ГОСТ Р 57418-2020

ОбозначениеГОСТ Р 57418-2020
НаименованиеМатериалы и изделия минераловатные теплоизоляционные. Метод оценки устойчивости характеристик теплопроводности к воздействию знакопеременных температур
СтатусДействует
Дата введения01.01.2022
Дата отмены-
Заменен на-
Код ОКС91.100.60
Текст ГОСТа

ФЕДЕРАЛЬНОЕ АГЕНТСТВО

ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ


НАЦИОНАЛЬНЫЙ

ГОСТР 57418— 2020


СТАНДАРТ РОССИЙСКОЙ

ФЕДЕРАЦИИ

МАТЕРИАЛЫ И ИЗДЕЛИЯ МИНЕРАЛОВАТНЫЕ ТЕПЛОИЗОЛЯЦИОННЫЕ

Метод оценки устойчивости характеристик теплопроводности к воздействию знакопеременных температур

Издание официальное

Стшдцлшфоя* 20»

Предисловие

  • 1 РАЗРАБОТАН рабочей группой ТК 144 «Строительные материалы и изделия»

  • 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 144 «Строительные материалы и изделия»

  • 3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 12 ноября 2020 г. № 1064-ст

  • 4 ВЗАМЕН ГОСТ Р 57418-2017

Пробила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N9 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регупироеанию и метрологии в сети Интернет (www.gost.ru)

© Стацдартинформ. оформление. 2020

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ГОСТ Р 57418—2020

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

МАТЕРИАЛЫ И ИЗДЕЛИЯ МИНЕРАЛОВАТНЫЕ ТЕПЛОИЗОЛЯЦИОННЫЕ

Метод оценки устойчивости характеристик теплопроводности к воздействию знакопеременных температур

Mineral wool heat-insulating materials and products.

Method for assessing the stability of thermal conductivity characteristics to the effect of alternating temperatures

Дата введения — 2022—01—01

  • 1 Область применения

Настоящий стандарт устанавливает метод экспериментального определения зависимости теплопроводности минераловатных теплоизоляционных материалов и изделий (далее — изделий) от знакопеременных температур при заданной влажности.

Метод, описанный в настоящем стандарте, позволяет прогнозировать изменение теплопроводности в процессе эксплуатации изделий в ограждающих конструкциях зданий и сооружений, не подверженных внешнему механическому воздействию (например, в каркасных конструкциях).

8 настоящем стандарте не рассматриваются изменения каких-либо иных характеристик изделий (пожарно-технических, санитарно-химических, прочностных и пр.), которые могут возникнуть в процессе их реальной эксплуатации в конкретных конструкциях.

  • 2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие документы:

ГОСТ 112 Термометры метеорологические стеклянные. Технические условия

ГОСТ 166 (ИСО 3599—76) Штангенциркули. Технические условия

ГОСТ 427 Линейки измерительные металлические. Технические условия

ГОСТ 7076 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме

ГОСТ 10354 Пленка полиэтиленовая. Технические условия

ГОСТ 17177 Материалы и изделия строительные теплоизоляционные. Методы испытаний

ГОСТ 18321 Статистический контроль качества. Методы случайного отбора выборок штучной продукции

ГОСТ 31924 (EN 12939:2000) Материалы и изделия строительные большой толщины с высоким и средним термическим сопротивлением. Методы определения термического сопротивления на приборах с горячей охранной зоной и оснащенных тепломером

ГОСТ 31925 (EN 12667:2001) Материалы и изделия строительные с высоким и средним термическим сопротивлением. Методы определения термического сопротивления на приборах с горячей охранной зоной и оснащенных тепломером

ГОСТ EN 12085 Изделия теплоизоляционные, применяемые в строительстве. Методы определения линейных размеров образцов, предназначенных для испытаний

ГОСТ Р 53228 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

СП 50.13330.2012 «СНиП 23*02—2003 Тепловая защита зданий»

Издание официальное

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов (сводов правил) в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годок! утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.

  • 3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

  • 3.1 влажность материала по массе: Отношение массы влаги, содержащейся в парообразной, жидкой и твердой фазах в порах материала, к массе сухого материала, выраженное в процентах.

  • 3.2 замораживание: Процесс термического воздействия низких температур, который состоит в охлаждении образца испытуемого материала и его выдержке при заданной отрицательной температуре до полного завершения фазового перехода воды от жидкого состояния к твердому.

  • 3.3 оттаивание: Процесс термического воздействия температур, который заключается в выдержке после замораживания образца испытуемого материала при положительной температуре до полного завершения фазового перехода воды от твердого состояния к жидкому.

  • 3.4 цикл замораживания—оттаивания: Совокупность одного периода замораживания и следующего за ним периода оттаивания образцов.

  • 3.5 устойчивость характеристик теплопроводности: Способность изделия сохранять свои теплоизоляционные свойства на уровне, заявленном его изготовителем при выпуске изделия в свободное обращение.

Примечание — Значение устойчивости характеристик теплопроводности определяют количеством циклов замораживания—оттаивания материала в условиях заданной влажности.

  • 4 Сущность метода

    • 4.1 Сущность метода заключается в том. что образец испытуемого изделия подвергают циклическим климатическим воздействиям, имитирующим условия его эксплуатации в ограждающих конструкциях. и определяют изменения теплофиэических характеристик изделия (теплопроводности в сухом состоянии и термического сопротивления). По результатам измерений геплофизических характеристик оценивают устойчивость характеристик теплопроводности после воздействия до 100 циклов включительно.

    • 4.2 Циклические климатические воздействия на испытуемые образцы заключаются в увлажнении образцов до предельно допустимого значения влажности изделия в строительной конструкции и в последующем периодическом замораживании и оттаивании образцов.

Образцы материалов испытывают через 25.50 и 100 циклов замораживания и оттаивания.

  • 5 Порядок отбора образцов для испытаний

    • 5.1 Испытания проводят на образцах изделий, изготовленных в соответствии с требованиями нормативных документов или технической документации предприятия-изготовителя на эти изделия.

