ГОСТ Р 8.644-2008

ОбозначениеГОСТ Р 8.644-2008
НаименованиеГосударственная система обеспечения единства измерений. Меры рельефные нанометрового диапазона с трапецеидальным профилем элементов. Методика калибровки
СтатусДействует
Дата введения06.01.2009
Дата отмены-
Заменен на-
Код ОКС17.040.01
Текст ГОСТа


ГОСТ Р 8.644-2008

Группа Т88.1



НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Государственная система обеспечения единства измерений

МЕРЫ РЕЛЬЕФНЫЕ НАНОМЕТРОВОГО ДИАПАЗОНА С ТРАПЕЦЕИДАЛЬНЫМ ПРОФИЛЕМ ЭЛЕМЕНТОВ

Методика калибровки

State system for ensuring the uniformity of measurements. Nanometer range relief measures with trapezoidal profile of elements. Methods for calibration

ОКС 17.040.01

Дата введения 2009-06-01



Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 РАЗРАБОТАН Открытым акционерным обществом "Научно-исследовательский центр по изучению свойств поверхности и вакуума", Федеральным государственным учреждением "Российский научный центр "Курчатовский институт" и Государственным образовательным учреждением высшего профессионального образования "Московский физико-технический институт (государственный университет)"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 441 "Нанотехнологии и наноматериалы"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 26 августа 2008 г. N 186-ст

4 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

Настоящий стандарт распространяется на рельефные меры нанометрового диапазона с трапецеидальным профилем элементов (далее - рельефные меры), линейные размеры и материал для изготовления которых соответствуют требованиям ГОСТ Р 8.628. Рельефные меры применяют для измерения линейных размеров в диапазоне от 10 до 10 м.

Настоящий стандарт устанавливает методику калибровки рельефных мер.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ Р 8.628-2007 Государственная система обеспечения единства измерений. Меры рельефные нанометрового диапазона из монокристаллического кремния. Требования к геометрическим формам, линейным размерам и выбору материала для изготовления

ГОСТ Р ИСО 14644-2-2001 Чистые помещения и связанные с ними контролируемые среды. Часть 2. Требования к контролю и мониторингу для подтверждения постоянного соответствия ГОСТ Р ИСО 14644-1*

______________

* ГОСТ Р ИСО 14644-1-2000 отменен; с 1 апреля 2004 г. действует ГОСТ ИСО 14644-1-2002.

ГОСТ Р ИСО 14644-5-2005 Чистые помещения и связанные с ними контролируемые среды. Часть 5. Эксплуатация

ГОСТ 12.1.040-83 Система стандартов безопасности труда. Лазерная безопасность. Общие положения

ГОСТ 12.2.061-81 Система стандартов безопасности труда. Оборудование производственное. Общие требования безопасности к рабочим местам

ГОСТ ИСО 14644-1-2002 Чистые помещения и связанные с ними контролируемые среды. Часть 1. Классификация чистоты воздуха

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по РМГ 29 [1], а также следующие термины с соответствующими определениями.

3.1 рельеф поверхности твердого тела (рельеф поверхности): Поверхность твердого тела, отклонения которой от идеальной плоскости обусловлены естественными причинами или специальной обработкой.

3.2 элемент рельефа поверхности (элемент рельефа): Пространственно локализованная часть рельефа поверхности.

3.3 элемент рельефа в форме выступа (выступ): Элемент рельефа, расположенный выше прилегающих к нему областей.

3.4 геометрическая форма элемента рельефа: Геометрическая фигура, наиболее адекватно аппроксимирующая форму минимального по площади сечения элемента рельефа.

Пример - Трапецеидальный выступ, представляющий собой элемент рельефа поверхности, геометрическая форма минимального по площади сечения которого наиболее адекватно аппроксимируется трапецией.

3.5 мера физической величины (мера величины): Средство измерений, предназначенное для воспроизведения и (или) хранения физической величины одного или нескольких заданных размеров, значения которых выражены в установленных единицах и известны с необходимой точностью [1].

3.6 рельефная мера: Средство измерений длины, представляющее собой твердый объект, линейные размеры элементов рельефа которого установлены с необходимой точностью.

Примечание - Рельефная мера может быть изготовлена с помощью средств микро- и нанотехнологии или представляет собой специально обработанный объект естественного происхождения.

3.7 рельефная мера нанометрового диапазона: Мера, содержащая элементы рельефа, линейный размер хотя бы одного из которых менее 10 м.

3.8 рельефная мера нанометрового диапазона с трапецеидальным профилем элементов (рельефная мера): Рельефная мера нанометрового диапазона, геометрическая форма элементов рельефа которой представляет собой трапецию.

3.9 пиксель: Наименьший дискретный элемент изображения, получаемый в результате математической обработки информативного сигнала.

3.10 сканирование элемента исследуемого объекта (сканирование): Перемещение зонда микроскопа над выбранным элементом рельефа поверхности исследуемого объекта (или перемещение исследуемого объекта под зондом) с одновременной регистрацией информативного сигнала.

3.11 изображение на экране монитора микроскопа (видеоизображение): Изображение на экране монитора микроскопа в виде матрицы из строк по пикселей в каждой, яркость которых прямо пропорциональна значению сигнала соответствующей точки матрицы.

