ГОСТ 25592-2019

ОбозначениеГОСТ 25592-2019
НаименованиеСмеси золошлаковые тепловых электростанций для бетонов. Технические условия
СтатусДействует
Дата введения06.01.2020
Дата отмены-
Заменен на-
Код ОКС91.100
Текст ГОСТа


ГОСТ 25592-2019

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СМЕСИ ЗОЛОШЛАКОВЫЕ ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ ДЛЯ БЕТОНОВ

Технические условия

Mixes of fly-ash and slag of thermal plants for conctetes. Specifications

МКС 91.100

Дата введения 2020-06-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 144 "Строительные материалы и изделия"

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 апреля 2019 г. N 118-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Беларусь

BY

Госстандарт Республики Беларусь

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

Узбекистан

UZ

Узстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 12 ноября 2019 г. N 1109-ст межгосударственный стандарт ГОСТ 25592-2019 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2020 г.

5 ВЗАМЕН ГОСТ 25592-91

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

Настоящий стандарт распространяется на золошлаковые смеси (далее - ЗШС), образующиеся на тепловых электростанциях при совместном гидроудалении золы и шлака или механическим способом (пневмотранспортом) в золоотвал в процессе сжигания углей в пылевидном состоянии и представляющие собой вторичные минеральные ресурсы (ВМР), применяемые в качестве компонентов для изготовления бетонов для всех видов строительства в соответствии с ГОСТ 25192, ГОСТ 26633, строительных растворов по ГОСТ 28013, сухих строительных смесей по ГОСТ 31357, минеральных вяжущих, смесей щебеночно-гравийно-песчаных для покрытий и оснований автомобильных дорог и аэродромов по ГОСТ 25607 и материалов, обработанных неорганическими вяжущими для дорожного и аэродромного строительства по ГОСТ 23558, а также для получения минерального порошка.

Рекомендуемые области и условия применения золошлаковых смесей представлены в приложении А.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 310.2 Цементы. Методы определения тонкости помола

ГОСТ 310.3 Цементы. Методы определения нормальной густоты, сроков схватывания и равномерности изменения объема

ГОСТ 3118 Реактивы. Кислота соляная. Технические условия

ГОСТ 4919.1 Реактивы и особо чистые вещества. Методы приготовления растворов индикаторов

ГОСТ 5578 Щебень и песок из шлаков черной и цветной металлургии для бетонов. Технические условия

ГОСТ 6709 Вода дистиллированная. Технические условия

ГОСТ 8269.0 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы физико-механических испытаний

ГОСТ 8269.1 Щебень и гравий из плотных горных пород и отходов промышленного производства для строительных работ. Методы химического анализа

ГОСТ 8677 Реактивы. Кальция оксид. Технические условия

ГОСТ 8735 Песок для строительных работ. Методы испытаний

ГОСТ 8736 Песок для строительных работ. Технические условия

ГОСТ 9262 Реактивы. Кальция гидроокись. Технические условия

ГОСТ 9639 Листы из непластифицированного поливинилхлорида (винипласт листовой). Технические условия

ГОСТ 9758 Заполнители пористые неорганические для строительных работ. Методы испытаний

ГОСТ 11022 (ИСО 1171-97) Топливо твердое минеральное. Методы определения зольности

________________

В Российской Федерации действует ГОСТ Р 55661-2013 (ИСО 1171:2010) "Топливо твердое минеральное. Определение зольности".

ГОСТ 20910 Бетоны жаростойкие. Технические условия

ГОСТ 22235 Вагоны грузовые магистральных железных дорог колеи 1520 мм. Общие требования по обеспечению сохранности при производстве погрузочно-разгрузочных и маневровых работ

ГОСТ 23227 Угли бурые, каменные, антрацит, горючие сланцы и торф. Метод определения свободного оксида кальция в золе

ГОСТ 23558 Смеси щебеночно-гравийно-песчаные и грунты, обработанные неорганическими вяжущими материалами, для дорожного и аэродромного строительства. Технические условия

ГОСТ 24104 Весы лабораторные. Общие технические требования

________________

В Российской Федерации действует ГОСТ Р 53228-2008 "Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания".

ГОСТ 24211 Добавки для бетонов и строительных растворов. Общие технические условия

ГОСТ 25137 Материалы нерудные строительные, щебень и песок плотные из отходов промышленности, заполнители для бетона пористые. Классификация

ГОСТ 25192 Бетоны. Классификация и общие технические требования

ГОСТ 25214 Бетон силикатный плотный. Технические условия

ГОСТ 25336 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 25485 Бетоны ячеистые. Технические условия

ГОСТ 25607 Смеси щебеночно-гравийно-песчаные для покрытий и оснований автомобильных дорог и аэродромов. Технические условия

ГОСТ 25818 Золы-уноса тепловых электростанций для бетонов. Технические условия

ГОСТ 25820 Бетоны легкие. Технические условия

ГОСТ 26633 Бетоны тяжелые и мелкозернистые. Технические условия

ГОСТ 28013 Растворы строительные. Общие технические условия

ГОСТ 28923 Регуляторы температуры, работающие без постороннего источника энергии. Общие технические требования и методы испытаний

ГОСТ 29251 (ИСО 385-1-84) Посуда лабораторная стеклянная. Бюретки. Часть 1. Общие требования

ГОСТ 30108 Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов

ГОСТ 30744 Цементы. Методы испытаний с использованием полифракционного песка

ГОСТ 30772 Ресурсосбережение. Обращение с отходами. Термины и определения

ГОСТ 31357 Смеси сухие строительные на цементном вяжущем. Общие технические условия

ГОСТ 31359 Бетоны ячеистые автоклавного твердения. Технические условия

ГОСТ 31384 Защита бетонных и железобетонных конструкций от коррозии. Общие технические требования

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дата датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 5578, ГОСТ 25137, ГОСТ 25818, ГОСТ 30772, а также следующие термины с соответствующими определениями:

3.1 гидравлическая активность: Прочность образцов из стандартных цементно-песчаных растворов, твердеющих в стандартных условиях в течение 28 суток.

3.2 минеральная добавка на основе ЗШС: Минеральная добавка, полученная в результате переработки зольной составляющей золошлаковой смеси без изменения химического и минералогического состава путем сепарации и измельчения.

3.3 инертная минеральная добавка (ИМД) на основе ЗШС: Минеральная добавка, не способная к взаимодействию с продуктами гидратации и щелочами цемента, применяемая в качестве микронаполнителя.

3.4 активная минеральная добавка (АМД) на основе ЗШС: Минеральная добавка, обладающая вяжущими свойствами или пуццоланической активностью.

3.5 вяжущие свойства добавки на основе ЗШС: Способность активной минеральной добавки, затворенной водой, после схватывания на воздухе твердеть в водной среде, в бетоне и/или строительном растворе.

3.6 пуццоланическая активность: Способность минеральной добавки вступать в химическое взаимодействие с гидратом окиси кальция и увеличивать количество гидросиликатов кальция.

3.7 наполнитель для бетона: Тонкодисперсный неорганический материал на основе ЗШС, добавляемый в бетон для улучшения его характеристик и достижения определенных свойств.

4 Технические требования

4.1 ЗШС должны соответствовать требованиям настоящего стандарта и изготавливаться по технологической документации, утвержденной в установленном порядке.

4.2 Характеристики золошлаковых смесей

4.2.1 Основные виды

ЗШС как вторичный минеральный ресурс для использования в тяжелых, мелкозернистых и легких бетонах, строительных растворах, силикатных бетонах плотной и ячеистой структуры и золобетонах по способу применения подразделяются на три вида в качестве крупного и мелкого заполнителя и минеральных добавок с переменными строительно-техническими свойствами и однородностью по гранулометрическому, химическому и фазово-минералогическому составу:

- без предварительной подготовки;

- с предварительной переработкой;

- в качестве минеральной добавки в виде сухой золы (восстановленная отвальная зола) со стабильными строительно-техническими свойствами и обеспеченной однородностью по гранулометрическому и фазово-минералогическому составу в результате применяемой технологии переработки.

4.2.2 Основные типы

4.2.2.1 ЗШС по виду сжигаемого угля подразделяют:

- на антрацитовые, образующиеся при сжигании антрацита, полуантрацита и тощего каменного угля (А),

- каменноугольные, образующиеся при сжигании каменного, кроме тощего, угля (КУ),

- буроугольные, образующиеся при сжигании бурого угля (Б).

ЗШС по химическому составу смесей подразделяют:

- на кислые (К) - ЗШС, образующиеся при сжигании антрацита, тощего каменного угля, каменного угля и бурого угля с содержанием оксида кальция не более 10%;

- основные (О) - ЗШС, образуемые при сжигании бурого угля с содержанием оксида кальция более 10%.

