвердителя отбирают в объеме 5 л, методом квартования уменьшают ее до 1 л.

2. СРЕДСТВА КОНТРОЛЯ

Для испытаний применяют:

весы по ГОСТ 24104;

термометр по ГОСТ 13646;

ареометр по ГОСТ 18481.

3. ПОДГОТОВКА К ИСПЫТАНИЯМ И ИСПЫТАНИЯ

3.1. 200 г тонкомолотого шамота смешивают со 100 г отвердителя (нефелинового шлама, саморассыпающегося шлама) или 30 г отвердителя (кремнефтористого натрия), затворяют жидким стеклом плотностью 1,36 г/см до получения теста нормальной густоты.

3.2. Из полученной массы изготовляют лепешку, которую сразу же помещают в полиэтиленовый пакет.

3.3. После выдерживания лепешки в пакете при температуре не ниже 20 °С в течение 24 ч ее вынимают и осматривают.

3.4. Отвердитель считают активным, если он обеспечивает однородное твердение раствора по всему сечению.

Электронный текст документа

и сверен по:

М.: Издательство стандартов, 1991

Другие госты в подкатегории

    ГОСТ 10060-87

    ГОСТ 10060.1-95

    ГОСТ 10060.2-95

    ГОСТ 10060.0-95

    ГОСТ 10140-71

    ГОСТ 10140-2003

    ГОСТ 10178-62

    ГОСТ 10178-76

    ГОСТ 10179-62

    ГОСТ 10060.3-95

    ГОСТ 10179-74

    ГОСТ 10140-80

    ГОСТ 10181.0-81

    ГОСТ 10174-90

    ГОСТ 10178-85

    ГОСТ 10296-79

    ГОСТ 10181.4-81

    ГОСТ 10499-67

    ГОСТ 10499-95

    ГОСТ 10832-64

    ГОСТ 10923-64

    ГОСТ 10832-91

    ГОСТ 10999-64

    ГОСТ 10181.1-81

    ГОСТ 10923-93

    ГОСТ 11052-74

    ГОСТ 1148-41

    ГОСТ 11830-66

    ГОСТ 12394-66

    ГОСТ 125-2018

    ГОСТ 12730.0-2020

    ГОСТ 12730.0-78

    ГОСТ 125-79

    ГОСТ 12730.2-2020

    ГОСТ 12730.3-2020

    ГОСТ 12730.2-78

    ГОСТ 12730.1-2020

    ГОСТ 10181.3-81

    ГОСТ 12730.3-78

    ГОСТ 12730.1-78

    ГОСТ 12803-76

    ГОСТ 12730.4-2020

    ГОСТ 12852.1-77

    ГОСТ 11310-90

    ГОСТ 12852.0-77

    ГОСТ 12852.2-77

    ГОСТ 12852.4-77

    ГОСТ 12852.3-77

    ГОСТ 12852.6-77

    ГОСТ 12852.5-77

    ГОСТ 12865-67

    ГОСТ 13015-2003

    ГОСТ 13450-68

    ГОСТ 10060.4-95

    ГОСТ 13578-2019

    ГОСТ 13580-2021

    ГОСТ 13015-2012

    ГОСТ 13996-84

    ГОСТ 12730.4-78

    ГОСТ 14256-78

    ГОСТ 13087-2018

    ГОСТ 14356-69

    ГОСТ 14295-75

    ГОСТ 14357-69

    ГОСТ 14791-69

    ГОСТ 15588-70

    ГОСТ 1581-2019

    ГОСТ 1581-91

    ГОСТ 15825-80

    ГОСТ 15836-70

    ГОСТ 15836-79

    ГОСТ 1581-96

    ГОСТ 14791-79

    ГОСТ 16136-2003

    ГОСТ 13087-81

    ГОСТ 16136-70

    ГОСТ 16233-77

    ГОСТ 16233-70