Примечание - Яркость пикселя определяется силой света, излучаемой им в направлении глаза наблюдателя.

3.12 видеопрофиль информативного сигнала (видеопрофиль): Графическая зависимость значения информативного сигнала, поступающего с детектора микроскопа, от номера пикселя в данной строке видеоизображения.

3.13 масштабный коэффициент видеоизображения микроскопа (масштабный коэффициент): Отношение длины исследуемого элемента на объекте измерений к числу пикселей этого элемента на видеоизображении.

Примечание - Масштабный коэффициент определяют для каждого микроскопа.

3.14 Z-сканер сканирующего зондового атомно-силового микроскопа (Z-сканер): Устройство сканирующего зондового атомно-силового микроскопа, позволяющее в процессе сканирования перемещать зонд над поверхностью исследуемого объекта (или перемещать исследуемый объект под зондом) в вертикальном направлении.

3.15 неопределенность измерений (неопределенность): Параметр, связанный с результатом измерений и характеризующий рассеяние значений, которые можно приписать измеряемой величине [1].

3.16 стандартная неопределенность: Неопределенность результата измерений, выраженная в виде среднеквадратического отклонения.

3.17 суммарная стандартная неопределенность: Стандартная неопределенность результата измерений, полученного путем использования значений других величин, равная положительному квадратному корню суммы членов, являющихся дисперсиями или ковариациями этих величин, взвешенными в соответствии с тем, как результат измерений изменяется при изменении этих величин.

4 Технические требования

4.1 Требования к неопределенностям измерений параметров, определяемых в процессе калибровки

4.1.1 Суммарная стандартная неопределенность измерения высоты выступа калибруемого элемента рельефа должна быть не более 2 нм.

4.1.2 Суммарная стандартная неопределенность измерения ширины верхнего основания выступа калибруемого элемента рельефа должна быть не более 2 нм.

4.1.3 Суммарная стандартная неопределенность измерения ширины нижнего основания выступа калибруемого элемента рельефа должна быть не более 2 нм.

4.1.4 Суммарная стандартная неопределенность измерения проекции наклонной стенки на плоскость нижнего основания выступа калибруемого элемента рельефа должна быть не более 1 нм.

4.2 Требования к средствам калибровки и вспомогательному оборудованию

4.2.1 Калибровку рельефной меры проводят с помощью:

- сканирующего зондового атомно-силового микроскопа;

- двух лазерных двухлучевых интерферометров с источником излучения - гелий-неоновым лазером, длина волны которого стабилизирована по линии насыщенного поглощения в молекулярном йоде и определена с относительной погрешностью не более 3·10. В комплект поставки каждого лазерного интерферометра должны входить два зеркала, предназначенные для формирования опорного и информативного лучей, по фазовому сдвигу между которыми определяют перемещение калибруемого элемента рельефа в процессе его сканирования атомно-силовым микроскопом. Абсолютная погрешность определения фазового сдвига - не более 0,002 рад.

4.2.2 В качестве вспомогательного оборудования применяют оптический микроскоп с увеличением не менее 400, а также средства измерений параметров окружающей среды с абсолютными погрешностями не более:

- температуры окружающей среды

±0,2 °С

- относительной влажности воздуха

±3%;

- атмосферного давления

±130 Па.

4.2.3 Допускается применять другие средства калибровки, точность которых соответствует требованиям настоящего стандарта.

4.3 Требования к условиям проведения калибровки

4.3.1 Калибровку рельефной меры проводят в следующих условиях:

- температура окружающей среды

(20±3) °C;

- относительная влажность воздуха

не более 80%;

- атмосферное давление

(100±4) кПа;

- напряжение питающей сети

220 В;

- частота питающей сети

50 Гц.

Разность значений параметров окружающей среды до и после окончания калибровки не должна превышать указанных в приложении А.

4.3.2 Помещение (зона), в котором размещают средства измерений для калибровки рельефных мер, должно быть в эксплуатируемом состоянии и обеспечивать класс чистоты не более класса 8 ИСО по взвешенным в воздухе частицам размерами 0,5 и 5 мкм и концентрациями, определенными по ГОСТ ИСО 14644-1. Периодичность контроля состояния помещения (зоны) определяют по ГОСТ Р ИСО 14644-2. Эксплуатацию помещения (зоны) осуществляют по ГОСТ Р ИСО 14644-5.

5 Требования к квалификации калибровщиков

Калибровку рельефных мер должны проводить штатные сотрудники метрологической службы предприятия, аккредитованной в установленном порядке на проведение калибровочных работ по [2]. Сотрудники должны иметь высшее образование, профессиональную подготовку, опыт работы с атомно-силовыми микроскопами (далее - АСМ) и двухлучевыми лазерными гетеродинными интерферометрами и знать требования настоящего стандарта.

Рабочие места калибровщиков должны быть аттестованы по условиям труда в соответствии с требованиями трудового законодательства.

6 Требования по обеспечению безопасности

При калибровке рельефных мер необходимо соблюдать правила электробезопасности по [3], [4], требования лазерной безопасности по ГОСТ 12.1.040 и требования по обеспечению безопасности на рабочих местах по ГОСТ 12.2.061, [5], [6].