4.2.2.2 ЗШС по способу удаления их в золоотвал согласно приложению Б подразделяют:

- на влажные (В) - удаляемые в золоотвал системой гидрозолоудаления;

- сухие (С) - удаляемые в сухой золоотвал системой пневмотранспорта.

4.2.2.3 ЗШС в зависимости от способа удаления шлака подразделяют:

- на ЗШС с плотным шлаком (ЗШС Пл), образующимся в топках с жидким шлакоудалением (средняя плотность зерен более 2,0 г/см);

- ЗШС с пористым шлаком (ЗШС По), образующиеся в топках с твердым шлакоудалением (средняя плотность зерен до 2,0 г/см).

4.2.3 Основные параметры и типы

4.2.3.1 ЗШС, удаляемые в золоотвал, состоят из зольной составляющей (частицы золы и шлака размером менее 0,315 мм) и шлаковой, включающей зерна шлака размером от 0,315 до 5(3) мм - как мелкого заполнителя и зерна шлака, размером свыше 5(3) мм - как крупного заполнителя.

4.2.3.2 ЗШС, представляющие собой ВМР в зависимости от зернового состава, подразделяют на типы:

- крупный заполнитель на основе шлаковой составляющей ЗШС содержанием частиц с размером более 0,315 мм не менее 90%, содержание частиц шлака с размером более 5 мм не менее 50%;

- мелкий заполнитель на основе шлаковой и зольной составляющих содержанием частиц шлака с размером более 0,315 мм - не менее 50%, содержанием частиц шлака с размером менее 0,315 мм - не более 20%, частиц шлака с размером более 5 мм - не более 10%;

- минеральная добавка для бетона на основе зольной составляющей с содержанием частиц более 0,315 мм - не более 10%, которую в зависимости от вида сжигаемого угля и способа удаления в золоотвал подразделяют на три группы:

- инертная добавка;

- добавка активная с пуццоланической активностью;

- добавка активная с гидравлической активностью.

4.2.3.3 ЗШС, представляющие собой ВМР, в зависимости от величины потери массы при прокаливании () в зольной составляющей подразделяют на четыре типа:

- I - для железобетонных конструкций и изделий из тяжелого или мелкозернистого бетона по ГОСТ 26633, легкого бетона по ГОСТ 25820;

- II - для бетонных конструкций и изделий из тяжелого или мелкозернистого бетона по ГОСТ 26633, легкого бетона по ГОСТ 25820, строительных растворов по ГОСТ 28013;

- III - для изделий и конструкций из ячеистого бетона по ГОСТ 25485, ГОСТ 31359, плотного силикатного бетона по ГОСТ 25214;

- IV - для бетонных и железобетонных изделий и конструкций, работающих в особо тяжелых условиях, по ГОСТ 31384 (для бетона гидротехнических и транспортных сооружений, покрытий автомобильных дорог и аэродромов и т.п.).

4.2.3.4 Крупный и мелкий заполнитель на основе шлаковой составляющей из пористого шлака по величине потери при прокаливании подразделяют на два вида:

- заполнитель для железобетонных конструкций и изделий на основе легкого бетона;

- заполнитель для бетонных конструкций и изделий на основе легкого бетона.

4.2.3.5 Зольную составляющую минеральной добавки на основе ЗШС по величине потери при прокаливании подразделяют на группы:

- содержание несгоревшего топлива менее 5%;

- содержание несгоревшего топлива от 5% до 9%;

- содержание несгоревшего топлива более 9%.

4.2.3.6 Зольную составляющую минеральной добавки на основе ЗШС по величине остатка на сите 0,45 подразделяют на виды:

- остаток на сите менее 15%;

- от 15% до 40%;

- свыше 40%.

4.2.3.7 Условное обозначение ЗШС при заказе должно состоять из сокращенного обозначения (типа) ЗШС, вида угля, вида шлаковой составляющей и золошлаковой смеси, обозначения настоящего стандарта.

Пример условного обозначения

Золошлаковая смесь с крупным заполнителем, кислая, с пористым шлаком, типа I () в зольной составляющей:

ЗШС-КрКПо-I ГОСТ 25592-2019

4.3 Характеристики минеральной добавки

4.3.1 Качественные показатели минеральной добавки на основе зольной составляющей различных видов ЗШС должны соответствовать требованиям ГОСТ 25818.

4.3.2 Зольная составляющая основной и кислой ЗШС в смеси с портландцементом должны обеспечивать равномерность изменения объема по ГОСТ 30744 при испытании образцов кипячением в воде (расширение не более 10 мм), а также основные золы типа III - в автоклаве согласно методике ГОСТ 310.3.

4.3.3 Реакционную способность минеральной добавки ИМД и содержание вредных компонентов и примесей в ней определяют по их минералого-петрографическому составу. Перечень пород и минералов, относимых к вредным компонентам и примесям, и их предельно допустимое содержание в этой добавке должны соответствовать приведенным в [ГОСТ 8736 (приложение А)].

4.3.4 Минеральная добавка АМД должна соответствовать требованиям, приведенным в таблице 1.

Таблица 1 - Химический состав и активность

Характеристика

Нормируемые значения характеристик АМД

с вяжущими свойствами

с пуццоланическими свойствами

высокими

средними

низкими

Массовая доля хлорид-иона () в составе АМД, %, не более

0,1

0,1

0,1

0,1

Массовая доля сульфидных и сульфатных соединений в расчете на в составе АМД, %, не более

3,5

3,5

3,5

3,5

Вяжущая активность АМД R, МПа, не менее

5

-

-

-

Количество СаО, поглощенного АМД из насыщенного раствора гидроксида кальция, мг СаО/г АМД

-

Более 70

От 30 до 70

Менее 30

4.4 Насыпная плотность ЗШС для легкого бетона должна быть не более 1200 кг/м.

4.4.1 Насыпная плотность шлаковой составляющей в виде щебня из плотного шлака, применяемого для тяжелого бетона, должна быть не менее 1000 кг/м, шлакового песка из плотного шлака - не менее 1100 кг/м.

4.4.2 Щебень и песок из пористого шлака, применяемые для легкого бетона, - в таблице 2.

Таблица 2

Марка по насыпной плотности

Насыпная плотность, кг/м

щебня

песка

500

-

До 500

600

600

Св. 500 до 600

700

700

Св. 600 до 700

800

800

Св. 700 до 800

900

900

Св. 800 до 900

1000

1000

Св. 900 до 1000

-

1100

Св. 1000 до 1100

4.5 Потерю массы при прокаливании () шлаковой составляющей смесей из плотного шлака для получения щебня и песка не нормируют. Потеря массы шлаковой составляющей смесей из пористого шлака не должна превышать значений, приведенных в таблице 3.

Таблица 3

Назначение бетона

шлака, % по массе, не более

каменноугольного

буроугольного

Для железобетонных конструкций

5

3

Для бетонных конструкций

7

3

Примечание - При наличии обоснования о целесообразности применения золошлаковых смесей, полученного на основе проведения исследований коррозионной стойкости арматуры, в шлаковой составляющей смесей допускается потеря массы при прокаливании () выше указанной в таблице 2.

4.5.1 Содержание сернистых и сернокислых соединений в пересчете на в шлаковой составляющей из плотного шлака не должно превышать 3% по массе.

4.5.2 Содержание в шлаковой составляющей из плотного шлака свободного оксида кальция не должно превышать 1%.

4.6 Шлаковая составляющая ЗШС должна обладать стойкостью против силикатного и железистого распадов. Потеря массы при определении стойкости против силикатного и железистого распадов должна быть соответственно не более 8% и 5%.

4.7 По морозостойкости шлак ЗШС, применяемый для получения шлакового щебня, подразделяют на марки: F15, F25, F50, F100, F150, F200. Морозостойкость шлакового щебня характеризуют числом циклов попеременного замораживания и оттаивания, при котором потеря щебня по массе после испытания не превышает значений, установленных в таблице 4.

Таблица 4

Показатель морозостойкости

Марка по морозостойкости

F15

F25

F50

F100

F150

F200

Число циклов замораживания - оттаивания

15

25

50

100

150

200

Потеря массы щебня из плотного шлака, %, не более

10

10

5

5

5

5

Потеря массы щебня из пористого шлака, %, не более

8

8

-

-

-

-

4.8 ЗШС в зависимости от величины суммарной удельной эффективной активности естественных радионуклидов применяют:

- для производства материалов, изделий и конструкций, применяемых для строительства и реконструкции жилых и общественных зданий при до 370 Бк/кг;

- для производства материалов, изделий и конструкций, применяемых для строительства зданий и сооружений, при свыше 370 до 740 Бк/кг.