    ГОСТ 13996-93

    ГОСТ 16381-77

    ГОСТ 16136-80

    ГОСТ 16557-78

    ГОСТ 15879-70

    ГОСТ 16475-81

    ГОСТ 10180-2012

    ГОСТ 17057-89

    ГОСТ 15588-2014

    ГОСТ 17177-87

    ГОСТ 17624-2021

    ГОСТ 10832-2009

    ГОСТ 10181-2000

    ГОСТ 1779-83

    ГОСТ 12730.5-84

    ГОСТ 18109-72

    ГОСТ 17608-91

    ГОСТ 18124-75

    ГОСТ 10060-2012

    ГОСТ 18124-95

    ГОСТ 18623-82

    ГОСТ 10181-2014

    ГОСТ 10180-90

    ГОСТ 12730.5-2018

    ГОСТ 18659-81

    ГОСТ 13996-2019

    ГОСТ 17623-87

    ГОСТ 18105-2018

    ГОСТ 19570-2018

    ГОСТ 20429-84

    ГОСТ 20430-84

    ГОСТ 19222-2019

    ГОСТ 20916-2021

    ГОСТ 20916-87

    ГОСТ 21880-2011

    ГОСТ 16297-80

    ГОСТ 21880-2022

    ГОСТ 12784-78

    ГОСТ 21880-94

    ГОСТ 21880-86

    ГОСТ 22237-85

    ГОСТ 22023-76

    ГОСТ 22266-76

    ГОСТ 17624-2012

    ГОСТ 2245-43

    ГОСТ 18956-73

    ГОСТ 22266-94

    ГОСТ 18866-93

    ГОСТ 18124-2012

    ГОСТ 22690.0-77

    ГОСТ 22690.1-77

    ГОСТ 22690.2-77

    ГОСТ 22266-2013

    ГОСТ 22690.3-77

    ГОСТ 22690.4-77

    ГОСТ 22783-2022

    ГОСТ 22688-2018

    ГОСТ 17608-2017

    ГОСТ 22950-78

    ГОСТ 23208-2003

    ГОСТ 22950-95

    ГОСТ 23208-2022

    ГОСТ 20910-2019

    ГОСТ 23208-83

    ГОСТ 23307-78

    ГОСТ 22856-89

    ГОСТ 23342-78

    ГОСТ 23464-79

    ГОСТ 17624-87

    ГОСТ 22783-77

    ГОСТ 12801-98

    ГОСТ 23250-78

    ГОСТ 23233-78

    ГОСТ 19222-84

    ГОСТ 23499-79

    ГОСТ 18105-86

    ГОСТ 23835-79

    ГОСТ 23668-79

    ГОСТ 12801-84

    ГОСТ 24316-2022

    ГОСТ 22263-76

    ГОСТ 23735-2014

    ГОСТ 23342-2012

    ГОСТ 24467-80

    ГОСТ 23735-79

    ГОСТ 23558-94

    ГОСТ 24545-2021

    ГОСТ 24640-91

    ГОСТ 24099-80

    ГОСТ 23732-79

    ГОСТ 24748-2003

    ГОСТ 20054-2016

    ГОСТ 23789-2018

    ГОСТ 24986-81

    ГОСТ 23789-79

    ГОСТ 25094-82

    ГОСТ 24099-2013

    ГОСТ 22688-77

    ГОСТ 24748-81

    ГОСТ 25137-82

    ГОСТ 24816-2014

    ГОСТ 23422-87

    ГОСТ 18105-2010

    ГОСТ 24816-81

    ГОСТ 25214-82

    ГОСТ 25192-82

    ГОСТ 2551-64

    ГОСТ 2551-75

    ГОСТ 25591-83

    ГОСТ 25192-2012

    ГОСТ 25328-82

    ГОСТ 25597-83

    ГОСТ 23732-2011

    ГОСТ 25607-94

    ГОСТ 25246-82

    ГОСТ 25226-96

    ГОСТ 22690-88

    ГОСТ 24316-80

    ГОСТ 25781-2018

    ГОСТ 25820-2021

    ГОСТ 25818-91

    ГОСТ 25877-83

    ГОСТ 24544-2020

    ГОСТ 25880-83

    ГОСТ 25094-2015