7 Подготовка к процедуре калибровки

7.1 Подготовку к процедуре калибровки рельефной меры начинают с проверки документации и внешнего осмотра, в процессе которого должно быть установлено:

- соответствие комплекта поставки данным, приведенным в паспорте (формуляре) на рельефную меру;

- отсутствие механических повреждений футляра, в котором осуществлялось хранение и транспортирование рельефной меры.

7.2 Рельефную меру извлекают из футляра, проводят предварительный визуальный внешний осмотр для выявления возможных повреждений и с помощью специальных зажимов устанавливают меру на рабочий стол АСМ.

При установке рельефной меры необходимо обеспечить:

- параллельность плоскости, образованной геометрической формой элемента рельефа меры, направлению горизонтального перемещения рабочего стола АСМ;

- плотное прилегание плоскости подложки меры к поверхности рабочего стола АСМ.

7.3 С помощью вспомогательного оптического микроскопа осматривают и проверяют качество поверхности рельефной меры. Шаговая структура на поверхности меры должна быть однородной, при этом на примерно 75% поверхности меры не должно быть повреждений маркерных линий, искажений краев элементов рельефа в виде впадин и выступов, соизмеримых с шириной элементов рельефа.

7.4 С помощью вспомогательного оптического микроскопа устанавливают зонд АСМ в положение, соответствующее началу сканирования калибруемого элемента рельефной меры.

Начальное положение определяют следующим образом: зонд АСМ устанавливают на плоскость нижнего основания на расстоянии от калибруемого элемента, равном не менее 20% и не более 50% ширины нижнего основания выступа калибруемого элемента. Аналогично определяют конечное положение зонда АСМ при сканировании.

7.5 На неподвижном элементе в камере образцов АСМ устанавливают зеркало лазерного интерферометра, предназначенное для формирования опорного луча, а на рабочем столе АСМ - другое зеркало, предназначенное для формирования информативного луча. Лазерный интерферометр (далее - горизонтальный лазерный интерферометр) располагают вдоль оси, совпадающей с горизонтальным направлением сканирования (далее - ось абсцисс).

Второй комплект зеркал устанавливают на Z-сканере и на неподвижном элементе камеры образцов АСМ. Эти зеркала предназначены для формирования информативного (на Z-сканере) и опорного (на неподвижном элементе камеры) лучей, что позволяет регистрировать перемещение Z-сканера АСМ в вертикальном направлении сканирования (далее - ось ординат).

Второй лазерный интерферометр (далее - вертикальный лазерный интерферометр) устанавливают в соответствии с расположением зеркал.

Горизонтальный и вертикальный лазерные интерферометры должны обеспечивать регистрацию информативных и опорных лучей в процессе сканирования выступа калибруемого элемента. Для каждого интерферометра в процессе сканирования необходимо также обеспечить взаимную параллельность информативного и опорного лучей при всех положениях стола и Z-сканера АСМ. Допустимый угол расхождения опорного и информативного лучей для каждого интерферометра не должен превышать 1'.

Такое взаимное расположение двух лазерных интерферометров в комплекте с зеркалами позволяет в процессе сканирования выступа калибруемого элемента рельефной меры проводить регистрацию видеопрофиля элемента и одновременную регистрацию перемещения рельефной меры и Z-сканера с помощью двух лазерных интерферометров.

7.6 В соответствии с инструкцией по эксплуатации АСМ проводят пробное сканирование калибруемого элемента рельефа меры.

При этом предварительно:

- выполняют юстировку зеркал в соответствии с инструкциями по эксплуатации лазерных интерферометров;

- путем изменения угла наклона исследуемого объекта обеспечивают взаимную параллельность направления прохождения информативного луча вертикального лазерного интерферометра и направления вертикального перемещения Z-сканера АСМ при сканировании элемента рельефа;

- в соответствии с инструкциями по эксплуатации АСМ и лазерных интерферометров определяют частоту и скорость сканирования калибруемого элемента, при которой в электронно-фазометрических системах интерферометров можно четко регистрировать количество целых и дробных полос интерференции, соответствующих значениям фазовых сдвигов между опорными и информативными лучами горизонтального и вертикального интерферометров;

- устанавливают показания электронно-фазометрических систем всех лазерных интерферометров в "нулевое" положение, определяемое нестабильностью младшего разряда используемых аналого-цифровых преобразователей в указанных электронно-фазометрических системах.

8 Процедура проведения измерений

8.1 Проводят измерения параметров окружающей среды и показателей качества питающей электрической сети и проверяют выполнение требований, указанных в 4.3.1.

8.2 В соответствии с инструкциями по эксплуатации АСМ и лазерных интерферометров проводят сканирование выступа калибруемого элемента рельефной меры. Одновременно с помощью лазерных интерферометров проводят измерения горизонтального перемещения подвижной части рабочего стола АСМ и вертикального перемещения Z-сканера АСМ.

Сечение выступа трапецеидальной формы и места начального и конечного положений зонда АСМ приведены на рисунке 1.


- ширина нижнего основания выступа; - ширина верхнего основания выступа; - высота выступа; - значение проекции наклонной стенки на плоскость нижнего основания выступа


Рисунок 1 - Сечение калибруемого элемента рельефной меры

Видеопрофиль, соответствующий этому выступу, представлен на рисунке 2.