4.9 ЗШС не должна содержать засоряющих включений.

4.10 Влажность отгружаемой ЗШС должна быть не более 15% по массе.

Примечание - Допускается по согласованию поставщика с потребителем поставка ЗШС с большей влажностью.

5 Приемка

5.1 ЗШС должна быть принята техническим контролем поставщика. Приемку ЗШС проводят на основе данных предварительной оценки ее вида в золоотвале и результатов приемочного контроля.

5.2 Порядок проведения предварительной оценки вида ЗШС, а также число и способ отбора проб, обеспечивающих их представительность, устанавливают в технологической документации, разработанной в установленном порядке, с учетом конкретных условий работы тепловой станции и объема золоотвала.

5.3 При предварительной оценке вида ЗШС определяют соотношение зольной и шлаковой составляющих.

5.4 На основе результатов предварительной оценки вида ЗШС на участки, предназначенные для разработки, поставщиком должны быть составлены карты обследования золоотвала и технические паспорта.

5.5 В техническом паспорте должны быть указаны следующие показатели: наименование станции, виды сжигаемого угля, средние и предельные соотношения зольной и шлаковой составляющих на участке.

5.6 Отгружаемую ЗШС принимают партиями. Партией считают количество смеси одного вида, одновременно отгружаемое одному потребителю в одном железнодорожном составе или одном речном или морском судне. При отгрузке автомобильным транспортом партией считают количество ЗШС одного типа, отгружаемое одному потребителю в течение суток.

5.7 Приемочный контроль осуществляют в соответствии с требованиями настоящего стандарта путем проведения периодических и приемо-сдаточных испытаний.

5.8 При приемо-сдаточных испытаниях каждой партии ЗШС определяют: вид смеси, содержание шлаковой и зольной составляющей, содержание крупного и мелкого заполнителя в шлаковой составляющей, потерю массы при прокаливании () в зольной и шлаковой составляющих, влажность, а также удельную поверхность и остаток на сите N 008 для зольной составляющей ЗШС.

5.9 При периодических испытаниях определяют, не реже, чем:

- один раз в неделю - насыпную плотность смеси и плотность зерен шлаковой составляющей для ЗШС с размером частиц более 0,315 мм; для выбранного участка золоотвала;

- один раз в квартал - стойкость шлака против силикатного и железистого распадов, содержание сернистых и сернокислых соединений, оксидов кальция, магния, натрия и калия шлаковой составляющей смеси, а также равномерность изменения объема зольной составляющей ЗШС, активность зольной составляющей ЗШС как АМД, количество СаО, поглощенного АМД из насыщенного раствора гидроксида кальция, содержание несгоревшего топлива в зольной и шлаковой составляющих ЗШС, для каждого из разрабатываемых участков;

- один раз в год морозостойкость шлака ЗШС и содержание естественных радионуклидов в золошлаковой смеси и содержание вредных примесей в инертной минеральной добавке на основе зольной составляющей и ее реакционную способность - для не менее чем трех участков.

5.10 Потребитель имеет право проводить входной контроль соответствия качества ЗШС требованиям настоящего стандарта, применяя порядок отбора проб в соответствии с ГОСТ 8736 (2.10-2.13). Массу точечной пробы принимают в соответствии с 2.11.

5.11 В случае когда разработку золоотвала проводит специализированная организация потребителя, допускается проводить приемо-сдаточные и периодические испытания только лабораторией предприятия-потребителя.

5.12 Количество поставляемой ЗШС определяют по массе в пересчете на сухое вещество.

5.13 Каждую партию ЗШС сопровождают документом о качестве, в котором указывают:

- обозначение смеси в соответствии;

- наименование и адрес поставщика;

- наименование и адрес потребителя;

- номер и дату выдачи документа;

- номер партии и количество смеси;

- номера транспортных средств и номера накладных;

- результаты приемо-сдаточных и периодических испытаний.

6 Методы испытаний

6.1 Зерновой состав ЗШС определяют по ГОСТ 8735.

Удельную поверхность мелкозернистой ЗШС и остаток на сите N 008 определяют по ГОСТ 310.2.

6.2 Насыпную плотность и плотность зерен шлаковой составляющей ЗШС определяют в сухом состоянии по ГОСТ 9758.

6.3 Химический анализ зольной и шлаковой составляющих и содержание сульфидной серы определяют по ГОСТ 8269.1.

6.4 Равномерность изменения объема мелкозернистой ЗШС и зольной составляющей ЗШС проводят в смеси с портландцементом при соотношении 1:1 (цемент:зола) по ГОСТ 310.3 методом кипячения образцов в воде.

6.5 Стойкость шлакового щебня против силикатного и железистого распадов, морозостойкость определяют по ГОСТ 8269.0, потерю массы при прокаливании в зольной и шлаковой составляющих определяют по ГОСТ 11022.

6.6 Содержание свободного оксида кальция в золе определяют по ГОСТ 23227.

6.7 Морозостойкость шлакового щебня в ЗШС определяют по ГОСТ 8269.0.

6.8 Влажность ЗШС определяют по ГОСТ 8735.

6.9 Суммарную удельную активность естественных радионуклидов определяют гамма-спектрометрическим методом по ГОСТ 30108.

6.10 Определение степени пуццоланической активности зольной составляющей ЗШС как АМД - в соответствии с приложением В.

6.11 Оценку эффективности зольной составляющей ЗШМ проводят в соответствии с приложением Г.

7 Транспортирование и хранение

7.1 ЗШС транспортируют в открытых железнодорожных вагонах, полувагонах, полувагонах с люковой разгрузкой и судах, а также в автомобилях согласно Правилам перевозок грузов соответствующим видом транспорта.

7.2 При транспортировании железнодорожным транспортом должны соблюдаться требования ГОСТ 22235 и "Правил перевозок грузов и технических условий погрузки и крепления грузов", утвержденных Министерством путей сообщения. Вагоны следует загружать с учетом полного использования их грузоподъемности.

7.3 Хранение ЗШС осуществляют в крытых складах, оборудованных дренажной системой.

Примечание - Возможно хранение ЗШС в открытых складах при условии, что это допускается нормативными документами предприятия.

Приложение А
(рекомендуемое)

Область применения золошлаковых смесей

А.1 Рациональные области применения ЗШС, а также техногенного сырья и материалов, которые могут быть получены при предварительной подготовке ЗШС при изготовлении тяжелых, легких, ячеистых бетонов и строительных растворов для сборного и монолитного строительства устанавливают в зависимости от вида ЗШС, ее насыпной плотности, удельной поверхности и химического состава зольной и шлаковой составляющих.

А.2 При приготовлении тяжелых, мелкозернистых и легких бетонов ЗШС следует применять:

- для полной или частичной замены мелкого и крупного заполнителей при условии, что ЗШС содержит в основе шлаковую составляющую плотной или пористой структуры;

- для частичной замены заполнителей и цемента целесообразно применять ЗШС, в составе которой содержание шлака составляет не более 50%;

- для оптимизации составов тяжелых, легких и ячеистых бетонов с целью ресурсосбережения и улучшения технологических свойств бетонной смеси и строительно-технических свойств бетона целесообразно применять зольную составляющую ЗШС при условии оптимизации составов бетонов, определяемых на конкретных материалах.

А.3 При полной замене мелкого и крупного заполнителей в тяжелых бетонах классов до В 12,5 следует применять ЗШС с насыпной плотностью более 13000 кг/м, В15-В25 - с насыпной плотностью более 1400 кг/м, В30-В40 - с насыпной плотностью более 1600 кг/м. Насыпная плотность ЗШС, применяемой в качестве мелкого заполнителя для легкого бетона, должна быть не более 1200 кг/м.

А.4 Для бетонов железобетонных конструкций содержание зольной составляющей в ЗШС должно быть не более 30% по массе и не превышать 50% от массы цемента и зольной составляющей в бетоне, при этом минимальный расход цемента устанавливают по ГОСТ 26633.

А.5 Возможность применения ЗШС для полной замены мелкого и крупного заполнителей в тяжелых и легких бетонах, а также оптимальное количество ее для частичной замены заполнителей устанавливают в результате подбора состава бетона на конкретных материалах при условии обеспечения требуемых показателей, качества бетона в изделиях, конструкциях и коррозионной стойкости арматуры.

А.6 При полной или частичной замене заполнителей ЗШС в целях обеспечения коррозионной стойкости ненапрягаемой арматуры в железобетонных конструкциях, эксплуатируемых в неагрессивных средах, содержание зольной составляющей ЗШС и мелкозернистой смеси в бетоне не должно превышать расход портландцемента, при этом минимальный расход цемента устанавливают по ГОСТ 26633.