    • 5.2 Отбор образцов проводят методом случайной выборки по ГОСТ 18321. Для определения устойчивости характеристик теплопроводности изделия отбирают три образца для определения исходных характеристик — теплопроводности и термического сопротивления изделия (контрольные образцы) и по три образца для определения характеристик материала после климатических воздействий (опытные образцы), эквивалентных 25. 50 и 100 циклам. При необходимости количество циклов может быть увеличено с шагом, кратным 50 циклам, при этом на каждые новые 50 циклов необходимо отбирать по три образца.

    • 5.3 Отбор образцов для испытаний оформляют актом отбора, в котором приводят:

  • - дату отбора образцов;

  • • данные маркировки материала (изделия);

  • • место отбора образцов;

  • - условия хранения образцов.

  • 6 Испытательное оборудование и средства контроля

Для проведения испытаний применяют следующие оборудование и средства измерений:

  • - камеры климатические, которые позволяют задавать и поддерживать температуру воздуха от минус 20 вС до плюс 20 *С с точностью ±2 *С;

  • • прибор для определения теплопроводности по ГОСТ 31925. ГОСТ 31924 или ГОСТ 7076:

  • • электрошкаф лабораторный сушильный;

  • • весы по ГОСТ Р 53228;

■ линейки измерительные металлические по ГОСТ 427;

  • - штангенциркули по ГОСТ 166;

  • • термометры по ГОСТ 112;

  • • установка для принудительного увлажнения материалов.

Принципиальная схема установки для принудительного увлажнения образцов водяным паром приведена в приложении А. Допускается применение других, отличных по конструкции от описанной в приложении А. установок и методов для принудительного увлажнения образцов.

  • 7 Подготовка к испытаниям

    • 7.1 Устойчивость характеристик теплопроводности определяют на образцах в виде прямоугольного параллелепипеда, лицевые грани которого имеют форму квадрата с длиной стороны не менее 250 мм. Толщина образца может составлять от 20 до 50 мм. Разность между максимальным и минимальным значениями толщины не должна превышать 5 мм. Лицевые грани образца должны быть плоскими. Линейные размеры образцов измеряют по ГОСТ EN 12085 или ГОСТ 17177. Отклонения по ширине и длине образца не должны превышать ±3.0 мм.

    • 7.2 Контрольные и опытные образцы высушивают в лабораторном сушильном электрошкафу до постоянной массы при температуре (105 ± 5) °C. если в нормативном документе или технических условиях на изделие конкретного вида не указана другая температура, исключающая возможность деструкции материала. Образец считают высушенным до постоянной массы, если результат очередного измерения массы после высушивания в течение не менее 0.5 ч отличается от результата предыдущего взвешивания не более чем на 0.1 %.

    • 7.3 Определяют массу каждого образца в сухом состоянии т0. в килограммах.

    • 7.4 Опытные образцы изделий увлажняют. Увлажнение опытных образцов проводят на установке, принципиальная схема которой показана на рисунке А.1 приложения А, или на отличной от описанной конструкции установке. Образец для испытания 3 располагают в горизонтальном положении на воздухонепроницаемой основе 1 между нижней опорной сеткой 2 и верхней прижимной сеткой 4. Устраивают воздухонепроницаемый короб 5. на который устанавливают воздушный насос 7. В нижней части воздухонепроницаемой основы 1 устанавливают электропароувлажнитель 6, который включают после включения воздушного насоса 7.

Продолжительность процедуры увлажнения — от 5 до 15 мин. Процедуру увлажнения повторяют, переворачивая образец.

Прим ема н и е — Альтернативным способом увлажнения является введение воды в образец изделия с помощью шприца. Рассчитывают необходимый для введения объем воды для достижения массы образца, близкой к требуемой (экспериментальной). Данный объем вводят в образец по 0.1—0.25 см3 е различные точки образца по всем граням с различной глубиной проникновения иглы шприца.

  • 7.5 Увлажнение продолжают до достижения массы образца не меиее требуемой (экспериментальной) массы глэ, кг. вычисляемой по формуле

m3 = (1 + O.Olw,) ■ т0. (1)

где iv, — экспериментальная влажность образца, определяемая по формуле (2). %;

т0 — масса сухого образца, кг.

  • 7.6 После достижения требуемого (экспериментального) значения влажности (требуемой массы) образец заворачивают в полиэтиленовую водонепроницаемую пленку толщиной не менее 0.02 мм по ГОСТ 10354. запаивают по всем граням и помещают в лабораторный сушильный электрошкаф на 24 ч для равномерного распределения влаги внутри образца. В электрошкафу поддерживают температуру 65 ’С. Во время выдержки в лабораторном сушильном элетрошкафу образец необходимо переворачивать каждые 4 ч с грани на грань (лицевую либо торцевую). Затем образец выдерживают 24 ч при комнатной температуре: 12 ч на одной лицевой грани. 12 ч — на другой.

  • 7.7 После выдерживания опытных образцов в лабораторном сушильном электрошкафу по 7.6 проводят контрольное взвешивание с учетом массы полиэтиленовой пленки.

  • 7.8 Требуемую экспериментальную влажность образца и*э. %. вычисляют по формуле

IV, = (w6 + Дж). (2)

где iv& — расчетная влажность, соответствующая условиям эксплуатации Б согласно приложению Т СП 50.13330.2012 [для всех типов минераловатных изоляционных материалов (из каменного и стеклянного волокна) tv6 = 5 % по массе];

Дит — допустимое приращение влажности в материале. %.

Для проведения испытаний по определению устойчивости характеристик теплопроводности изделий указанное значение экспериментальной влажности следует увеличить на значение предельно допустимого приращения влажности в изделии Aw - 3 % (согласно таблице 10 СП 50.13330.2012). Опытные образцы изделий до проведения циклов замораживания и оттаивания должны быть увлажнены до значения экспериментальной влажности с точностью ±1 %.