    ГОСТ 25592-91

    ГОСТ 25485-2019

    ГОСТ 25820-2000

    ГОСТ 25592-2019

    ГОСТ 25094-94

    ГОСТ 26193-84

    ГОСТ 26281-84

    ГОСТ 25820-83

    ГОСТ 22690-2015

    ГОСТ 26627-85

    ГОСТ 25898-83

    ГОСТ 26589-85

    ГОСТ 25898-2020

    ГОСТ 26633-85

    ГОСТ 25820-2014

    ГОСТ 2678-65

    ГОСТ 26644-85

    ГОСТ 2678-87

    ГОСТ 25881-83

    ГОСТ 26798.0-85

    ГОСТ 26798.1-85

    ГОСТ 26798.2-85

    ГОСТ 24452-80

    ГОСТ 26871-86

    ГОСТ 2694-67

    ГОСТ 26417-85

    ГОСТ 2697-64

    ГОСТ 2694-78

    ГОСТ 24545-81

    ГОСТ 17177-94

    ГОСТ 2697-83

    ГОСТ 25485-89

    ГОСТ 24544-81

    ГОСТ 26798.2-96

    ГОСТ 24983-81

    ГОСТ 27798-2019

    ГОСТ 25945-98

    ГОСТ 26633-2015

    ГОСТ 26633-2012

    ГОСТ 26798.1-96

    ГОСТ 28013-89

    ГОСТ 2889-67

    ГОСТ 2889-80

    ГОСТ 26134-84

    ГОСТ 29167-2021

    ГОСТ 25818-2017

    ГОСТ 27006-2019

    ГОСТ 30301-95

    ГОСТ 27180-2001

    ГОСТ 30340-95

    ГОСТ 27006-86

    ГОСТ 28570-2019

    ГОСТ 28570-90

    ГОСТ 30444-97

    ГОСТ 30491-97

    ГОСТ 24332-88

    ГОСТ 26134-2016

    ГОСТ 28013-98

    ГОСТ 25898-2012

    ГОСТ 30108-94

    ГОСТ 27180-86

    ГОСТ 27005-86

    ГОСТ 27005-2014

    ГОСТ 30693-2000

    ГОСТ 30778-2001

    ГОСТ 30547-97

    ГОСТ 310.1-76

    ГОСТ 310.3-76

    ГОСТ 30740-2000

    ГОСТ 310.2-76

    ГОСТ 30459-2003

    ГОСТ 310.6-2020

    ГОСТ 30643-2020

    ГОСТ 310.4-81

    ГОСТ 310.6-85

    ГОСТ 31108-2020

    ГОСТ 31189-2003

    ГОСТ 30744-2001

    ГОСТ 31311-2022

    ГОСТ 31189-2015

    ГОСТ 26633-91

    ГОСТ 31309-2005

    ГОСТ 30459-96

    ГОСТ 27180-2019

    ГОСТ 30459-2008

    ГОСТ 31360-2007

    ГОСТ 31356-2007

    ГОСТ 26589-94

    ГОСТ 310.5-88

    ГОСТ 31357-2007

    ГОСТ 31377-2008

    ГОСТ 31386-2008

    ГОСТ 31387-2008

    ГОСТ 31424-2010

    ГОСТ 31359-2007

    ГОСТ 31898-1-2011

    ГОСТ 31108-2003

    ГОСТ 31426-2010

    ГОСТ 31899-1-2011

    ГОСТ 31362-2007

    ГОСТ 31913-2011

    ГОСТ 23499-2009

    ГОСТ 30340-2012

    ГОСТ 31436-2011

    ГОСТ 31430-2011

    ГОСТ 31897-2011

    ГОСТ 32021-2012

    ГОСТ 31108-2016

    ГОСТ 31899-2-2011

    ГОСТ 31915-2011

    ГОСТ 30629-99

    ГОСТ 30515-97

    ГОСТ 31376-2008

    ГОСТ 21216-2014

    ГОСТ 31358-2007

    ГОСТ 29167-91

    ГОСТ 32301-2011

    ГОСТ 32311-2012

    ГОСТ 32315.1-2012

    ГОСТ 32018-2012

    ГОСТ 32316.1-2012

    ГОСТ 30290-94