- точка на видеопрофиле, соответствующая начальному положению зонда АСМ при сканировании; - точка на видеопрофиле, соответствующая конечному положению зонда при сканировании; - высота выступа, измеренная по видеопрофилю; - разность абсцисс конечной и начальной точек горизонтального сканирования, соответствующая значению горизонтального перемещения подвижной части рабочего стола АСМ, вычисленная по видеопрофилю


Рисунок 2 - Видеопрофиль сечения калибруемого элемента рельефной меры, приведенного на рисунке 1 (направление сканирования - слева направо)

8.3 По показаниям электронно-фазометрической системы горизонтального лазерного интерферометра определяют значение горизонтального фазового сдвига в радианах между информативным и опорным лучами этого интерферометра.

8.4 По показаниям электронно-фазометрической системы вертикального лазерного интерферометра определяют значение вертикального фазового сдвига в радианах между информативным и опорным лучами этого интерферометра.

8.5 Проводят измерения параметров окружающей среды и показателей качества питающей электрической сети и проверяют выполнение требований, указанных в 4.3.1.

8.6 Результаты измерений параметров рельефной меры по 8.2-8.4, а также указанных на рисунке 2 оформляют в виде протокола. Также в протоколе приводят значения условий проведения калибровки до начала и после окончания измерений по 8.1 и 8.5.

Форма протокола - произвольная. Протокол с результатами калибровки должен храниться как минимум до следующей калибровки рельефной меры.

9 Обработка результатов измерений

9.1 Вычисление горизонтального перемещения подвижной части рабочего стола АСМ при сканировании калибруемого элемента

Горизонтальное перемещение подвижной части рабочего стола , нм, от начального до конечного положения при сканировании выступа элемента рельефа вычисляют по формуле

,

где - длина волны излучения гелий-неонового лазера в вакууме, приведенная в паспорте (формуляре) на горизонтальный лазерный интерферометр, нм;

- фазовый сдвиг, измеренный по 8.3, рад;

- показатель преломления воздуха при фактических значениях температуры окружающей среды, влажности воздуха и атмосферного давления, вычисленный по приложению А.

9.2 Вычисление масштабного коэффициента видеоизображения для оси абсцисс

Масштабный коэффициент видеоизображения , нм/пиксель, для оси абсцисс вычисляют по формуле

,

где - перемещение подвижной части рабочего стола АСМ при горизонтальном сканировании, вычисленное по 9.1, нм;

- разность абсцисс конечной и начальной точек горизонтального сканирования, соответствующая горизонтальному перемещению подвижной части рабочего стола АСМ, вычисленная по видеопрофилю (см. рисунок 2), пиксель.

9.3 Вычисление вертикального перемещения Z-сканера АСМ при сканировании калибруемого элемента

Вертикальное перемещение Z-сканера АСМ , нм, при сканировании выступа элемента рельефа вычисляют по формуле

,

где - длина волны излучения гелий-неонового лазера в вакууме, приведенная в паспорте (формуляре) на вертикальный лазерный интерферометр, нм;

- фазовый сдвиг, измеренный по 8.4, рад;

- показатель преломления воздуха при фактических значениях температуры окружающей среды, влажности воздуха и атмосферного давления, вычисленный по приложению А.

9.4 Вычисление высоты выступа калибруемого элемента рельефа

Значение высоты выступа в нанометрах равно значению вертикального перемещения Z-сканера , вычисленному по 9.3.

9.5 Вычисление вспомогательной величины для определения ширины верхнего основания выступа калибруемого элемента рельефа

При определении ширины верхнего основания трапецеидального выступа используют вспомогательную величину, для вычисления которой:

- вычисляют производную по горизонтальной координате. Для видеопрофиля, изображенного на рисунке 2, результат такого вычисления указан на рисунке 3;

- проводят анализ результатов вычисления производной видеопрофиля по координате и вычисляют вспомогательную величину в пикселях, которая равна разности соответствующих абсцисс точек, как изображено на рисунке 3.


- ось абсцисс по 7.5; , - начальная и конечная точки положения зонда АСМ при сканировании калибруемого элемента, расположенные в соответствии с требованиями 7.4; - ось ординат значений производной величины видеосигнала по координате


Рисунок 3 - Графическое изображение первой производной видеопрофиля по координате в направлении горизонтального перемещения подвижной части стола АСМ

9.6 Вычисление ширины верхнего основания трапецеидального выступа

Ширину верхнего основания выступа , нм, вычисляют по формуле

,

где - масштабный коэффициент видеоизображения для оси абсцисс, вычисленный по 9.2, нм/пиксель;

- вспомогательная величина, вычисленная по 9.5, пиксель.

9.7 Вычисление ширины нижнего основания трапецеидального выступа

Ширину нижнего основания трапецеидального выступа , нм, вычисляют по формуле

,

где - ширина верхнего основания калибруемого выступа, вычисленная по 9.6, нм;

- высота калибруемого выступа, вычисленная по 9.4, нм.