А.7 Увеличение содержания мелкозернистой смеси или зольной составляющей ЗШС допускается после проведения специальных исследований по деформативным свойствам бетонов и коррозионной стойкости арматуры, выполненных на конкретных материалах.

А.8 Применение ЗШС в бетонных и железобетонных конструкциях, предназначенных для работы в агрессивных средах, может быть допущено при условии удовлетворения требований, предъявляемых к качеству бетона в зависимости от назначения конструкций и условий их работы по нормативным документам государств, проголосовавших за принятие настоящего стандарта.

________________

В Российской Федерации действует СП 28.13330.2012 "Защита строительных конструкций от коррозии. Актуализированная редакция СНиП 2.03.11-85".

А.9 Применение ЗШС в бетонах для преднапряженных конструкций, армированных высокопрочной, термически упрочненной арматурой, склонной к коррозионному растрескиванию, не допускается без проведения специальных исследований.

А.10 При приготовлении строительных растворов для каменных кладок, отделочных и штукатурных работ следует применять мелкозернистые смеси вида II с плотным и пористым шлаком. ЗШС, применяемые для строительных растворов, должны соответствовать требованиям ГОСТ 28013.

А.11 При приготовлении ячеистых бeтонов следует применять зольную составляющую кислой или основной ЗШС с удельной поверхностью не менее 250 м и полным остатком на сите N 008 не более 20% в качестве кремнеземистого компонента или вяжущего в составе бетонной смеси.

А.12 Техногенное сырье и материалы, получаемые в результате переработки ЗШС, применяют в соответствии с существующими технологиями изготовления тяжелых, легких, мелкозернистых бетонов, строительных растворов, сухих смесей, а также и в качестве компонентов при изготовлении бетонов для покрытий и оснований автомобильных дорог и аэродромов.

А.13 Золу применяют как минеральную добавку или наполнитель при изготовлении тяжелых, легких, ячеистых бетонов, сухих строительных смесей и строительных растворов, а также в составе минеральных вяжущих для приготовления смесей и укрепленных грунтов в дорожном строительстве.

А.14 При изготовлении тяжелых, легких бетонов и строительных растворов золы следует применять в целях экономии цемента, заполнителей, улучшения технологических свойств бетонной и растворной смесей, а также показателей качества бетонов и растворов.

А.15 При изготовлении ячеистых бетонов кислые золы следует применять в качестве кремнеземистого компонента смеси, а также в целях экономии цемента в бетонах неавтоклавного твердения. Основные золы с содержанием оксида кальция СаО не менее 30% следует применять в качестве вяжущего для частичной замены извести или цемента в ячеистых бетонах автоклавного и неавтоклавного твердения. Применение золы с удельной поверхностью менее 250 м/кг допускается после ее предварительного домола.

А.16 Зола для жаростойких бетонов, применяемая в целях экономии цемента и улучшения эксплуатационных свойств бетона, по химическому составу и дисперсности должна соответствовать требованиям ГОСТ 20910.

А.17 В конструкционно-теплоизоляционных бетонах кислую золу следует применять для частичной или полной замены пористых песков и снижения средней плотности бетона.

А.18 Для конструкций подводных и внутренних зон гидротехнических сооружений следует применять кислую золу вида IV.

А.19 Оптимальное содержание золы в тяжелых, легких, ячеистых бетонах, сухих строительных смесях и строительных растворах устанавливают в результате подбора составов на конкретных материалах при условии обеспечения требуемых показателей качества бетона и раствора в изделиях, конструкциях и коррозионной стойкости арматуры.

А.20 Для повышения эффективности применения золы в бетонах применяют химические добавки по ГОСТ 24211.

А.21 В целях обеспечения коррозионной стойкости ненапрягаемой арматуры в железобетонных конструкциях, эксплуатируемых в неагрессивных средах, содержание кислой золы в бетоне не должно превышать по массе расход портландцемента. При этом минимальное содержание цемента устанавливают по ГОСТ 26633 и ГОСТ 31384. Возможность увеличения содержания золы в тяжелых, легких бетонах сборных и монолитных железобетонных конструкций устанавливают после проведения специальных исследований по коррозионной стойкости арматуры, деформативным свойствам и долговечности бетонов, выполненных на конкретных материалах.

А.22 Применение кислой золы в бетонах железобетонных конструкций, в том числе преднапряженных, предназначенных для эксплуатации в агрессивных средах, допускается только при условии соответствия требованиям ГОСТ 31384. Применение золы в бетонах преднапряженных конструкций, армированных термически упрочненной арматурной сталью, склонной к коррозионному растрескиванию, не допускается без проведения специальных исследований.

А.23 Основные золы с содержанием оксида кальция СаО не менее 30% масс при изготовлении строительных растворов и бетонов для сборных и монолитных бетонных и железобетонных изделий и конструкций следует применять в качестве компонента цемента или другого вяжущего. При этом суммарное содержание сернистых и сернокислых соединений в бетоне в пересчете на оксид серы (VI) не должно превышать 3% по массе.

Приложение Б
(справочное)

Типы и виды золошлаковых смесей при различных способах формирования золоотвалов

Б.1 Золошлаковые смеси (золошлаковые отходы) - смесь негорючих веществ в виде золы, шлака, небольшого количества недожога, которые образуются отдельно после сгорания топлива, а затем тем или другим способом совместно или раздельно удаляются со станции в золоотвал.

Б.2 Существующие способы удаления ЗШС в отвал

Б.2.1 Гидрозолошлакоудаление - гидравлическая система, при которой золошлаковая пульпа, представляющая собой смесь шлака, золы и воды, перекачивается с помощью насосов по пульпопроводу или транспортируется самотеком по каналу (лотку, трубе) на золоотвал.

Б.2.2 Механическая система золошлакоудаления

Б.2.2.1 Механическая система, при которой зола удаляется в пределах станции пневмотранспортом в пристанционные силосы, откуда периодически вывозится автотранспортом или другим транспортом потребителям или в отвал (сухой золоотвал).

Б.2.2.2 Шлак при механической системе удаляется гидравлическим способом до пристанционного отстойника, откуда с помощью грейферного крана перегружается на сухогрузный транспорт и вывозится потребителям или в отвал.

Б.2.3 Комбинированная система складирования, включающая оперативный намывной отвал вблизи ТЭС и основной отвал, куда золошлаковый материал доставляется механическим транспортом.

Б.3 Характеристики золоотвала в зависимости от распределения зольных и шлаковых частиц

Б.3.1 В зависимости от способов удаления золошлаковых смесей и технологий формирования золоотвала можно выделить следующие зоны:

Б.3.1.1 Шлаковая зона в золоотвале - зона отложения шлаковых частиц при почти полном отсутствии зольных частиц.

Б.3.1.2 Золошлаковая зона в золоотвале - зона отложения смеси шлаковых и зольных частиц.

Б.3.1.3 Зольная зона в золоотвале - зона отложения зольных частиц.

Б.4 Основные виды золоотвалов

Б.4.1 В зависимости от применяемой системы золошлакоудаления золоотвалы могут быть намывные (гидравлические) отвалы и насыпные (сухие).

Б.4.2 При "сухом" способе золоудаления на ТЭС и при удалении золошлакового материала с помощью механического транспорта применяется складирование золы и шлака в насыпные отвалы.

Б.4.3 Золошлакоотвалы, обеспечивающие выдачу золошлакового материала для использования в экономике государства, проектируют аналогично оперативным отвалам. Золошлакоотвалы включают три секции для последовательного складирования, осушения и отгрузки, каждая из которых оборудуется дренажной системой.

Б.5 Отличительная особенность ЗШС - практически полная совместимость с природными нерудными материалами, применяемыми при производстве бетонов различных видов на фоне значительной неоднородности гранулометрического состава ЗШС, а также гранулометрического и фазово-минералогического состава зольной составляющей в зависимости от вида сжигаемого топлива, режимов работы станции и способа удаления зольной и шлаковой составляющих в золоотвал.

Б.6 Применение ЗШС в естественном виде без дополнительной подготовки может быть осуществлено при производстве бетонов различных видов при условии обеспечения полноценного входного контроля нерудных материалов, а также если в технологии изготовления бетонов существует технологический передел, который позволяет исключить негативное влияние неоднородности состава ЗШС.