    ГОСТ 31914-2012

    ГОСТ 30256-94

    ГОСТ 32303-2011

    ГОСТ 30515-2013

    ГОСТ 31358-2019

    ГОСТ 32313-2020

    ГОСТ 32302-2011

    ГОСТ 32317-2012

    ГОСТ 2678-94

    ГОСТ 32026-2012

    ГОСТ 32806-2014

    ГОСТ 32496-2013

    ГОСТ 32495-2013

    ГОСТ 32497-2013

    ГОСТ 33174-2014

    ГОСТ 32805-2014

    ГОСТ 30629-2011

    ГОСТ 33126-2014

    ГОСТ 33742-2016

    ГОСТ 32319-2012

    ГОСТ 33083-2014

    ГОСТ 33793-2021

    ГОСТ 33792-2021

    ГОСТ 33699-2015

    ГОСТ 33928-2016

    ГОСТ 32312-2011

    ГОСТ 34532-2019

    ГОСТ 34669-2020

    ГОСТ 3476-2019

    ГОСТ 32588-2013

    ГОСТ 3476-74

    ГОСТ 34850-2022

    ГОСТ 34804-2021

    ГОСТ 3580-67

    ГОСТ 32614-2012

    ГОСТ 379-69

    ГОСТ 378-76

    ГОСТ 378-60

    ГОСТ 379-79

    ГОСТ 32803-2014

    ГОСТ 32318-2012

    ГОСТ 379-2015

    ГОСТ 3344-83

    ГОСТ 33949-2016

    ГОСТ 32313-2011

    ГОСТ 32493-2013

    ГОСТ 34275-2017

    ГОСТ 379-95

    ГОСТ 34719-2021

    ГОСТ 4.206-83

    ГОСТ 4.202-79

    ГОСТ 4.204-79

    ГОСТ 4.210-79

    ГОСТ 4001-66

    ГОСТ 4.219-81

    ГОСТ 4001-84

    ГОСТ 4.228-83

    ГОСТ 4013-2019

    ГОСТ 4.203-79

    ГОСТ 4640-66

    ГОСТ 4.229-83

    ГОСТ 4795-49

    ГОСТ 4795-53

    ГОСТ 4796-49

    ГОСТ 4797-49

    ГОСТ 4001-2013

    ГОСТ 4799-49

    ГОСТ 4798-49

    ГОСТ 4800-49

    ГОСТ 4801-49

    ГОСТ 4640-93

    ГОСТ 4861-65

    ГОСТ 4.201-79

    ГОСТ 4861-74

    ГОСТ 4640-2011

    ГОСТ 530-54

    ГОСТ 4013-82

    ГОСТ 530-71

    ГОСТ 5382-73

    ГОСТ 530-80

    ГОСТ 5578-2019

    ГОСТ 5578-76

    ГОСТ 4.212-80

    ГОСТ 4.211-80

    ГОСТ 5742-2021

    ГОСТ 5742-61

    ГОСТ 4.230-83

    ГОСТ 5742-76

    ГОСТ 6102-78

    ГОСТ 5724-75

    ГОСТ 32310-2020

    ГОСТ 5578-94

    ГОСТ 4.209-79

    ГОСТ 6102-94

    ГОСТ 4.233-86

    ГОСТ 481-80

    ГОСТ 6133-52

    ГОСТ 6266-81

    ГОСТ 6133-84

    ГОСТ 6139-91

    ГОСТ 6139-2020

    ГОСТ 6316-55

    ГОСТ 31911-2011

    ГОСТ 474-90

    ГОСТ 6328-55

    ГОСТ 648-41

    ГОСТ 6427-52

    ГОСТ 6427-75

    ГОСТ 6666-81

    ГОСТ 6788-62

    ГОСТ 6788-74

    ГОСТ 6927-74

    ГОСТ 6928-54

    ГОСТ 7025-67

    ГОСТ 530-95

    ГОСТ 7030-2021

    ГОСТ 6787-2001

    ГОСТ 7032-2021

    ГОСТ 6139-2003

    ГОСТ 33160-2014

    ГОСТ 6133-99

    ГОСТ 7393-71

    ГОСТ 7415-55

    ГОСТ 7392-2002

    ГОСТ 33929-2016

    ГОСТ 6141-91

    ГОСТ 7473-85

    ГОСТ 7392-85