  • 8 Проведение испытаний

    • 8.1 Для всех образцов (контрольных и опытных) определяют теплопроводность в сухом состоянии и термическое сопротивление по ГОСТ 7076 или ГОСТ 31925. или ГОСТ 31924. Полученные значения являются контрольными результатами.

    • 8.2 После увлажнения в соответствии с 7.4—7.6 опытные образцы размещают равномерно по всему рабочему объему климатической камеры с промежутками между ними таким образом, чтобы обеспечить движение воздушных потоков и исключить образование застойных зон.

    • 8.3 Температуру замораживания образцов устанавливают минус (20 ± 2) *С. Продолжительность замораживания образцов составляет не менее 6 ч.

Примечание — Указанная температура замораживания обоснована экспериментальным фактом фазового перехода воды от жидкого состояния к твердому е лорах всех типов строительных материалов при температуре ниже минус 15 'С.

  • 8.4 Оттаивание образцов осуществляют при температуре воздуха плюс (20 ± 2) °C. Продолжительность оттаивания составляет не менее 6 ч.

  • 8.5 Через 25, 50. 100 циклов замораживания и оттаивания опытные образцы высушивают в соответствии с 7.2 и определяют теплопроводность и термическое сопротивление в соответствии с 8.1.

  • 8.6 Результаты испытаний фиксируют в протоколе (см. приложение Б).

  • 9 Обработка результатов испытаний

    • 9.1 За результат каждого испытания (контрольного, после 25. 50 и 100 циклов) по определению теплопроводности и термического сопротивления принимают среднеарифметическое значение результатов каждого испытания (контрольного, после 25. 50 и 100 циклов) трех образцов.

    • 9.2 Средние знамения теплопроводности в сухом состоянии (см. таблицу Б.1 приложения Б) после контрольного испытания, после 25.50 и 100 циклов наносят на график зависимости теплопроводности А. Вт/(м - К), от числа циклов N. Средние значения термического сопротивления (см. таблицу Б.1 приложения Б) после контрольного испытания, после 25.50 и 100 циклов наносят на график зависимости термического сопротивления R, (м2 КуВт. от числа циклов N.

    • 9.3 Построенные графики аппроксимируют линейной функцией:

A(W) = ♦ k.N. (3)

R(N) = Ro * *2W- Ю

где — теплопроводность материала в сухом состоянии после контрольных испытаний (до проведения циклов замораживания и оттаивания). Вт/(м - К):

ку и fcj — угловые коэффициенты аппроксимирующих прямых;

/?0 — термическое сопротивление образца после контрольных испытаний (до проведения циклов замораживания и оттаивания), (м2 ■ КуВт.

  • 9.4 Угловые коэффициенты аппроксимирующих прямых к, и к? определяют методами регрессионного анализа.

Прим еча нив — Угловые коэффициенты к( и/или к2 могут быть равны нулю в случав, если в ходе испытаний теплопроводность {термическое сопротивление) материала (образца) не менялась после проведения циклов замораживания и оттаивания.

  • 10 Оценка результатов испытаний

10.1 Определяют расчетную устойчивость характеристик теплопроводности Np. которая характеризуется количеством циклов замораживания—оттаивания изделия, после которых теплопроводность увеличивается не более чем на 5 % (WpJ) относительно результатов контрольных испытаний, а термическое сопротивление уменьшается не более чем на 10 % (Wp2). по формулам:

=

Чг = -^

Np = min(Wp1.Wp2).

/Ур округляют до целого числа.

/Ур1 или Wp2 не определяют, если к, = 0 или к2 = 0.

  • 10.2 Устойчивость характеристик теплопроводности N3 минераловатного изоляционного изделия принимают равной расчетной устойчивости характеристик теплопроводности Np. если в процессе испытаний теплопроводность изделия увеличилась более чем на 5 % или термическое сопротивление

    уменьшилось более чем на 10 % относительно результатов контрольных испытаний, т. е. если N >


    W,


Г W S /Ур| или ку ~ 0. |wswp2 илик2 = о: W0W>Mp

(8)


Приложение А (рекомендуемое)

Схема экспериментальной установки для принудительного увлажнения образцов водяным паром

А.1 Принципиальная схема установки для принудительного увлажнения водяным паром образцов приведена на рисунке А.1.

Установка включает в себя:

  • • воздухонепроницаемую основу 1 квадратного сечения, полую внутри, с опорными полками в верхней части;

  • • опорную нижнюю металлическую сетку 2 из проволоки диаметром 1 мм с ячейкой размерами 20 * 20 мм. которую устанавливают на опорных полках основы и на которой располагается образец для испытания 3:

  • • прижимную верхнюю металлическую сетку 4 из проволоки диаметром 1 мм сячейкой размерами 20 » 20 мм. которую помешают на образец для испытаний 3 в целях его удержания на поверхности основы и предотвращения образования больших щелей между образцом 3 и основой 1;

  • • воздухонепроницаемый короб 5 в виде параллелепипеда, переходящего в цилиндр, который устанавливают на опорных полках основы f;

  • • электролароувлажнитель б для образования пароводяной смеси без изменения температуры испаряющейся воды, который располагается внутри основы 1;

  • • воздушный насос 7. устанавливаемый в верхней части короба 5. который создает разрежение над увлажняемым образцом для испытаний 3. осуществляя удаление отработанной паровоздушной смеси из установки;

  • - резиновые уплотнители 8. устанавливаемые по периметру прижима короба 5 к основе ?;

  • - расставленные по периметру подставки 9 под основу 1 для образования воздушных щелей (зазоров), через которые осуществляется подсос воздуха при работе установки.

I — вомухонепроницаеыая основа: 2 — нижняя опорная сотка. 3 — образец для испытаний. 4 — верхняя прижимная сетка: 5 — воздухонепроницаемый короб, б — электролароуелажнитеяь. 7 — воздушный насос: в — резиновые уплотнители.