Б.7 ЗШС, прошедшие предварительную подготовку, могут быть использованы в бетонах широкой номенклатуры в виде крупного заполнителя и мелкого заполнителя для тяжелых и легких бетонов, строительных растворов сухих строительных смесей, активной минеральной добавки, минерального наполнителя и других модификаторов для бетона, позволяющих обеспечить эффект ресурсосбережения и получение бетонов с требуемыми строительно-техническими свойствами.

Приложение В
(обязательное)

Определение степени пуццоланической активности АМД

В.1 Степень пуццоланической активности АМД определяют по количеству поглощенного СаО из насыщенного раствора гидроокиси кальция одним граммом добавки при нагревании.

В.2 Аппаратура, реактивы, растворы

Весы аналитические лабораторные не ниже 2-го класса точности по ГОСТ 24104.

Электропечь сопротивления лабораторная с регулятором температуры по ГОСТ 28923.

Сосуд из винилпласта по ГОСТ 9639.

Бюретки и пипетка вместимостью 50 см по ГОСТ 29251.

Стакан или стеклянная коническая колба для титрования вместимостью 250 см по ГОСТ 25336.

Плоскодонная колба (круглая или коническая) вместимостью 5000 см по ГОСТ 25336.

Соляная кислота по ГОСТ 3118, раствор 0,05 моль/дм.

Индикатор метиловый оранжевый 0,5%-ный спиртовой раствор по ГОСТ 4919.1.

Натронная известь по ГОСТ 8677.

Гидроокись кальция по ГОСТ 9262, насыщенный раствор.

В.3 Приготовление насыщенного раствора гидроокиси кальция

В плоскодонную колбу вместимостью 5 л помещают 15-20 г гидроокиси кальция, наливают 2,0-2,5 л дистиллированной воды по ГОСТ 6709 и плотно закрывают резиновой пробкой, в которую вставлена трубка с натронной известью. Раствор взбалтывают три раза в сутки.

Через 4 сут колбу вскрывают, отфильтровывают небольшое количество раствора, отбирают пипеткой 50 мл в коническую колбу и титруют раствором соляной кислоты.

Если результат титрования покажет, что раствор имеет концентрацию более 1,15 г СаО на 1 л, приступают к его фильтрованию. В противном случае раствор подвергают дальнейшему насыщению.

В.4 Подготовка пробы и проведение испытания

Для испытания отбирают 100 г пробы АМД и высушивают при температуре (105±5)°С в сушильном шкафу до тех пор, пока разность между результатами двух взвешиваний будет не более 0,1 г.

От приготовленной пробы АМД отвешивают на аналитических весах навеску массой 1 г. Навеску помещают в сосуд из винилпласта или другого инертного к щелочам материала, заливают 100 мл насыщенного раствора гидроокиси кальция. Сосуд плотно закрывают крышкой и выдерживают при температуре от 85°С до 90°С в течение 8 ч. Затем нагрев прекращают, а сосуд с испытуемой пробой оставляют на 15 ч для остывания до температуры (20±2)°С.

Одновременно с испытаниями пробы с АМД проводят нагрев 100 мл насыщенного раствора гидроокиси натрия.

По истечении 15 ч из каждого сосуда отбирают пипеткой 50 мл раствора в коническую колбу или стакан, добавляют три капли метилового оранжевого и титруют раствором соляной кислоты до появления розовой окраски. По результатам испытаний определяют объем соляной кислоты, мл, пошедший на титрование раствора гидроокиси кальция с АМД при температуре от 85°С до 90°С и объем соляной кислоты, мл, пошедший на титрование насыщенного раствора гидроокиси кальция без АМД при температуре от 85°С до 90°С.

Определяют также объем соляной кислоты, мл, пошедший на титрование 50 мл насыщенного раствора гидроокиси кальция при нормальной температуре (20±2)°С.

В.5 Обработка результатов

В.5.1 Количество СаО, поглощенного 1 г АМД из насыщенного раствора гидроокиси кальция, рассчитывают с учетом дифференциальной поправки на изменение растворимости гидроокиси кальция при изменении температуры по формуле

, (В.1)

где 1,4 - титр 0,05 моль/л раствора соляной кислоты по СаО (дифференциальная поправка), мг/мл·г;

- объем соляной кислоты, израсходованный на титрование 50 мл насыщенного раствора гидроокиси кальция без АМД при температуре (20±2)°С, мл;

- объем соляной кислоты, израсходованный на титрование 50 мл анализируемого раствора с АМД при температуре от 85°С до 90°С, мл;

- объем соляной кислоты, израсходованный на титрование 50 мл насыщенного раствора гидроокиси кальция без АМД при температуре от 85°С до 90°С, мл.

В.5.2 За результат испытания принимают среднеарифметическое значение двух результатов определения количества СаО, поглощенного из насыщенного раствора гидроокиси кальция одним граммом АМД, если расхождение результатов двух параллельных определений не превышает 1% среднего арифметического значения.

Приложение Г
(обязательное)

Определение эффективности минеральной добавки

Г.1 Необходимость определения эффективности минеральной добавки устанавливается стандартами или техническими условиями на минеральную добавку конкретных видов.

Г.2 Эффективность минеральной добавки определяют при оптимальной дозировке минеральной добавки по значениям показателей качества, характеризующим эффект действия минеральной добавки, и оценивают по критериям эффективности.

Г.3 Эффективность минеральной добавки оптимальной дозировки определяют путем сравнения технологических свойств бетонных смесей (подвижности, растекаемости, водоотделения, расслаиваемости, воздухововлечения и др.) и/или строительно-технических свойств бетонов (прочности, водонепроницаемости, морозостойкости, усадки, самонапряжения, коррозионной стойкости и др.) с минеральной добавкой и без нее.

Г.4 Эффективность минеральной добавки K рассчитывают по формуле

, (Г.1)

где - показатель технологических свойств бетонных смесей и/или строительно-технических свойств бетонов с минеральной добавкой;

- показатель технологических свойств бетонных смесей и/или строительно-технических свойств бетонов без минеральной добавки.

Г.5 Используемые материалы, составы бетонных смесей, оптимальные дозировки минеральной добавки, условия твердения образцов, критерии эффективности и методы их определения должны быть приведены в стандарте или технических условиях на минеральную добавку конкретного вида.

УДК 666.972.1:006.354

МКС 91.100

Ключевые слова: золошлаковые смеси, золоотвал, минеральная добавка

Электронный текст документа

и сверен по:

, 2019

Другие госты в подкатегории

    ГОСТ 10060-87

    ГОСТ 10060.1-95

    ГОСТ 10060.2-95

    ГОСТ 10060.0-95

    ГОСТ 10140-71

    ГОСТ 10140-2003

    ГОСТ 10178-62

    ГОСТ 10178-76

    ГОСТ 10179-62

    ГОСТ 10060.3-95

    ГОСТ 10179-74

    ГОСТ 10140-80

    ГОСТ 10181.0-81

    ГОСТ 10174-90

    ГОСТ 10178-85

    ГОСТ 10296-79

    ГОСТ 10181.4-81

    ГОСТ 10499-67

    ГОСТ 10499-95

    ГОСТ 10832-64

    ГОСТ 10923-64

    ГОСТ 10832-91

    ГОСТ 10999-64

    ГОСТ 10181.1-81

    ГОСТ 10923-93

    ГОСТ 11052-74

    ГОСТ 1148-41

    ГОСТ 11830-66

    ГОСТ 12394-66

    ГОСТ 125-2018

    ГОСТ 12730.0-2020

    ГОСТ 12730.0-78

    ГОСТ 125-79

    ГОСТ 12730.2-2020

    ГОСТ 12730.3-2020

    ГОСТ 12730.2-78

    ГОСТ 12730.1-2020

    ГОСТ 10181.3-81

    ГОСТ 12730.3-78

    ГОСТ 12730.1-78

    ГОСТ 12803-76

    ГОСТ 12730.4-2020

    ГОСТ 12852.1-77

    ГОСТ 11310-90

    ГОСТ 12852.0-77

    ГОСТ 12852.2-77

    ГОСТ 12852.4-77

    ГОСТ 12852.3-77

    ГОСТ 12852.6-77

    ГОСТ 12852.5-77

    ГОСТ 12865-67

    ГОСТ 13015-2003

    ГОСТ 13450-68

    ГОСТ 10060.4-95

    ГОСТ 13578-2019

    ГОСТ 13580-2021

    ГОСТ 13015-2012

    ГОСТ 13996-84

    ГОСТ 12730.4-78

    ГОСТ 14256-78

    ГОСТ 13087-2018

    ГОСТ 14356-69

    ГОСТ 14295-75

    ГОСТ 14357-69

    ГОСТ 14791-69

    ГОСТ 15588-70

    ГОСТ 1581-2019

    ГОСТ 1581-91

    ГОСТ 15825-80

    ГОСТ 15836-70

    ГОСТ 15836-79

    ГОСТ 1581-96

    ГОСТ 14791-79

    ГОСТ 16136-2003

    ГОСТ 13087-81

    ГОСТ 16136-70

    ГОСТ 16233-77

    ГОСТ 16233-70

    ГОСТ 13996-93

    ГОСТ 16381-77

    ГОСТ 16136-80

    ГОСТ 16557-78

    ГОСТ 15879-70

    ГОСТ 16475-81

    ГОСТ 10180-2012

    ГОСТ 17057-89

    ГОСТ 15588-2014

    ГОСТ 17177-87

    ГОСТ 17624-2021

    ГОСТ 10832-2009

    ГОСТ 10181-2000

    ГОСТ 1779-83

    ГОСТ 12730.5-84

    ГОСТ 18109-72

    ГОСТ 17608-91

    ГОСТ 18124-75

    ГОСТ 10060-2012

    ГОСТ 18124-95

    ГОСТ 18623-82

    ГОСТ 10181-2014

    ГОСТ 10180-90

    ГОСТ 12730.5-2018

    ГОСТ 18659-81

    ГОСТ 13996-2019

    ГОСТ 17623-87

    ГОСТ 18105-2018

    ГОСТ 19570-2018

    ГОСТ 20429-84

    ГОСТ 20430-84

    ГОСТ 19222-2019

    ГОСТ 20916-2021

    ГОСТ 20916-87

    ГОСТ 21880-2011

    ГОСТ 16297-80

    ГОСТ 21880-2022

    ГОСТ 12784-78

    ГОСТ 21880-94

    ГОСТ 21880-86

    ГОСТ 22237-85

    ГОСТ 22023-76

    ГОСТ 22266-76

    ГОСТ 17624-2012

    ГОСТ 2245-43

    ГОСТ 18956-73

    ГОСТ 22266-94

    ГОСТ 18866-93

    ГОСТ 18124-2012

    ГОСТ 22690.0-77

    ГОСТ 22690.1-77

    ГОСТ 22690.2-77

    ГОСТ 22266-2013

    ГОСТ 22690.3-77

    ГОСТ 22690.4-77

    ГОСТ 22783-2022

    ГОСТ 22688-2018

    ГОСТ 17608-2017

    ГОСТ 22950-78

    ГОСТ 23208-2003

    ГОСТ 22950-95

    ГОСТ 23208-2022

    ГОСТ 20910-2019

    ГОСТ 23208-83

    ГОСТ 23307-78

    ГОСТ 22856-89

    ГОСТ 23342-78

    ГОСТ 23464-79

    ГОСТ 17624-87

    ГОСТ 22783-77

    ГОСТ 12801-98

    ГОСТ 23250-78

    ГОСТ 20910-90

    ГОСТ 23233-78

    ГОСТ 19222-84

    ГОСТ 23499-79

    ГОСТ 18105-86

    ГОСТ 23835-79

    ГОСТ 23668-79

    ГОСТ 12801-84

    ГОСТ 24316-2022

    ГОСТ 22263-76

    ГОСТ 23735-2014

    ГОСТ 23342-2012

    ГОСТ 24467-80

    ГОСТ 23735-79

    ГОСТ 23558-94

    ГОСТ 24545-2021

    ГОСТ 24640-91

    ГОСТ 24099-80

    ГОСТ 23732-79

    ГОСТ 24748-2003

    ГОСТ 20054-2016

    ГОСТ 23789-2018

    ГОСТ 24986-81

    ГОСТ 23789-79

    ГОСТ 25094-82

    ГОСТ 24099-2013

    ГОСТ 22688-77

    ГОСТ 24748-81

    ГОСТ 25137-82

    ГОСТ 24816-2014

    ГОСТ 23422-87

    ГОСТ 18105-2010

    ГОСТ 24816-81

    ГОСТ 25214-82

    ГОСТ 25192-82

    ГОСТ 2551-64

    ГОСТ 2551-75

    ГОСТ 25591-83

    ГОСТ 25192-2012

    ГОСТ 25328-82

    ГОСТ 25597-83

    ГОСТ 23732-2011

    ГОСТ 25607-94

    ГОСТ 25246-82

    ГОСТ 25226-96

    ГОСТ 22690-88

    ГОСТ 24316-80

    ГОСТ 25781-2018

    ГОСТ 25820-2021

    ГОСТ 25818-91

    ГОСТ 25877-83

    ГОСТ 24544-2020

    ГОСТ 25880-83

    ГОСТ 25094-2015

    ГОСТ 25592-91

    ГОСТ 25485-2019

    ГОСТ 25820-2000

    ГОСТ 25094-94

    ГОСТ 26193-84

    ГОСТ 26281-84

    ГОСТ 25820-83

    ГОСТ 22690-2015

    ГОСТ 26627-85

    ГОСТ 25898-83

    ГОСТ 26589-85

    ГОСТ 25898-2020

    ГОСТ 26633-85

    ГОСТ 25820-2014

    ГОСТ 2678-65

    ГОСТ 26644-85

    ГОСТ 2678-87

    ГОСТ 25881-83

    ГОСТ 26798.0-85

    ГОСТ 26798.1-85

    ГОСТ 26798.2-85

    ГОСТ 24452-80

    ГОСТ 26871-86

    ГОСТ 2694-67

    ГОСТ 26417-85

    ГОСТ 2697-64

    ГОСТ 2694-78

    ГОСТ 24545-81

    ГОСТ 17177-94

    ГОСТ 2697-83

    ГОСТ 25485-89

    ГОСТ 24544-81

    ГОСТ 26798.2-96

    ГОСТ 24983-81

    ГОСТ 27798-2019

    ГОСТ 25945-98

    ГОСТ 26633-2015

    ГОСТ 26633-2012

    ГОСТ 26798.1-96

    ГОСТ 28013-89

    ГОСТ 2889-67

    ГОСТ 2889-80

    ГОСТ 26134-84

    ГОСТ 29167-2021

    ГОСТ 25818-2017

    ГОСТ 27006-2019

    ГОСТ 30301-95

    ГОСТ 27180-2001

    ГОСТ 30340-95

    ГОСТ 27006-86

    ГОСТ 28570-2019

    ГОСТ 28570-90

    ГОСТ 30444-97

    ГОСТ 30491-97

    ГОСТ 24332-88

    ГОСТ 26134-2016

    ГОСТ 28013-98

    ГОСТ 25898-2012

    ГОСТ 30108-94

    ГОСТ 27180-86

    ГОСТ 27005-86

    ГОСТ 27005-2014

    ГОСТ 30693-2000

    ГОСТ 30778-2001

    ГОСТ 30547-97

    ГОСТ 310.1-76

    ГОСТ 310.3-76

    ГОСТ 30740-2000

    ГОСТ 310.2-76

    ГОСТ 30459-2003