    ГОСТ 7484-69

    ГОСТ 6266-89

    ГОСТ 7483-58

    ГОСТ 7484-78

    ГОСТ 7415-86

    ГОСТ 7487-55

    ГОСТ 8268-82

    ГОСТ 7394-85

    ГОСТ 7473-94

    ГОСТ 8423-57

    ГОСТ 8424-72

    ГОСТ 33370-2015

    ГОСТ 8426-57

    ГОСТ 8462-62

    ГОСТ 8423-75

    ГОСТ 8426-75

    ГОСТ 6665-91

    ГОСТ 8736-85

    ГОСТ 8269-87

    ГОСТ 8747-58

    ГОСТ 6266-97

    ГОСТ 7473-2010

    ГОСТ 8928-81

    ГОСТ 9128-76

    ГОСТ 9179-2018

    ГОСТ 8267-93

    ГОСТ 929-59

    ГОСТ 6482-2011

    ГОСТ 7025-91

    ГОСТ 9179-77

    ГОСТ 8736-2014

    ГОСТ 8736-93

    ГОСТ 9480-89

    ГОСТ 9573-72

    ГОСТ 5802-86

    ГОСТ 9573-82

    ГОСТ 9573-2012

    ГОСТ 9573-96

    ГОСТ 965-89

    ГОСТ 969-2019

    ГОСТ 8462-85

    ГОСТ 9479-2011

    ГОСТ 969-91

    ГОСТ 9480-2012

    ГОСТ 9479-98

    ГОСТ 9757-90

    ГОСТ 530-2012

    ГОСТ EN 1109-2011

    ГОСТ EN 1107-2-2011

    ГОСТ 961-89

    ГОСТ 31925-2011

    ГОСТ 9128-84

    ГОСТ EN 1107-1-2011

    ГОСТ 32314-2012

    ГОСТ 31912-2011

    ГОСТ 8747-88

    ГОСТ EN 1110-2011

    ГОСТ EN 12088-2011

    ГОСТ EN 12085-2011

    ГОСТ EN 1296-2012

    ГОСТ 9479-84

    ГОСТ EN 12039-2011

    ГОСТ EN 12730-2011

    ГОСТ EN 13416-2011

    ГОСТ EN 1108-2012

    ГОСТ EN 12431-2011

    ГОСТ EN 12091-2011

    ГОСТ EN 13897-2012

    ГОСТ EN 12430-2011

    ГОСТ EN 13470-2011

    ГОСТ EN 12090-2011

    ГОСТ EN 13074-1-2013

    ГОСТ EN 1602-2011

    ГОСТ 530-2007

    ГОСТ EN 13467-2011

    ГОСТ EN 1848-1-2011

    ГОСТ EN 13471-2011

    ГОСТ EN 1607-2011

    ГОСТ EN 12089-2011

    ГОСТ EN 1850-2-2011

    ГОСТ EN 1850-1-2011

    ГОСТ EN 1608-2011

    ГОСТ EN 1605-2011

    ГОСТ EN 1928-2011

    ГОСТ EN 1849-1-2011

    ГОСТ 7392-2014

    ГОСТ EN 495-5-2012

    ГОСТ EN 12087-2011

    ГОСТ EN 1849-2-2011

    ГОСТ ISO 10077-1-2021

    ГОСТ EN 825-2011

    ГОСТ Р 51032-97

    ГОСТ EN 13703-2013

    ГОСТ EN 823-2011

    ГОСТ EN 14707-2011

    ГОСТ EN 1609-2011

    ГОСТ EN 822-2011

    ГОСТ Р 51829-2022

    ГОСТ Р 52805-2007

    ГОСТ Р 52953-2008

    ГОСТ 31924-2011

    ГОСТ EN 824-2011

    ГОСТ Р 52908-2008

    ГОСТ Р 53227-2008

    ГОСТ Р 53223-2008

    ГОСТ EN 1604-2011

    ГОСТ Р 50332.1-2019

    ГОСТ EN 12086-2011

    ГОСТ Р 53455-2009

    ГОСТ Р 51263-99

    ГОСТ EN 29053-2011

    ГОСТ Р 54304-2011

    ГОСТ Р 54303-2011

    ГОСТ Р 53223-2016

    ГОСТ Р 53338-2009

    ГОСТ Р 51829-2001