9 — подставки под основание: 10 ■— паровоздушная смесь: 11 — отработанная паровоздушная смесь

Рисунок А. 1 — Схема экспериментальной установки для принудительного увлажнения образцов водяным паром

Приложение Б (рекомендуемое)

Форма протокола измерений теплофизических характеристик материалов при оценке устойчивости характеристик теплопроводности

Таблица Б.1

Номер образца

Контрольные испытания

Испытания после 25 циклов замораживания и опаивания

Испытания после SO циклов замораживания и оттаивания

Испытания после 100 циклов замораживания и оттаивания

Вт«ы К)

я0. (м2 - КУВт

8v(m К)

«0-(м2 КуВт

Ч>-Вт/(м К)

«0-(ы2 КрВт

Вт/(ы К)

яв. <м2 К)<8т

1

2

3

Среднее значение

4

5

6

Среднее значение

7

8

9

Среднее значение

10

11

12

Среднее значение

Примечание — Следует заполнять светлые клетки протокола.

УДК 669.001.4:006.354

ОКС 91.100.60


Ключевые слова: минераловатные теплоизоляционные изделия, устойчивость характеристик теплопроводности. влажность по массе, замораживание, оттаивание, теплопроводность, термическое сопротивление

Редактор Н.В. Таланова Технический редактор И.Е. Черепкова Корректор ЕЛ Дульнева Компьютерная верстка М.В. Лебедевой

Сдано в набор 19.11.2020. Подписано а почать 14.12.2020. Формат 60*84%. Гарнитура Ариал. Усп. печ. п. 1,40. Уч.-им. л. 1.18.

Подготовлено на основе электронной версии, предоставленной разработчиком стандарта

Создано о единичном исполнении по ФГУП кСТАНДАРТИНФОРМ* . 117418 Москва. Нахимовский пр-т. д. 31. к. 2. mfo@goslmfo.ro