    ГОСТ 310.6-2020

    ГОСТ 30643-2020

    ГОСТ 310.4-81

    ГОСТ 310.6-85

    ГОСТ 31108-2020

    ГОСТ 31189-2003

    ГОСТ 30744-2001

    ГОСТ 31311-2022

    ГОСТ 31189-2015

    ГОСТ 26633-91

    ГОСТ 31309-2005

    ГОСТ 30459-96

    ГОСТ 27180-2019

    ГОСТ 30459-2008

    ГОСТ 31360-2007

    ГОСТ 31356-2007

    ГОСТ 26589-94

    ГОСТ 310.5-88

    ГОСТ 31357-2007

    ГОСТ 31377-2008

    ГОСТ 31386-2008

    ГОСТ 31387-2008

    ГОСТ 31424-2010

    ГОСТ 31359-2007

    ГОСТ 31898-1-2011

    ГОСТ 31108-2003

    ГОСТ 31426-2010

    ГОСТ 31899-1-2011

    ГОСТ 31362-2007

    ГОСТ 31913-2011

    ГОСТ 23499-2009

    ГОСТ 30340-2012

    ГОСТ 31436-2011

    ГОСТ 31430-2011

    ГОСТ 31897-2011

    ГОСТ 32021-2012

    ГОСТ 31108-2016

    ГОСТ 31899-2-2011

    ГОСТ 31915-2011

    ГОСТ 30629-99

    ГОСТ 30515-97

    ГОСТ 31376-2008

    ГОСТ 21216-2014

    ГОСТ 31358-2007

    ГОСТ 29167-91

    ГОСТ 32301-2011

    ГОСТ 32311-2012

    ГОСТ 32315.1-2012

    ГОСТ 32018-2012

    ГОСТ 32316.1-2012

    ГОСТ 30290-94

    ГОСТ 31914-2012

    ГОСТ 30256-94

    ГОСТ 32303-2011

    ГОСТ 30515-2013

    ГОСТ 31358-2019

    ГОСТ 32313-2020

    ГОСТ 32302-2011

    ГОСТ 32317-2012

    ГОСТ 2678-94

    ГОСТ 32026-2012

    ГОСТ 32806-2014

    ГОСТ 32496-2013

    ГОСТ 32495-2013

    ГОСТ 32497-2013

    ГОСТ 33174-2014

    ГОСТ 32805-2014

    ГОСТ 30629-2011

    ГОСТ 33126-2014

    ГОСТ 33742-2016

    ГОСТ 32319-2012

    ГОСТ 33083-2014

    ГОСТ 33793-2021

    ГОСТ 33792-2021

    ГОСТ 33699-2015

    ГОСТ 33928-2016

    ГОСТ 32312-2011

    ГОСТ 34532-2019

    ГОСТ 34669-2020

    ГОСТ 3476-2019

    ГОСТ 32588-2013

    ГОСТ 3476-74

    ГОСТ 34850-2022

    ГОСТ 34804-2021

    ГОСТ 3580-67

    ГОСТ 32614-2012

    ГОСТ 379-69

    ГОСТ 378-76

    ГОСТ 378-60

    ГОСТ 379-79

    ГОСТ 32803-2014

    ГОСТ 32318-2012

    ГОСТ 379-2015

    ГОСТ 3344-83

    ГОСТ 33949-2016

    ГОСТ 32313-2011

    ГОСТ 32493-2013

    ГОСТ 34275-2017

    ГОСТ 379-95

    ГОСТ 34719-2021

    ГОСТ 4.206-83

    ГОСТ 4.202-79

    ГОСТ 4.204-79

    ГОСТ 4.210-79

    ГОСТ 4001-66

    ГОСТ 4.219-81

    ГОСТ 4001-84

    ГОСТ 4.228-83

    ГОСТ 4013-2019

    ГОСТ 4.203-79

    ГОСТ 4640-66

    ГОСТ 4.229-83

    ГОСТ 4795-49

    ГОСТ 4795-53

    ГОСТ 4796-49

    ГОСТ 4797-49

    ГОСТ 4001-2013

    ГОСТ 4799-49

    ГОСТ 4798-49

    ГОСТ 4800-49

    ГОСТ 4801-49

    ГОСТ 4640-93

    ГОСТ 4861-65

    ГОСТ 4.201-79

    ГОСТ 4861-74

    ГОСТ 4640-2011

    ГОСТ 530-54

    ГОСТ 4013-82

    ГОСТ 530-71

    ГОСТ 5382-73

    ГОСТ 530-80

    ГОСТ 5578-2019

    ГОСТ 5578-76

    ГОСТ 4.212-80

    ГОСТ 4.211-80

    ГОСТ 5742-2021

    ГОСТ 5742-61

    ГОСТ 4.230-83

    ГОСТ 5742-76

    ГОСТ 6102-78

    ГОСТ 5724-75

    ГОСТ 32310-2020

    ГОСТ 5578-94

    ГОСТ 4.209-79

    ГОСТ 6102-94

    ГОСТ 4.233-86

    ГОСТ 481-80

    ГОСТ 6133-52

    ГОСТ 6266-81

    ГОСТ 6133-84

    ГОСТ 6139-91

    ГОСТ 6139-2020

    ГОСТ 6316-55

    ГОСТ 31911-2011

    ГОСТ 474-90

    ГОСТ 6328-55

    ГОСТ 648-41

    ГОСТ 6427-52

    ГОСТ 6427-75

    ГОСТ 6666-81

    ГОСТ 6788-62

    ГОСТ 6788-74

    ГОСТ 6927-74

    ГОСТ 6928-54

    ГОСТ 7025-67

    ГОСТ 530-95

    ГОСТ 7030-2021

    ГОСТ 6787-2001

    ГОСТ 7032-2021

    ГОСТ 6139-2003

    ГОСТ 33160-2014

    ГОСТ 6133-99

    ГОСТ 7393-71

    ГОСТ 7415-55

    ГОСТ 7392-2002

    ГОСТ 33929-2016

    ГОСТ 6141-91

    ГОСТ 7473-85

    ГОСТ 7392-85

    ГОСТ 7484-69

    ГОСТ 6266-89

    ГОСТ 7483-58

    ГОСТ 7484-78

    ГОСТ 7415-86

    ГОСТ 7487-55

    ГОСТ 8268-82

    ГОСТ 7394-85

    ГОСТ 7473-94

    ГОСТ 8423-57

    ГОСТ 8424-72

    ГОСТ 33370-2015

    ГОСТ 8426-57

    ГОСТ 8462-62

    ГОСТ 8423-75

    ГОСТ 8426-75

    ГОСТ 6665-91

    ГОСТ 8736-85

    ГОСТ 8269-87

    ГОСТ 8747-58

    ГОСТ 6266-97

    ГОСТ 7473-2010

    ГОСТ 8928-81

    ГОСТ 9128-76

    ГОСТ 9179-2018

    ГОСТ 8267-93

    ГОСТ 929-59

    ГОСТ 6482-2011

    ГОСТ 7025-91

    ГОСТ 9179-77

    ГОСТ 8736-2014

    ГОСТ 8736-93

    ГОСТ 9480-89

    ГОСТ 9573-72

    ГОСТ 5802-86

    ГОСТ 9573-82

    ГОСТ 9573-2012

    ГОСТ 9573-96

    ГОСТ 965-89

    ГОСТ 969-2019

    ГОСТ 8462-85

    ГОСТ 9479-2011

    ГОСТ 969-91

    ГОСТ 9480-2012

    ГОСТ 9479-98

    ГОСТ 9757-90

    ГОСТ 530-2012

    ГОСТ EN 1109-2011

    ГОСТ EN 1107-2-2011

    ГОСТ 961-89

    ГОСТ 31925-2011

    ГОСТ 9128-84

    ГОСТ EN 1107-1-2011

    ГОСТ 32314-2012

    ГОСТ 31912-2011

    ГОСТ 8747-88

    ГОСТ EN 1110-2011

    ГОСТ EN 12088-2011

    ГОСТ EN 12085-2011

    ГОСТ EN 1296-2012

    ГОСТ 9479-84

    ГОСТ EN 12039-2011

    ГОСТ EN 12730-2011

    ГОСТ EN 13416-2011

    ГОСТ EN 1108-2012

    ГОСТ EN 12431-2011

    ГОСТ EN 12091-2011

    ГОСТ EN 13897-2012

    ГОСТ EN 12430-2011

    ГОСТ EN 13470-2011

    ГОСТ EN 12090-2011

    ГОСТ EN 13074-1-2013

    ГОСТ EN 1602-2011

    ГОСТ 530-2007

    ГОСТ EN 13467-2011

    ГОСТ EN 1848-1-2011

    ГОСТ EN 13471-2011

    ГОСТ EN 1607-2011

    ГОСТ EN 12089-2011

    ГОСТ EN 1850-2-2011

    ГОСТ EN 1850-1-2011

    ГОСТ EN 1608-2011

    ГОСТ EN 1605-2011

    ГОСТ EN 1928-2011

    ГОСТ EN 1849-1-2011

    ГОСТ 7392-2014

    ГОСТ EN 495-5-2012

    ГОСТ EN 12087-2011

    ГОСТ EN 1849-2-2011

    ГОСТ ISO 10077-1-2021

    ГОСТ EN 825-2011

    ГОСТ Р 51032-97

    ГОСТ EN 13703-2013