    ГОСТ EN 826-2011

    ГОСТ Р 51795-2019

    ГОСТ Р 55224-2020

    ГОСТ Р 54963-2012

    ГОСТ Р 54194-2010

    ГОСТ Р 55224-2012

    ГОСТ 8735-88

    ГОСТ Р 54854-2011

    ГОСТ 8269.1-97

    ГОСТ Р 53231-2008

    ГОСТ Р 53377-2009

    ГОСТ Р 51263-2012

    ГОСТ Р 55818-2013

    ГОСТ Р 55818-2018

    ГОСТ Р 53378-2009

    ГОСТ Р 56207-2014

    ГОСТ Р 56582-2015

    ГОСТ Р 56583-2015

    ГОСТ Р 56507-2015

    ГОСТ Р 56196-2014

    ГОСТ Р 56584-2015

    ГОСТ Р 56586-2015

    ГОСТ Р 56587-2015

    ГОСТ Р 56387-2018

    ГОСТ Р 56588-2015

    ГОСТ EN 1606-2011

    ГОСТ Р 55936-2018

    ГОСТ Р 55936-2014

    ГОСТ Р 56593-2015

    ГОСТ Р 56704-2022

    ГОСТ Р 56387-2015

    ГОСТ Р 51795-2001

    ГОСТ Р 56704-2015

    ГОСТ Р 54748-2011

    ГОСТ Р 56775-2015

    ГОСТ Р 56686-2015

    ГОСТ Р 56504-2015

    ГОСТ Р 56911-2016

    ГОСТ Р 56688-2015

    ГОСТ Р 57293-2016

    ГОСТ Р 56727-2015

    ГОСТ Р 56703-2015

    ГОСТ Р 56910-2016

    ГОСТ Р 57294-2016

    ГОСТ Р 57336-2016

    ГОСТ Р 57334-2016

    ГОСТ Р 57141-2016

    ГОСТ Р 57335-2016

    ГОСТ Р 57333-2016

    ГОСТ Р 57337-2016

    ГОСТ Р 57338-2016

    ГОСТ Р 57349-2016

    ГОСТ Р 57345-2016

    ГОСТ Р 56828.18-2017

    ГОСТ Р 57348-2016

    ГОСТ 8269.0-97

    ГОСТ Р 57347-2016

    ГОСТ 32794-2014

    ГОСТ Р 57418-2020

    ГОСТ Р 57416-2017

    ГОСТ Р 56732-2015

    ГОСТ Р 57808-2017

    ГОСТ Р 57809-2017

    ГОСТ Р 57810-2017

    ГОСТ Р 57811-2017

    ГОСТ Р 57813-2017

    ГОСТ Р 57812-2017

    ГОСТ Р 57814-2017

    ГОСТ Р 57815-2017

    ГОСТ Р 57816-2017

    ГОСТ Р 57819-2017

    ГОСТ Р 57957-2017

    ГОСТ Р 57833-2017

    ГОСТ Р 57789-2017

    ГОСТ Р 57414-2017

    ГОСТ Р 58026-2017

    ГОСТ Р 58002-2017

    ГОСТ Р 56505-2015

    ГОСТ Р 58153-2018

    ГОСТ Р 57796-2017

    ГОСТ Р 58275-2018

    ГОСТ Р 58271-2018

    ГОСТ Р 58277-2018

    ГОСТ Р 58278-2018

    ГОСТ Р 58279-2018

    ГОСТ Р 58063-2018

    ГОСТ Р 58272-2018

    ГОСТ Р 57418-2017

    ГОСТ Р 53376-2009

    ГОСТ Р 57415-2017

    ГОСТ Р 58766-2019

    ГОСТ Р 58767-2019

    ГОСТ Р 58739-2019

    ГОСТ Р 58527-2019

    ГОСТ Р 56178-2014

    ГОСТ Р 57255-2016

    ГОСТ Р 58892-2020

    ГОСТ 9758-86

    ГОСТ Р 58796-2020

    ГОСТ Р 58893-2020

    ГОСТ Р 58276-2018

    ГОСТ Р 58937-2020

    ГОСТ Р 58795-2020

    ГОСТ Р 58894-2020

    ГОСТ Р 59095-2020

    ГОСТ Р 58953-2020

    ГОСТ Р 59097-2020

    ГОСТ Р 58913-2020