Другие госты в подкатегории

    ГОСТ 10060-87

    ГОСТ 10060.1-95

    ГОСТ 10060.2-95

    ГОСТ 10060.0-95

    ГОСТ 10140-71

    ГОСТ 10140-2003

    ГОСТ 10178-62

    ГОСТ 10178-76

    ГОСТ 10179-62

    ГОСТ 10060.3-95

    ГОСТ 10179-74

    ГОСТ 10140-80

    ГОСТ 10181.0-81

    ГОСТ 10174-90

    ГОСТ 10178-85

    ГОСТ 10296-79

    ГОСТ 10181.4-81

    ГОСТ 10499-67

    ГОСТ 10499-95

    ГОСТ 10832-64

    ГОСТ 10923-64

    ГОСТ 10832-91

    ГОСТ 10999-64

    ГОСТ 10181.1-81

    ГОСТ 10923-93

    ГОСТ 11052-74

    ГОСТ 1148-41

    ГОСТ 11830-66

    ГОСТ 12394-66

    ГОСТ 125-2018

    ГОСТ 12730.0-2020

    ГОСТ 12730.0-78

    ГОСТ 125-79

    ГОСТ 12730.2-2020

    ГОСТ 12730.3-2020

    ГОСТ 12730.2-78

    ГОСТ 12730.1-2020

    ГОСТ 10181.3-81

    ГОСТ 12730.3-78

    ГОСТ 12730.1-78

    ГОСТ 12803-76

    ГОСТ 12730.4-2020

    ГОСТ 12852.1-77

    ГОСТ 11310-90

    ГОСТ 12852.0-77

    ГОСТ 12852.2-77

    ГОСТ 12852.4-77

    ГОСТ 12852.3-77

    ГОСТ 12852.6-77

    ГОСТ 12852.5-77

    ГОСТ 12865-67

    ГОСТ 13015-2003

    ГОСТ 13450-68

    ГОСТ 10060.4-95

    ГОСТ 13578-2019

    ГОСТ 13580-2021

    ГОСТ 13015-2012

    ГОСТ 13996-84

    ГОСТ 12730.4-78

    ГОСТ 14256-78

    ГОСТ 13087-2018

    ГОСТ 14356-69

    ГОСТ 14295-75

    ГОСТ 14357-69

    ГОСТ 14791-69

    ГОСТ 15588-70

    ГОСТ 1581-2019

    ГОСТ 1581-91

    ГОСТ 15825-80

    ГОСТ 15836-70

    ГОСТ 15836-79

    ГОСТ 1581-96

    ГОСТ 14791-79

    ГОСТ 16136-2003

    ГОСТ 13087-81

    ГОСТ 16136-70

    ГОСТ 16233-77

    ГОСТ 16233-70

    ГОСТ 13996-93

    ГОСТ 16381-77

    ГОСТ 16136-80

    ГОСТ 16557-78

    ГОСТ 15879-70

    ГОСТ 16475-81

    ГОСТ 10180-2012

    ГОСТ 17057-89

    ГОСТ 15588-2014

    ГОСТ 17177-87

    ГОСТ 17624-2021

    ГОСТ 10832-2009

    ГОСТ 10181-2000

    ГОСТ 1779-83

    ГОСТ 12730.5-84

    ГОСТ 18109-72

    ГОСТ 17608-91

    ГОСТ 18124-75

    ГОСТ 10060-2012

    ГОСТ 18124-95

    ГОСТ 18623-82

    ГОСТ 10181-2014

    ГОСТ 10180-90

    ГОСТ 12730.5-2018

    ГОСТ 18659-81

    ГОСТ 13996-2019

    ГОСТ 17623-87

    ГОСТ 18105-2018

    ГОСТ 19570-2018

    ГОСТ 20429-84

    ГОСТ 20430-84

    ГОСТ 19222-2019

    ГОСТ 20916-2021

    ГОСТ 20916-87

    ГОСТ 21880-2011

    ГОСТ 16297-80

    ГОСТ 21880-2022

    ГОСТ 12784-78

    ГОСТ 21880-94

    ГОСТ 21880-86

    ГОСТ 22237-85

    ГОСТ 22023-76

    ГОСТ 22266-76

    ГОСТ 17624-2012

    ГОСТ 2245-43

    ГОСТ 18956-73

    ГОСТ 22266-94

    ГОСТ 18866-93

    ГОСТ 18124-2012

    ГОСТ 22690.0-77

    ГОСТ 22690.1-77

    ГОСТ 22690.2-77

    ГОСТ 22266-2013

    ГОСТ 22690.3-77

    ГОСТ 22690.4-77

    ГОСТ 22783-2022

    ГОСТ 22688-2018

    ГОСТ 17608-2017

    ГОСТ 22950-78

    ГОСТ 23208-2003

    ГОСТ 22950-95

    ГОСТ 23208-2022

    ГОСТ 20910-2019

    ГОСТ 23208-83

    ГОСТ 23307-78

    ГОСТ 22856-89

    ГОСТ 23342-78

    ГОСТ 23464-79

    ГОСТ 17624-87

    ГОСТ 22783-77

    ГОСТ 12801-98

    ГОСТ 23250-78

    ГОСТ 20910-90

    ГОСТ 23233-78

    ГОСТ 19222-84

    ГОСТ 23499-79

    ГОСТ 18105-86

    ГОСТ 23835-79

    ГОСТ 23668-79

    ГОСТ 12801-84

    ГОСТ 24316-2022

    ГОСТ 22263-76

    ГОСТ 23735-2014

    ГОСТ 23342-2012

    ГОСТ 24467-80

    ГОСТ 23735-79

    ГОСТ 23558-94

    ГОСТ 24545-2021

    ГОСТ 24640-91

    ГОСТ 24099-80

    ГОСТ 23732-79

    ГОСТ 24748-2003

    ГОСТ 20054-2016

    ГОСТ 23789-2018

    ГОСТ 24986-81

    ГОСТ 23789-79

    ГОСТ 25094-82

    ГОСТ 24099-2013

    ГОСТ 22688-77

    ГОСТ 24748-81

    ГОСТ 25137-82

    ГОСТ 24816-2014

    ГОСТ 23422-87

    ГОСТ 18105-2010

    ГОСТ 24816-81

    ГОСТ 25214-82

    ГОСТ 25192-82

    ГОСТ 2551-64

    ГОСТ 2551-75

    ГОСТ 25591-83

    ГОСТ 25192-2012

    ГОСТ 25328-82

    ГОСТ 25597-83

    ГОСТ 23732-2011

    ГОСТ 25607-94

    ГОСТ 25246-82

    ГОСТ 25226-96

    ГОСТ 22690-88

    ГОСТ 24316-80

    ГОСТ 25781-2018

    ГОСТ 25820-2021

    ГОСТ 25818-91

    ГОСТ 25877-83

    ГОСТ 24544-2020

    ГОСТ 25880-83

    ГОСТ 25094-2015

    ГОСТ 25592-91