    ГОСТ EN 823-2011

    ГОСТ EN 14707-2011

    ГОСТ EN 1609-2011

    ГОСТ EN 822-2011

    ГОСТ Р 51829-2022

    ГОСТ Р 52805-2007

    ГОСТ Р 52953-2008

    ГОСТ 31924-2011

    ГОСТ EN 824-2011

    ГОСТ Р 52908-2008

    ГОСТ Р 53227-2008

    ГОСТ Р 53223-2008

    ГОСТ EN 1604-2011

    ГОСТ Р 50332.1-2019

    ГОСТ EN 12086-2011

    ГОСТ Р 53455-2009

    ГОСТ Р 51263-99

    ГОСТ EN 29053-2011

    ГОСТ Р 54304-2011

    ГОСТ Р 54303-2011

    ГОСТ Р 53223-2016

    ГОСТ Р 53338-2009

    ГОСТ Р 51829-2001

    ГОСТ EN 826-2011

    ГОСТ Р 51795-2019

    ГОСТ Р 55224-2020

    ГОСТ Р 54963-2012

    ГОСТ Р 54194-2010

    ГОСТ Р 55224-2012

    ГОСТ 8735-88

    ГОСТ Р 54854-2011

    ГОСТ 8269.1-97

    ГОСТ Р 53231-2008

    ГОСТ Р 53377-2009

    ГОСТ Р 51263-2012

    ГОСТ Р 55818-2013

    ГОСТ Р 55818-2018

    ГОСТ Р 53378-2009

    ГОСТ Р 56207-2014

    ГОСТ Р 56582-2015

    ГОСТ Р 56583-2015

    ГОСТ Р 56507-2015

    ГОСТ Р 56196-2014

    ГОСТ Р 56584-2015

    ГОСТ Р 56586-2015

    ГОСТ Р 56587-2015

    ГОСТ Р 56387-2018

    ГОСТ Р 56588-2015

    ГОСТ EN 1606-2011

    ГОСТ Р 55936-2018

    ГОСТ Р 55936-2014

    ГОСТ Р 56593-2015

    ГОСТ Р 56704-2022

    ГОСТ Р 56387-2015

    ГОСТ Р 51795-2001

    ГОСТ Р 56704-2015

    ГОСТ Р 54748-2011

    ГОСТ Р 56775-2015

    ГОСТ Р 56686-2015

    ГОСТ Р 56504-2015

    ГОСТ Р 56911-2016

    ГОСТ Р 56688-2015

    ГОСТ Р 57293-2016

    ГОСТ Р 56727-2015

    ГОСТ Р 56703-2015

    ГОСТ Р 56910-2016

    ГОСТ Р 57294-2016

    ГОСТ Р 57336-2016

    ГОСТ Р 57334-2016

    ГОСТ Р 57141-2016

    ГОСТ Р 57335-2016

    ГОСТ Р 57333-2016

    ГОСТ Р 57337-2016

    ГОСТ Р 57338-2016

    ГОСТ Р 57349-2016

    ГОСТ Р 57345-2016

    ГОСТ Р 56828.18-2017

    ГОСТ Р 57348-2016

    ГОСТ 8269.0-97

    ГОСТ Р 57347-2016

    ГОСТ 32794-2014

    ГОСТ Р 57418-2020

    ГОСТ Р 57416-2017

    ГОСТ Р 56732-2015

    ГОСТ Р 57808-2017

    ГОСТ Р 57809-2017

    ГОСТ Р 57810-2017

    ГОСТ Р 57811-2017

    ГОСТ Р 57813-2017

    ГОСТ Р 57812-2017

    ГОСТ Р 57814-2017

    ГОСТ Р 57815-2017

    ГОСТ Р 57816-2017

    ГОСТ Р 57819-2017

    ГОСТ Р 57957-2017

    ГОСТ Р 57833-2017

    ГОСТ Р 57789-2017

    ГОСТ Р 57414-2017

    ГОСТ Р 58026-2017

    ГОСТ Р 58002-2017

    ГОСТ Р 56505-2015

    ГОСТ Р 58153-2018

    ГОСТ Р 57796-2017

    ГОСТ Р 58275-2018

    ГОСТ Р 58271-2018

    ГОСТ Р 58277-2018

    ГОСТ Р 58278-2018

    ГОСТ Р 58279-2018

    ГОСТ Р 58063-2018

    ГОСТ Р 58272-2018

    ГОСТ Р 57418-2017

    ГОСТ Р 53376-2009

    ГОСТ Р 57415-2017

    ГОСТ Р 58766-2019

    ГОСТ Р 58767-2019

    ГОСТ Р 58739-2019

    ГОСТ Р 58527-2019

    ГОСТ Р 56178-2014

    ГОСТ Р 57255-2016

    ГОСТ Р 58892-2020

    ГОСТ 9758-86

    ГОСТ Р 58796-2020

    ГОСТ Р 58893-2020

    ГОСТ Р 58276-2018

    ГОСТ Р 58937-2020

    ГОСТ Р 58795-2020

    ГОСТ Р 58894-2020

    ГОСТ Р 59095-2020

    ГОСТ Р 58953-2020

    ГОСТ Р 59097-2020

    ГОСТ Р 58913-2020

    ГОСТ Р 59150-2020

    ГОСТ Р 58896-2020

    ГОСТ Р 59500-2021

    ГОСТ Р 59096-2020

    ГОСТ Р 59122-2020

    ГОСТ Р 58429-2019

    ГОСТ Р 58964-2020

    ГОСТ Р 58257-2018

    ГОСТ Р 59555-2021

    ГОСТ Р 59574-2021

    ГОСТ Р 59561-2021

    ГОСТ Р 59613-2021

    ГОСТ Р 59599-2021

    ГОСТ Р 59634-2021

    ГОСТ Р 56729-2015

    ГОСТ Р 59646-2021

    ГОСТ Р 59658-2021

    ГОСТ Р 58211-2018

    ГОСТ Р 59647-2021

    ГОСТ Р 59714-2021

    ГОСТ Р 59674-2021

    ГОСТ Р 59686-2021

    ГОСТ Р 59659-2021

    ГОСТ Р 59923-2021

    ГОСТ Р 59744-2021

    ГОСТ Р 59715-2022

    ГОСТ Р 59538-2021

    ГОСТ Р 59945-2021

    ГОСТ Р 59940-2021

    ГОСТ Р 59944-2021

    ГОСТ Р 59957-2021

    ГОСТ Р 59946-2021

    ГОСТ Р 70034-2022

    ГОСТ Р 70052-2022

    ГОСТ Р 57417-2017

    ГОСТ Р 70086-2022

    ГОСТ Р 70051-2022

    ГОСТ Р 70075-2022

    ГОСТ Р 70062-2022

    ГОСТ Р 70090-2022

    ГОСТ Р 70222-2022

    ГОСТ Р 70309-2022

    ГОСТ Р 70007-2022

    ГОСТ Р 70307-2022

    ГОСТ Р 58956-2020

    ГОСТ Р 70341-2022

    ГОСТ Р 70344-2022

    ГОСТ Р 70342-2022

    ГОСТ Р 70258-2022

    ГОСТ Р 70343-2022

    ГОСТ Р 58430-2019

    ГОСТ Р 70261-2022

    ГОСТ Р 58405-2019

    ГОСТ Р 59523-2021

    ГОСТ Р 59536-2021

    ГОСТ Р ЕН 1109-2009

    ГОСТ Р ЕН 1110-2008

    ГОСТ Р ЕН 1107-1-2008

    ГОСТ Р ЕН 1296-2011

    ГОСТ Р ЕН 12085-2008

    ГОСТ Р ЕН 13416-2008

    ГОСТ Р ЕН 12088-2010

    ГОСТ Р ЕН 13897-2011

    ГОСТ Р ЕН 12039-2008

    ГОСТ Р ЕН 12091-2010

    ГОСТ Р ЕН 12430-2008

    ГОСТ Р ЕН 12431-2008

    ГОСТ Р ЕН 1602-2008

    ГОСТ Р 58955-2020

    ГОСТ Р ЕН 1607-2008

    ГОСТ Р ЕН 1605-2010

    ГОСТ Р ЕН 1848-1-2008

    ГОСТ Р ЕН 1850-2-2008

    ГОСТ Р ЕН 1850-1-2008

    ГОСТ Р ЕН 1108-2011

    ГОСТ Р ЕН 12090-2008

    ГОСТ Р ЕН 1608-2008

    ГОСТ Р ЕН 1928-2009

    ГОСТ Р ЕН 823-2008

    ГОСТ Р ЕН 1849-1-2009

    ГОСТ Р ИСО 10456-2021

    ГОСТ Р ЕН 12089-2008

    ГОСТ Р ИСО 7345-2021

    ГОСТ Р ЕН 825-2008

    ГОСТ Р ЕН 1609-2008

    ГОСТ Р ЕН 822-2008

    ГОСТ Р ЕН 1603-2014

    ГОСТ Р ЕН 12087-2008

    ГОСТ Р ЕН 824-2008

    ГОСТ Р ЕН 1604-2008

    ГОСТ Р 56590-2016

    ГОСТ Р 56148-2014

    ГОСТ Р ЕН 29053-2008

    ГОСТ Р 59535-2021

    ГОСТ Р ЕН 12086-2008

    ГОСТ Р ЕН 826-2008

    ГОСТ Р 54469-2011

    ГОСТ Р 57546-2017

    ГОСТ Р 56590-2015

    ГОСТ 9758-2012

    ГОСТ Р 54467-2011

    ГОСТ Р ЕН 1606-2010

    ГОСТ 5382-91