9.8 Вычисление проекции наклонной стенки на плоскость нижнего основания выступа

Проекцию наклонной стенки на плоскость нижнего основания выступа , нм, вычисляют по формуле

,

где - высота выступа, вычисленная по 9.4, нм.

10 Оценка неопределенности измерений параметров

10.1 При оценке суммарной стандартной неопределенности горизонтального перемещения подвижной части рабочего стола пренебрегают неопределенностью в значении показателя преломления воздуха , вычисленного по приложению А, и неопределенностью в значении длины волны излучения гелий-неонового лазера в вакууме горизонтального лазерного интерферометра . Значение вычисляют по формуле

,

где - длина волны излучения гелий-неонового лазера в вакууме, приведенная в паспорте (формуляре) на горизонтальный лазерный интерферометр, нм;

- суммарная стандартная неопределенность измерения фазового сдвига, приведенная в паспорте (формуляре) на горизонтальный лазерный интерферометр, рад;

- показатель преломления воздуха при фактических значениях температуры окружающей среды, влажности воздуха и атмосферного давления, вычисленный по приложению А.

Примечание - Если в паспорте (формуляре) на горизонтальный лазерный интерферометр приведена абсолютная погрешность измерения фазового сдвига, то вычисление осуществляют по [7].

10.2 При оценке суммарной стандартной неопределенности вертикального перемещения Z-сканера АСМ пренебрегают неопределенностью значения показателя преломления воздуха , вычисленного по приложению А, и неопределенностью значения длины волны излучения гелий-неонового лазера в вакууме вертикального лазерного интерферометра . Значение , нм, вычисляют по формуле

,

где - длина волны излучения гелий-неонового лазера в вакууме, приведенная в паспорте (формуляре) на вертикальный лазерный интерферометр, нм;

- суммарная стандартная неопределенность измерения фазового сдвига, приведенная в паспорте (формуляре) на вертикальный лазерный интерферометр, рад;

- показатель преломления воздуха при фактических значениях температуры окружающей среды, влажности воздуха и атмосферного давления, вычисленный по приложению А.

Примечание - Если в паспорте (формуляре) на вертикальный лазерный интерферометр приведена абсолютная погрешность измерения фазового сдвига, то вычисление осуществляют по [7].

10.3 Суммарную стандартную неопределенность , нм/пиксель, измерения масштабного коэффициента видеоизображения для оси абсцисс вычисляют по формуле

,

где - масштабный коэффициент видеоизображения для оси абсцисс, вычисленный по 9.2, нм/пиксель;

- суммарная стандартная неопределенность измерения горизонтального перемещения подвижной части рабочего стола, вычисленная по 10.1, нм;

- горизонтальное перемещение подвижной части рабочего стола, вычисленное по 9.1, нм;

- стандартная неопределенность разности абсцисс конечной и начальной точек горизонтального сканирования, соответствующая горизонтальному перемещению подвижной части рабочего стола АСМ, пиксель;

- разность абсцисс конечной и начальной точек горизонтального сканирования, соответствующая горизонтальному перемещению подвижной части рабочего стола АСМ, пиксель.

Примечание - При равномерном квантовании видеосигнала значение принимают равным 0,5 пиксель.

10.4 Значение суммарной стандартной неопределенности в нанометрах при измерении высоты выступа равно значению суммарной стандартной неопределенности вертикального перемещения Z-сканера АСМ , вычисленного по 10.2.

10.5 Суммарную стандартную неопределенность , нм, измерения ширины верхнего основания трапецеидального выступа вычисляют по формуле

,

где - ширина верхнего основания трапецеидального выступа, вычисленная по 9.6, нм;

- суммарная стандартная неопределенность измерения масштабного коэффициента видеоизображения для оси абсцисс, нм/пиксель;

- масштабный коэффициент видеоизображения для оси абсцисс, вычисленный по 9.2, нм/пиксель;

- стандартная неопределенность измерения вспомогательной величины для определения ширины верхнего основания выступа , вычисленной по 9.5, пиксель;

- вспомогательная величина для определения ширины верхнего основания выступа, вычисленная по 9.5, пиксель.

Примечание - При равномерном квантовании видеосигнала значение принимают равным 0,5 пиксель.

10.6 Суммарную стандартную неопределенность , нм, измерения ширины нижнего основания трапецеидального выступа вычисляют по формуле

,

где - суммарная стандартная неопределенность измерения ширины верхнего основания выступа, вычисленная по 10.5, нм;

- суммарная стандартная неопределенность измерения высоты выступа, вычисленная по 10.4, нм.

10.7 Суммарную стандартную неопределенность , нм, измерения проекции наклонной стенки на плоскость нижнего основания выступа вычисляют по формуле

,

где - суммарная стандартная неопределенность измерения высоты выступа, вычисленная по 10.4, нм.

11 Оформление результатов калибровки

11.1 Результаты калибровки оформляют в виде сертификата установленной формы [8] с соответствующей записью в паспорте (формуляре) рельефной меры.

11.2 В сертификате калибровки и в паспорте (формуляре) рельефной меры должны быть приведены значения высоты выступа, ширины верхнего и нижнего его оснований, а также значение проекции наклонной стенки на плоскость нижнего основания выступа калибруемого элемента. Для перечисленных метрологических характеристик рельефной меры необходимо также указать значения неопределенностей, вычисленных по разделу 10 настоящего стандарта.