    ГОСТ 25485-2019

    ГОСТ 25820-2000

    ГОСТ 25592-2019

    ГОСТ 25094-94

    ГОСТ 26193-84

    ГОСТ 26281-84

    ГОСТ 25820-83

    ГОСТ 22690-2015

    ГОСТ 26627-85

    ГОСТ 25898-83

    ГОСТ 26589-85

    ГОСТ 25898-2020

    ГОСТ 26633-85

    ГОСТ 25820-2014

    ГОСТ 2678-65

    ГОСТ 26644-85

    ГОСТ 2678-87

    ГОСТ 25881-83

    ГОСТ 26798.0-85

    ГОСТ 26798.1-85

    ГОСТ 26798.2-85

    ГОСТ 24452-80

    ГОСТ 26871-86

    ГОСТ 2694-67

    ГОСТ 26417-85

    ГОСТ 2697-64

    ГОСТ 2694-78

    ГОСТ 24545-81

    ГОСТ 17177-94

    ГОСТ 2697-83

    ГОСТ 25485-89

    ГОСТ 24544-81

    ГОСТ 26798.2-96

    ГОСТ 24983-81

    ГОСТ 27798-2019

    ГОСТ 25945-98

    ГОСТ 26633-2015

    ГОСТ 26633-2012

    ГОСТ 26798.1-96

    ГОСТ 28013-89

    ГОСТ 2889-67

    ГОСТ 2889-80

    ГОСТ 26134-84

    ГОСТ 29167-2021

    ГОСТ 25818-2017

    ГОСТ 27006-2019

    ГОСТ 30301-95

    ГОСТ 27180-2001

    ГОСТ 30340-95

    ГОСТ 27006-86

    ГОСТ 28570-2019

    ГОСТ 28570-90

    ГОСТ 30444-97

    ГОСТ 30491-97

    ГОСТ 24332-88

    ГОСТ 26134-2016

    ГОСТ 28013-98

    ГОСТ 25898-2012

    ГОСТ 30108-94

    ГОСТ 27180-86

    ГОСТ 27005-86

    ГОСТ 27005-2014

    ГОСТ 30693-2000

    ГОСТ 30778-2001

    ГОСТ 30547-97

    ГОСТ 310.1-76

    ГОСТ 310.3-76

    ГОСТ 30740-2000

    ГОСТ 310.2-76

    ГОСТ 30459-2003

    ГОСТ 310.6-2020

    ГОСТ 30643-2020

    ГОСТ 310.4-81

    ГОСТ 310.6-85

    ГОСТ 31108-2020

    ГОСТ 31189-2003

    ГОСТ 30744-2001

    ГОСТ 31311-2022

    ГОСТ 31189-2015

    ГОСТ 26633-91

    ГОСТ 31309-2005

    ГОСТ 30459-96

    ГОСТ 27180-2019

    ГОСТ 30459-2008

    ГОСТ 31360-2007

    ГОСТ 31356-2007

    ГОСТ 26589-94

    ГОСТ 310.5-88

    ГОСТ 31357-2007

    ГОСТ 31377-2008

    ГОСТ 31386-2008

    ГОСТ 31387-2008

    ГОСТ 31424-2010

    ГОСТ 31359-2007

    ГОСТ 31898-1-2011

    ГОСТ 31108-2003

    ГОСТ 31426-2010

    ГОСТ 31899-1-2011

    ГОСТ 31362-2007

    ГОСТ 31913-2011

    ГОСТ 23499-2009

    ГОСТ 30340-2012

    ГОСТ 31436-2011

    ГОСТ 31430-2011

    ГОСТ 31897-2011

    ГОСТ 32021-2012

    ГОСТ 31108-2016

    ГОСТ 31899-2-2011

    ГОСТ 31915-2011

    ГОСТ 30629-99

    ГОСТ 30515-97

    ГОСТ 31376-2008

    ГОСТ 21216-2014

    ГОСТ 31358-2007

    ГОСТ 29167-91

    ГОСТ 32301-2011

    ГОСТ 32311-2012

    ГОСТ 32315.1-2012

    ГОСТ 32018-2012

    ГОСТ 32316.1-2012

    ГОСТ 30290-94

    ГОСТ 31914-2012

    ГОСТ 30256-94

    ГОСТ 32303-2011

    ГОСТ 30515-2013

    ГОСТ 31358-2019

    ГОСТ 32313-2020

    ГОСТ 32302-2011

    ГОСТ 32317-2012

    ГОСТ 2678-94

    ГОСТ 32026-2012

    ГОСТ 32806-2014

    ГОСТ 32496-2013

    ГОСТ 32495-2013

    ГОСТ 32497-2013

    ГОСТ 33174-2014

    ГОСТ 32805-2014

    ГОСТ 30629-2011

    ГОСТ 33126-2014

    ГОСТ 33742-2016

    ГОСТ 32319-2012

    ГОСТ 33083-2014

    ГОСТ 33793-2021

    ГОСТ 33792-2021

    ГОСТ 33699-2015

    ГОСТ 33928-2016

    ГОСТ 32312-2011

    ГОСТ 34532-2019

    ГОСТ 34669-2020

    ГОСТ 3476-2019

    ГОСТ 32588-2013

    ГОСТ 3476-74

    ГОСТ 34850-2022

    ГОСТ 34804-2021

    ГОСТ 3580-67

    ГОСТ 32614-2012

    ГОСТ 379-69

    ГОСТ 378-76

    ГОСТ 378-60

    ГОСТ 379-79

    ГОСТ 32803-2014

    ГОСТ 32318-2012

    ГОСТ 379-2015

    ГОСТ 3344-83

    ГОСТ 33949-2016

    ГОСТ 32313-2011

    ГОСТ 32493-2013

    ГОСТ 34275-2017

    ГОСТ 379-95

    ГОСТ 34719-2021

    ГОСТ 4.206-83

    ГОСТ 4.202-79

    ГОСТ 4.204-79

    ГОСТ 4.210-79

    ГОСТ 4001-66

    ГОСТ 4.219-81

    ГОСТ 4001-84

    ГОСТ 4.228-83

    ГОСТ 4013-2019

    ГОСТ 4.203-79

    ГОСТ 4640-66

    ГОСТ 4.229-83

    ГОСТ 4795-49

    ГОСТ 4795-53

    ГОСТ 4796-49

    ГОСТ 4797-49

    ГОСТ 4001-2013

    ГОСТ 4799-49

    ГОСТ 4798-49

    ГОСТ 4800-49

    ГОСТ 4801-49

    ГОСТ 4640-93

    ГОСТ 4861-65

    ГОСТ 4.201-79

    ГОСТ 4861-74

    ГОСТ 4640-2011

    ГОСТ 530-54

    ГОСТ 4013-82

    ГОСТ 530-71

    ГОСТ 5382-73

    ГОСТ 530-80

    ГОСТ 5578-2019

    ГОСТ 5578-76

    ГОСТ 4.212-80

    ГОСТ 4.211-80