    ГОСТ Р 59150-2020

    ГОСТ Р 58896-2020

    ГОСТ Р 59500-2021

    ГОСТ Р 59096-2020

    ГОСТ Р 59122-2020

    ГОСТ Р 58429-2019

    ГОСТ Р 58964-2020

    ГОСТ Р 58257-2018

    ГОСТ Р 59555-2021

    ГОСТ Р 59574-2021

    ГОСТ Р 59561-2021

    ГОСТ Р 59613-2021

    ГОСТ Р 59599-2021

    ГОСТ Р 59634-2021

    ГОСТ Р 56729-2015

    ГОСТ Р 59646-2021

    ГОСТ Р 59658-2021

    ГОСТ Р 58211-2018

    ГОСТ Р 59647-2021

    ГОСТ Р 59714-2021

    ГОСТ Р 59674-2021

    ГОСТ Р 59686-2021

    ГОСТ Р 59659-2021

    ГОСТ Р 59923-2021

    ГОСТ Р 59744-2021

    ГОСТ Р 59715-2022

    ГОСТ Р 59538-2021

    ГОСТ Р 59945-2021

    ГОСТ Р 59940-2021

    ГОСТ Р 59944-2021

    ГОСТ Р 59957-2021

    ГОСТ Р 59946-2021

    ГОСТ Р 70034-2022

    ГОСТ Р 70052-2022

    ГОСТ Р 57417-2017

    ГОСТ Р 70086-2022

    ГОСТ Р 70051-2022

    ГОСТ Р 70075-2022

    ГОСТ Р 70062-2022

    ГОСТ Р 70090-2022

    ГОСТ Р 70222-2022

    ГОСТ Р 70309-2022

    ГОСТ Р 70007-2022

    ГОСТ Р 70307-2022

    ГОСТ Р 58956-2020

    ГОСТ Р 70341-2022

    ГОСТ Р 70344-2022

    ГОСТ Р 70342-2022

    ГОСТ Р 70258-2022

    ГОСТ Р 70343-2022

    ГОСТ Р 58430-2019

    ГОСТ Р 70261-2022

    ГОСТ Р 58405-2019

    ГОСТ Р 59523-2021

    ГОСТ Р 59536-2021

    ГОСТ Р ЕН 1109-2009

    ГОСТ Р ЕН 1110-2008

    ГОСТ Р ЕН 1107-1-2008

    ГОСТ Р ЕН 1296-2011

    ГОСТ Р ЕН 12085-2008

    ГОСТ Р ЕН 13416-2008

    ГОСТ Р ЕН 12088-2010

    ГОСТ Р ЕН 13897-2011

    ГОСТ Р ЕН 12039-2008

    ГОСТ Р ЕН 12091-2010

    ГОСТ Р ЕН 12430-2008

    ГОСТ Р ЕН 12431-2008

    ГОСТ Р ЕН 1602-2008

    ГОСТ Р 58955-2020

    ГОСТ Р ЕН 1607-2008

    ГОСТ Р ЕН 1605-2010

    ГОСТ Р ЕН 1848-1-2008

    ГОСТ Р ЕН 1850-2-2008

    ГОСТ Р ЕН 1850-1-2008

    ГОСТ Р ЕН 1108-2011

    ГОСТ Р ЕН 12090-2008

    ГОСТ Р ЕН 1608-2008

    ГОСТ Р ЕН 1928-2009

    ГОСТ Р ЕН 823-2008

    ГОСТ Р ЕН 1849-1-2009

    ГОСТ Р ИСО 10456-2021

    ГОСТ Р ЕН 12089-2008

    ГОСТ Р ИСО 7345-2021

    ГОСТ Р ЕН 825-2008

    ГОСТ Р ЕН 1609-2008

    ГОСТ Р ЕН 822-2008

    ГОСТ Р ЕН 1603-2014

    ГОСТ Р ЕН 12087-2008

    ГОСТ Р ЕН 824-2008

    ГОСТ Р ЕН 1604-2008

    ГОСТ Р 56590-2016

    ГОСТ Р 56148-2014

    ГОСТ Р ЕН 29053-2008

    ГОСТ Р 59535-2021

    ГОСТ Р ЕН 12086-2008

    ГОСТ Р ЕН 826-2008

    ГОСТ Р 54469-2011

    ГОСТ Р 57546-2017

    ГОСТ Р 56590-2015

    ГОСТ 9758-2012

    ГОСТ Р 54467-2011

    ГОСТ Р ЕН 1606-2010

    ГОСТ 5382-91