Приложение А
(справочное)


Вычисление показателя преломления воздуха

А.1 Исходные данные

При вычислении показателя преломления воздуха исходными данными являются следующие параметры окружающей среды:

- температура , °С;

- атмосферное давление , Па;

- относительная влажность , %.

Параметры окружающей среды измеряют до начала и после окончания измерений, при этом разность показаний должна быть не более:

- температуры окружающей среды

±1 °С;

- атмосферного давления,

±300 Па;

- относительной влажности воздуха

±10%.

А.2 Константы для вычисления показателя преломления воздуха

При вычислениях используют константы, приведенные в таблице А.1.

Таблица А.1 - Константы для вычисления показателя преломления воздуха

Обозначение константы

Значение

8342,54

2406147

15998

96095,43

0,601

0,00972

0,003661

-

-

А.3 Вычисление вспомогательной величины

Вспомогательную величину вычисляют по формуле

,

где , - значения длин волн излучения в вакууме гелий-неоновых лазеров по 9.1 и 9.3, нм, соответственно.

А.4 Вычисление вспомогательной величины

Вспомогательную величину вычисляют по формуле

,

где , , - константы по А.2;

- вспомогательная величина, вычисленная по А.3.

А.5 Вычисление вспомогательной величины

Вспомогательную величину вычисляют по формуле

,

где , , - константы по А.2;

- температура окружающей среды, °С;

- атмосферное давление, Па.

А.6 Вычисление вспомогательной величины

Вспомогательную величину вычисляют по формуле

,

где - атмосферное давление, Па;

- вспомогательная величина, вычисленная по А.4;

- вспомогательная величина, вычисленная по А.5;

- константа по А.2.

А.7 Вычисление парциального давления паров воды

Парциальное давление паров воды , Па, вычисляют по формуле

,

где - относительная влажность воздуха, %;

- давление насыщенного водяного пара при температуре окружающей среды , вычисленное по А.8-А.14, Па.

А.8 Константы для вычисления давления насыщенного водяного пара

Для вычисления давления насыщенного водяного пара при температуре окружающей среды в градусах Цельсия используют константы, приведенные в таблице А.2.

Таблица А.2 - Константы для вычисления давления насыщенного водяного пара

Обозначение константы

Значение

1167,05214528

-724213,167032

-17,0738469401

12020,8247025

-3232555,03223

14,9151086135

-4823,26573616

405113,405421

-23,8555575678

650,175348448

А.9 Вычисление вспомогательной величины

Вспомогательную величину вычисляют по формуле

,

где - температура окружающей среды, °С;

, - константы по А.8.

А.10 Вычисление вспомогательной величины

Вспомогательную величину вычисляют по формуле

,

где - вспомогательная величина, вычисленная по А.9;

, - константы по А.8.

А.11 Вычисление вспомогательной величины

Вспомогательную величину вычисляют по формуле

,

где , , - константы по А.8;

- вспомогательная величина, вычисленная по А.9.

А.12 Вычисление вспомогательной величины

Вспомогательную величину вычисляют по формуле

,

где , , - константы по А.8;

- вспомогательная величина, вычисленная по А.9.

А.13 Вычисление вспомогательной величины

Вспомогательную величину вычисляют по формуле

,

где - вспомогательная величина, вычисленная по А.11;

- вспомогательная величина, вычисленная по А.10;

- вспомогательная величина, вычисленная по А.12.

А.14 Вычисление давления насыщенного водяного пара

Давление насыщенного водяного пара , Па, вычисляют по формуле

,

где - вспомогательная величина, вычисленная по А.12;

- вспомогательная величина, вычисленная по А.13.

А.15 Вычисление показателя преломления воздуха

Показатель преломления воздуха вычисляют по формуле

,

где - вспомогательная величина, вычисленная по А.6;

- вспомогательная величина, вычисленная по А.3;

- парциальное давление паров воды, вычисленное по А.7, Па;

- температура окружающей среды, °С.

Библиография

[1]

РМГ 29-99

Государственная система обеспечения единства измерений. Метрология. Основные термины и определения

[2]

ПР 50.2.018-95

Государственная система обеспечения единства измерений. Порядок аккредитации метрологических служб юридических лиц на право проведения калибровочных работ

[3]

Правила технической эксплуатации электроустановок потребителей (утверждены приказом Минэнерго России от 13.01.2003 г. N 6; зарегистрированы Минюстом России 22.01.2003 г., рег. N 4145)

[4]

ПОТ РМ-016-2001
РД 153.34.0-03.150-00

Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок

[5]

СанПиН 2.2.4.1191-03

Электромагнитные поля в производственных условиях

[6]

СанПиН 2.2.2/2.4.1340-03

Гигиенические требования к персональным электронно-вычислительным машинам и организации работы

[7]

РМГ 43-2001

Государственная система обеспечения единства измерений. Применение "Руководства по выражению неопределенности измерений"

[8]

ПР 50.2.016-94

Государственная система обеспечения единства измерений. Требования к выполнению калибровочных работ

Электронный текст документа

и сверен по:

, 2008

Другие госты в подкатегории

    ГОСТ 10-88

    ГОСТ 10197-70

    ГОСТ 10387-81

    ГОСТ 10653-84

    ГОСТ 10654-81

    ГОСТ 10071-89

    ГОСТ 10905-86

    ГОСТ 10908-75

    ГОСТ 10278-81

    ГОСТ 11098-75

    ГОСТ 10655-81

    ГОСТ 11196-74

    ГОСТ 11357-89

    ГОСТ 11358-89

    ГОСТ 11472-69

    ГОСТ 11007-66

    ГОСТ 12069-90

    ГОСТ 13006-67

    ГОСТ 13762-86

    ГОСТ 12441-66

    ГОСТ 13798-68

    ГОСТ 13818-68

    ГОСТ 13810-68

    ГОСТ 11710-66

    ГОСТ 14748-69

    ГОСТ 14750-69

    ГОСТ 14751-69

    ГОСТ 14752-69

    ГОСТ 14749-69

    ГОСТ 14808-69

    ГОСТ 14807-69

    ГОСТ 14809-69

    ГОСТ 14811-69

    ГОСТ 14812-69

    ГОСТ 14810-69

    ГОСТ 14813-69

    ГОСТ 14815-69

    ГОСТ 14814-69

    ГОСТ 14817-69

    ГОСТ 14816-69

    ГОСТ 14818-69

    ГОСТ 14819-69

    ГОСТ 14747-88

    ГОСТ 14821-69

    ГОСТ 14820-69

    ГОСТ 14822-69

    ГОСТ 14824-69

    ГОСТ 14025-84

    ГОСТ 14823-69

    ГОСТ 14826-69

    ГОСТ 15876-90

    ГОСТ 14825-69

    ГОСТ 14827-69

    ГОСТ 14865-78

    ГОСТ 15593-70

    ГОСТ 15988-80

    ГОСТ 15900-85

    ГОСТ 162-90

    ГОСТ 164-90

    ГОСТ 16473-80

    ГОСТ 166-89

    ГОСТ 1623-89

    ГОСТ 16778-93

    ГОСТ 14864-78

    ГОСТ 16775-93

    ГОСТ 17215-71

    ГОСТ 16780-71

    ГОСТ 17381-84

    ГОСТ 17353-89

    ГОСТ 17320-71

    ГОСТ 17738-72

    ГОСТ 17737-72

    ГОСТ 17739-72

    ГОСТ 17741-72

    ГОСТ 17736-72

    ГОСТ 17740-72

    ГОСТ 17742-72

    ГОСТ 17758-72

    ГОСТ 17759-72

    ГОСТ 17756-72

    ГОСТ 17757-72

    ГОСТ 17760-72

    ГОСТ 17763-72

    ГОСТ 17764-72

    ГОСТ 17762-72

    ГОСТ 17761-72

    ГОСТ 17336-80

    ГОСТ 17766-72

    ГОСТ 17765-72

    ГОСТ 17767-72

    ГОСТ 18355-73

    ГОСТ 16085-80

    ГОСТ 18356-73

    ГОСТ 18358-93

    ГОСТ 18357-73

    ГОСТ 18369-73

    ГОСТ 18833-73

    ГОСТ 18365-93

    ГОСТ 18360-93

    ГОСТ 18367-93

    ГОСТ 18924-73

    ГОСТ 18925-73

    ГОСТ 18922-73

    ГОСТ 18926-73

    ГОСТ 18923-73

    ГОСТ 18927-73

    ГОСТ 18928-73

    ГОСТ 18931-73

    ГОСТ 18929-73

    ГОСТ 18930-73

    ГОСТ 2015-84

    ГОСТ 18932-73

    ГОСТ 2016-86

    ГОСТ 18961-80

    ГОСТ 21524-76

    ГОСТ 21625-76

    ГОСТ 19300-86

    ГОСТ 22238-76

    ГОСТ 2216-84

    ГОСТ 22601-77

    ГОСТ 20305-94

    ГОСТ 22634-77

    ГОСТ 2386-73

    ГОСТ 24110-80

    ГОСТ 24112-80

    ГОСТ 24111-80

    ГОСТ 24113-80

    ГОСТ 24115-80

    ГОСТ 24114-80

    ГОСТ 24117-80

    ГОСТ 24116-80

    ГОСТ 24109-80

    ГОСТ 24119-80

    ГОСТ 24120-80

    ГОСТ 24118-80

    ГОСТ 24672-81

    ГОСТ 24121-80

    ГОСТ 24851-81

    ГОСТ 18466-73

    ГОСТ 2475-88

    ГОСТ 24852-81

    ГОСТ 24939-81

    ГОСТ 24959-81

    ГОСТ 24475-80

    ГОСТ 24932-81

    ГОСТ 24961-81

    ГОСТ 24962-81

    ГОСТ 24963-81

    ГОСТ 24964-81

    ГОСТ 24965-81

    ГОСТ 24967-81

    ГОСТ 24966-81

    ГОСТ 24968-81

    ГОСТ 24853-81

    ГОСТ 24998-81