    ГОСТ 5742-2021

    ГОСТ 5742-61

    ГОСТ 4.230-83

    ГОСТ 5742-76

    ГОСТ 6102-78

    ГОСТ 5724-75

    ГОСТ 32310-2020

    ГОСТ 5578-94

    ГОСТ 4.209-79

    ГОСТ 6102-94

    ГОСТ 4.233-86

    ГОСТ 481-80

    ГОСТ 6133-52

    ГОСТ 6266-81

    ГОСТ 6133-84

    ГОСТ 6139-91

    ГОСТ 6139-2020

    ГОСТ 6316-55

    ГОСТ 31911-2011

    ГОСТ 474-90

    ГОСТ 6328-55

    ГОСТ 648-41

    ГОСТ 6427-52

    ГОСТ 6427-75

    ГОСТ 6666-81

    ГОСТ 6788-62

    ГОСТ 6788-74

    ГОСТ 6927-74

    ГОСТ 6928-54

    ГОСТ 7025-67

    ГОСТ 530-95

    ГОСТ 7030-2021

    ГОСТ 6787-2001

    ГОСТ 7032-2021

    ГОСТ 6139-2003

    ГОСТ 33160-2014

    ГОСТ 6133-99

    ГОСТ 7393-71

    ГОСТ 7415-55

    ГОСТ 7392-2002

    ГОСТ 33929-2016

    ГОСТ 6141-91

    ГОСТ 7473-85

    ГОСТ 7392-85

    ГОСТ 7484-69

    ГОСТ 6266-89

    ГОСТ 7483-58

    ГОСТ 7484-78

    ГОСТ 7415-86

    ГОСТ 7487-55

    ГОСТ 8268-82

    ГОСТ 7394-85

    ГОСТ 7473-94

    ГОСТ 8423-57

    ГОСТ 8424-72

    ГОСТ 33370-2015

    ГОСТ 8426-57

    ГОСТ 8462-62

    ГОСТ 8423-75

    ГОСТ 8426-75

    ГОСТ 6665-91

    ГОСТ 8736-85

    ГОСТ 8269-87

    ГОСТ 8747-58

    ГОСТ 6266-97

    ГОСТ 7473-2010

    ГОСТ 8928-81

    ГОСТ 9128-76

    ГОСТ 9179-2018

    ГОСТ 8267-93

    ГОСТ 929-59

    ГОСТ 6482-2011

    ГОСТ 7025-91

    ГОСТ 9179-77

    ГОСТ 8736-2014

    ГОСТ 8736-93

    ГОСТ 9480-89

    ГОСТ 9573-72

    ГОСТ 5802-86

    ГОСТ 9573-82

    ГОСТ 9573-2012

    ГОСТ 9573-96

    ГОСТ 965-89

    ГОСТ 969-2019

    ГОСТ 8462-85

    ГОСТ 9479-2011

    ГОСТ 969-91

    ГОСТ 9480-2012

    ГОСТ 9479-98

    ГОСТ 9757-90

    ГОСТ 530-2012

    ГОСТ EN 1109-2011

    ГОСТ EN 1107-2-2011

    ГОСТ 961-89

    ГОСТ 31925-2011

    ГОСТ 9128-84

    ГОСТ EN 1107-1-2011

    ГОСТ 32314-2012

    ГОСТ 31912-2011

    ГОСТ 8747-88

    ГОСТ EN 1110-2011

    ГОСТ EN 12088-2011

    ГОСТ EN 12085-2011

    ГОСТ EN 1296-2012

    ГОСТ 9479-84

    ГОСТ EN 12039-2011

    ГОСТ EN 12730-2011

    ГОСТ EN 13416-2011

    ГОСТ EN 1108-2012

    ГОСТ EN 12431-2011

    ГОСТ EN 12091-2011

    ГОСТ EN 13897-2012

    ГОСТ EN 12430-2011

    ГОСТ EN 13470-2011

    ГОСТ EN 12090-2011

    ГОСТ EN 13074-1-2013

    ГОСТ EN 1602-2011

    ГОСТ 530-2007

    ГОСТ EN 13467-2011

    ГОСТ EN 1848-1-2011

    ГОСТ EN 13471-2011

    ГОСТ EN 1607-2011

    ГОСТ EN 12089-2011

    ГОСТ EN 1850-2-2011

    ГОСТ EN 1850-1-2011

    ГОСТ EN 1608-2011

    ГОСТ EN 1605-2011

    ГОСТ EN 1928-2011

    ГОСТ EN 1849-1-2011

    ГОСТ 7392-2014

    ГОСТ EN 495-5-2012

    ГОСТ EN 12087-2011

    ГОСТ EN 1849-2-2011

    ГОСТ ISO 10077-1-2021

    ГОСТ EN 825-2011

    ГОСТ Р 51032-97

    ГОСТ EN 13703-2013

    ГОСТ EN 823-2011

    ГОСТ EN 14707-2011

    ГОСТ EN 1609-2011

    ГОСТ EN 822-2011

    ГОСТ Р 51829-2022

    ГОСТ Р 52805-2007

    ГОСТ Р 52953-2008

    ГОСТ 31924-2011

    ГОСТ EN 824-2011

    ГОСТ Р 52908-2008

    ГОСТ Р 53227-2008

    ГОСТ Р 53223-2008

    ГОСТ EN 1604-2011

    ГОСТ Р 50332.1-2019

    ГОСТ EN 12086-2011

    ГОСТ Р 53455-2009

    ГОСТ Р 51263-99

    ГОСТ EN 29053-2011

    ГОСТ Р 54304-2011

    ГОСТ Р 54303-2011

    ГОСТ Р 53223-2016

    ГОСТ Р 53338-2009

    ГОСТ Р 51829-2001

    ГОСТ EN 826-2011

    ГОСТ Р 51795-2019

    ГОСТ Р 55224-2020

    ГОСТ Р 54963-2012

    ГОСТ Р 54194-2010

    ГОСТ Р 55224-2012

    ГОСТ 8735-88

    ГОСТ Р 54854-2011

    ГОСТ 8269.1-97

    ГОСТ Р 53231-2008

    ГОСТ Р 53377-2009

    ГОСТ Р 51263-2012

    ГОСТ Р 55818-2013

    ГОСТ Р 55818-2018

    ГОСТ Р 53378-2009

    ГОСТ Р 56207-2014

    ГОСТ Р 56582-2015

    ГОСТ Р 56583-2015

    ГОСТ Р 56507-2015

    ГОСТ Р 56196-2014

    ГОСТ Р 56584-2015

    ГОСТ Р 56586-2015

    ГОСТ Р 56587-2015

    ГОСТ Р 56387-2018

    ГОСТ Р 56588-2015

    ГОСТ EN 1606-2011

    ГОСТ Р 55936-2018

    ГОСТ Р 55936-2014

    ГОСТ Р 56593-2015

    ГОСТ Р 56704-2022

    ГОСТ Р 56387-2015

    ГОСТ Р 51795-2001

    ГОСТ Р 56704-2015

    ГОСТ Р 54748-2011

    ГОСТ Р 56775-2015

    ГОСТ Р 56686-2015

    ГОСТ Р 56504-2015

    ГОСТ Р 56911-2016

    ГОСТ Р 56688-2015

    ГОСТ Р 57293-2016

    ГОСТ Р 56727-2015

    ГОСТ Р 56703-2015

    ГОСТ Р 56910-2016

    ГОСТ Р 57294-2016

    ГОСТ Р 57336-2016

    ГОСТ Р 57334-2016

    ГОСТ Р 57141-2016

    ГОСТ Р 57335-2016

    ГОСТ Р 57333-2016

    ГОСТ Р 57337-2016

    ГОСТ Р 57338-2016

    ГОСТ Р 57349-2016

    ГОСТ Р 57345-2016

    ГОСТ Р 56828.18-2017

    ГОСТ Р 57348-2016

    ГОСТ 8269.0-97

    ГОСТ Р 57347-2016

    ГОСТ 32794-2014

    ГОСТ Р 57416-2017

    ГОСТ Р 56732-2015

    ГОСТ Р 57808-2017

    ГОСТ Р 57809-2017

    ГОСТ Р 57810-2017

    ГОСТ Р 57811-2017

    ГОСТ Р 57813-2017

    ГОСТ Р 57812-2017

    ГОСТ Р 57814-2017

    ГОСТ Р 57815-2017

    ГОСТ Р 57816-2017

    ГОСТ Р 57819-2017

    ГОСТ Р 57957-2017

    ГОСТ Р 57833-2017

    ГОСТ Р 57789-2017

    ГОСТ Р 57414-2017

    ГОСТ Р 58026-2017

    ГОСТ Р 58002-2017

    ГОСТ Р 56505-2015

    ГОСТ Р 58153-2018

    ГОСТ Р 57796-2017

    ГОСТ Р 58275-2018

    ГОСТ Р 58271-2018

    ГОСТ Р 58277-2018

    ГОСТ Р 58278-2018

    ГОСТ Р 58279-2018

    ГОСТ Р 58063-2018

    ГОСТ Р 58272-2018

    ГОСТ Р 57418-2017

    ГОСТ Р 53376-2009

    ГОСТ Р 57415-2017

    ГОСТ Р 58766-2019

    ГОСТ Р 58767-2019

    ГОСТ Р 58739-2019

    ГОСТ Р 58527-2019

    ГОСТ Р 56178-2014

    ГОСТ Р 57255-2016

    ГОСТ Р 58892-2020

    ГОСТ 9758-86

    ГОСТ Р 58796-2020

    ГОСТ Р 58893-2020

    ГОСТ Р 58276-2018

    ГОСТ Р 58937-2020

    ГОСТ Р 58795-2020

    ГОСТ Р 58894-2020

    ГОСТ Р 59095-2020

    ГОСТ Р 58953-2020

    ГОСТ Р 59097-2020

    ГОСТ Р 58913-2020

    ГОСТ Р 59150-2020

    ГОСТ Р 58896-2020

    ГОСТ Р 59500-2021

    ГОСТ Р 59096-2020

    ГОСТ Р 59122-2020

    ГОСТ Р 58429-2019

    ГОСТ Р 58964-2020

    ГОСТ Р 58257-2018

    ГОСТ Р 59555-2021

    ГОСТ Р 59574-2021

    ГОСТ Р 59561-2021

    ГОСТ Р 59613-2021

    ГОСТ Р 59599-2021

    ГОСТ Р 59634-2021

    ГОСТ Р 56729-2015

    ГОСТ Р 59646-2021

    ГОСТ Р 59658-2021

    ГОСТ Р 58211-2018

    ГОСТ Р 59647-2021

    ГОСТ Р 59714-2021

    ГОСТ Р 59674-2021

    ГОСТ Р 59686-2021

    ГОСТ Р 59659-2021

    ГОСТ Р 59923-2021

    ГОСТ Р 59744-2021

    ГОСТ Р 59715-2022

    ГОСТ Р 59538-2021

    ГОСТ Р 59945-2021

    ГОСТ Р 59940-2021

    ГОСТ Р 59944-2021

    ГОСТ Р 59957-2021

    ГОСТ Р 59946-2021

    ГОСТ Р 70034-2022

    ГОСТ Р 70052-2022

    ГОСТ Р 57417-2017

    ГОСТ Р 70086-2022

    ГОСТ Р 70051-2022

    ГОСТ Р 70075-2022

    ГОСТ Р 70062-2022

    ГОСТ Р 70090-2022

    ГОСТ Р 70222-2022

    ГОСТ Р 70309-2022

    ГОСТ Р 70007-2022

    ГОСТ Р 70307-2022

    ГОСТ Р 58956-2020

    ГОСТ Р 70341-2022

    ГОСТ Р 70344-2022

    ГОСТ Р 70342-2022

    ГОСТ Р 70258-2022

    ГОСТ Р 70343-2022

    ГОСТ Р 58430-2019

    ГОСТ Р 70261-2022

    ГОСТ Р 58405-2019

    ГОСТ Р 59523-2021

    ГОСТ Р 59536-2021

    ГОСТ Р ЕН 1109-2009

    ГОСТ Р ЕН 1110-2008

    ГОСТ Р ЕН 1107-1-2008

    ГОСТ Р ЕН 1296-2011

    ГОСТ Р ЕН 12085-2008

    ГОСТ Р ЕН 13416-2008

    ГОСТ Р ЕН 12088-2010

    ГОСТ Р ЕН 13897-2011

    ГОСТ Р ЕН 12039-2008

    ГОСТ Р ЕН 12091-2010

    ГОСТ Р ЕН 12430-2008

    ГОСТ Р ЕН 12431-2008

    ГОСТ Р ЕН 1602-2008

    ГОСТ Р 58955-2020

    ГОСТ Р ЕН 1607-2008

    ГОСТ Р ЕН 1605-2010

    ГОСТ Р ЕН 1848-1-2008

    ГОСТ Р ЕН 1850-2-2008

    ГОСТ Р ЕН 1850-1-2008

    ГОСТ Р ЕН 1108-2011

    ГОСТ Р ЕН 12090-2008

    ГОСТ Р ЕН 1608-2008

    ГОСТ Р ЕН 1928-2009

    ГОСТ Р ЕН 823-2008

    ГОСТ Р ЕН 1849-1-2009

    ГОСТ Р ИСО 10456-2021

    ГОСТ Р ЕН 12089-2008

    ГОСТ Р ИСО 7345-2021

    ГОСТ Р ЕН 825-2008

    ГОСТ Р ЕН 1609-2008

    ГОСТ Р ЕН 822-2008

    ГОСТ Р ЕН 1603-2014

    ГОСТ Р ЕН 12087-2008

    ГОСТ Р ЕН 824-2008

    ГОСТ Р ЕН 1604-2008

    ГОСТ Р 56590-2016

    ГОСТ Р 56148-2014

    ГОСТ Р ЕН 29053-2008

    ГОСТ Р 59535-2021

    ГОСТ Р ЕН 12086-2008

    ГОСТ Р ЕН 826-2008

    ГОСТ Р 54469-2011

    ГОСТ Р 57546-2017

    ГОСТ Р 56590-2015

    ГОСТ 9758-2012

    ГОСТ Р 54467-2011

    ГОСТ Р ЕН 1606-2010

    ГОСТ 5382-91