    ГОСТ 25177-82

    ГОСТ 24960-81

    ГОСТ 18465-73

    ГОСТ 24969-81

    ГОСТ 2534-67

    ГОСТ 24997-81

    ГОСТ 25575-2014

    ГОСТ 2534-77

    ГОСТ 2533-88

    ГОСТ 25575-83

    ГОСТ 25347-2013

    ГОСТ 25576-83

    ГОСТ 25346-2013

    ГОСТ 2689-54

    ГОСТ 25858-83

    ГОСТ 2849-94

    ГОСТ 27298-87

    ГОСТ 28798-90

    ГОСТ 28800-90

    ГОСТ 28187-89

    ГОСТ 30893.2-2002

    ГОСТ 3047-66

    ГОСТ 30987-2003

    ГОСТ 2875-88

    ГОСТ 28094-89

    ГОСТ 34854-2022

    ГОСТ 3899-81

    ГОСТ 4119-76

    ГОСТ 427-75

    ГОСТ 30893.1-2002

    ГОСТ 4381-87

    ГОСТ 4046-80

    ГОСТ 3749-77

    ГОСТ 5378-88

    ГОСТ 3199-84

    ГОСТ 5939-51

    ГОСТ 5584-75

    ГОСТ 6507-90

    ГОСТ 4380-93

    ГОСТ 577-68

    ГОСТ 6636-69

    ГОСТ 6512-74

    ГОСТ 7013-67

    ГОСТ 5368-81

    ГОСТ 7470-92

    ГОСТ 7502-89

    ГОСТ 7660-55

    ГОСТ 7661-67

    ГОСТ 6528-53

    ГОСТ 7502-98

    ГОСТ 8.016-81

    ГОСТ 6485-69

    ГОСТ 7157-79

    ГОСТ 8.051-81

    ГОСТ 8.050-73

    ГОСТ 8.113-85

    ГОСТ 8.089-73

    ГОСТ 8.171-75

    ГОСТ 8.114-74

    ГОСТ 8.181-76

    ГОСТ 8.147-75

    ГОСТ 8.211-84

    ГОСТ 21401-75

    ГОСТ 8.224-76

    ГОСТ 8.260-77

    ГОСТ 8.236-77

    ГОСТ 8.235-77

    ГОСТ 8.321-78

    ГОСТ 8.341-79

    ГОСТ 8.296-78

    ГОСТ 7951-80

    ГОСТ 7713-62

    ГОСТ 8.362-79

    ГОСТ 8.266-77

    ГОСТ 8.345-79

    ГОСТ 8.353-96

    ГОСТ 8.420-81

    ГОСТ 8.376-80

    ГОСТ 8.459-82

    ГОСТ 8.359-79

    ГОСТ 8.411-81

    ГОСТ 8.471-82

    ГОСТ 8.495-83

    ГОСТ 8.502-84

    ГОСТ 8.490-83

    ГОСТ 8.536-85

    ГОСТ 8.548-86

    ГОСТ 8.528-85

    ГОСТ 8.481-82

    ГОСТ 8.351-79

    ГОСТ 8.549-86

    ГОСТ 8.506-84

    ГОСТ 8.592-2009

    ГОСТ 8517-90

    ГОСТ 8593-81

    ГОСТ 8026-92

    ГОСТ 868-82

    ГОСТ 882-75

    ГОСТ 8.593-2009

    ГОСТ 8.594-2009

    ГОСТ 9038-90

    ГОСТ 9244-75

    ГОСТ 8809-71

    ГОСТ 9378-93

    ГОСТ 9392-89

    ГОСТ 9696-82

    ГОСТ 8.591-2009

    ГОСТ 8898-78

    ГОСТ 8867-89

    ГОСТ Р 51066-97

    ГОСТ 9459-87

    ГОСТ Р 53089-2008

    ГОСТ 9776-82

    ГОСТ Р 53440-2009

    ГОСТ Р 51918-2002

    ГОСТ Р 53090-2008

    ГОСТ Р 8.1012-2022

    ГОСТ Р 53441-2009

    ГОСТ 8.367-79

    ГОСТ Р 8.628-2007

    ГОСТ Р 56925-2016

    ГОСТ Р 8.630-2007

    ГОСТ Р 8.631-2007

    ГОСТ Р 52028-2003

    ГОСТ Р 8.635-2007

    ГОСТ Р 8.670-2009

    ГОСТ Р 8.672-2009

    ГОСТ Р 8.671-2009

    ГОСТ Р 8.636-2007

    ГОСТ Р 8.629-2007

    ГОСТ Р 53442-2009

    ГОСТ Р 8.697-2010

    ГОСТ Р 8.696-2010

    ГОСТ Р 8.862-2013

    ГОСТ Р 8.895-2015

    ГОСТ Р 8.931-2016

    ГОСТ Р 8.965-2019

    ГОСТ Р 8.910-2016

    ГОСТ Р 8.677-2009

    ГОСТ Р ИСО 10360-1-2017

    ГОСТ Р ИСО 10360-4-2017

    ГОСТ Р 8.700-2010

    ГОСТ Р ИСО 16610-21-2015

    ГОСТ Р ИСО 10360-3-2017

    ГОСТ Р ИСО 10360-2-2017

    ГОСТ Р ИСО 10360-5-2017

    ГОСТ Р ИСО 25178-2-2014

    ГОСТ Р 8.698-2010