ГОСТ 26302-93

ОбозначениеГОСТ 26302-93
НаименованиеСтекло. Методы определения коэффициентов направленного пропускания и отражения света
СтатусЗаменен
Дата введения01.01.1995
Дата отмены
Заменен наГОСТ 26302-2021
Код ОКС81.040.20
Текст ГОСТа


ГОСТ 26302-93

Группа И 19

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ


СТЕКЛО

Методы определения коэффициентов направленного пропускания и отражения света

GLASS
Methods of determination of light regular
transmittance and light regular reflection



ОКСТУ 5910

Дата введения 1995-01-01



Предисловие

1 РАЗРАБОТАН Научно-производственным объединением "Стекло" Российской Федерации

ВНЕСЕН Госстроем России

2 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации и техническому нормированию в строительстве (МНТКС) 10 ноября 1993 г.

За принятие проголосовали:


Наименование государства


Наименование органа государственного управления строительством

Азербайджанская Республика

Госстрой Азербайджанской Республики

Республика Армения

Госупрархитектуры Республики Армения

Республика Беларусь

Госстрой Республики Беларусь

Республика Казахстан

Минстрой Республики Казахстан

Кыргызская Республика

Госстрой Кыргызской Республики

Республика Молдова

Минархстрой Республики Молдова

Российская Федерация

Госстрой России

Республика Таджикистан

Госстрой Республики Таджикистан

Республика Узбекистан

Госкомархитектстрой Республики Узбекистан

Украина

Минстройархитектуры Украины

3 ВЗАМЕН ГОСТ 26302-84

1 Область применения

Настоящий стандарт распространяется на строительное стекло, а также техническое стекло, зеркала бытовые, технические и для мебели и устанавливает методы определения коэффициентов направленного пропускания и отражения света.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 8.332-78 ГСИ. Световые измерения. Значения относительной спектральной световой эффективности монохроматического излучения для дневного зрения

ГОСТ 7721-89 Источники света для измерений цвета. Типы. Технические требования. Маркировка

3 Определения

В настоящем стандарте применяют следующие термины и определения:

Коэффициент направленного пропускания света - отношение значения светового потока, нормально прошедшего сквозь образец , к значению светового потока, нормально падающего на образец .

При испытании неглушеных стекол коэффициент направленного пропускания света равен коэффициенту общего пропускания света.

Коэффициент направленного отражения света - отношение значения светового потока, отраженного от образца в заданном направлении , к значению светового потока, падающего на образец в заданном направлении , причем угол направления падающего потока равен углу направления отраженного потока.

При испытании зеркал коэффициент направленного отражения света равен коэффициенту общего отражения света при равных углах падения.

4 Аппаратура

4.1 Источники света по ГОСТ 7721, воспроизводящие условия освещения:

- тип А - искусственного электрическими лампами накаливания;

- тип В - прямого солнечного;

- тип С - рассеянным дневным светом;

- тип Д65 - усредненным дневным светом.

Напряжение питания лампы должно быть стабилизировано в пределах 1/1000.

4.2 Фотоприемник должен удовлетворять следующим требованиям:

4.2.1 Относительная спектральная чувствительность фотоприемника - по ГОСТ 8.332.

4.2.2 При рабочих световых потоках зависимость силы тока фотоприемника от потока падающего на него света должна быть линейной (, где - коэффициент пропорциональности, который должен быть постоянным при определении одного значения показателя) с относительной погрешностью не более ±1%.

4.2.3 Температурный дрейф тока фотоприемника не должен превышать 0,5% максимального значения за время проведения испытаний данной выборки или должен быть учтен при вычислении коэффициента направленного пропускания или отраженного света для каждого образца.

4.2.4 Диаметр входного отверстия фотоприемника должен быть больше диаметра светового пучка не менее чем на 20%.

4.3 Микроамперметр должен обеспечивать измерение не менее 100 различных значений силы тока фотоприемника при изменении потока света, падающего на фотоприемник, от максимального (без образца стекла) до нулевого значения (поток полностью перекрыт).

4.4 Фотометр, конструкция которого должна удовлетворять следующим требованиям:

4.4.1 Оптическая система должна обеспечивать параллельность светового пучка, угол расходимости (сходимости) не более 1°.

4.4.2 После прохождения светового потока сквозь образец стекла или после отражения от образца стекла на фотоприемник должны падать лучи света с отклонением от заданного направления не более чем на 2°.

4.4.2 После прохождения светового потока сквозь образец стекла или после отражения от образца стекла на фотоприемник должны падать лучи света с отклонением от заданного направления не более чем на 2°.

4.4.3 Угол между направлением светового пучка и поверхностью образца стекла при определении коэффициента направленного пропускания света должен быть (90±5)°, при определении коэффициента направленного отражения света угол падения светового пучка равен углу отражения с абсолютной погрешностью ±1°.

4.4.4 Угол падения светового пучка на светочувствительную поверхность фотоприемника должен быть постоянным на всех этапах измерений, если не применяют интегрирующую сферу (шар Тейлора).

Допускается при испытаниях образцов (кроме глушеных стекол) использовать другие приборы, обеспечивающие получение результатов измерения направленного пропускания и отражения света по аттестованным эталонным образцам с заданной погрешностью.

5 Образцы

5.1 Испытания проводят как на изделиях, так и на вырезанных из них образцах. Размеры образцов устанавливают в соответствии с инструкцией по эксплуатации применяемого средства измерения.

5.2 Образцы стекол с рифленой или узорчатой поверхностью должны быть отполированы с обеих сторон.

5.3 Поверхности образцов стекла должны быть параллельными или двугранный угол, образуемый поверхностями, не должен превышать 5°.

5.4 Порядок отбора и количество образцов устанавливают в нормативной документации на продукцию конкретного вида.

6 Определение коэффициента направленного пропускания света

6.1 Метод А

6.1.1 Сущность метода состоит в определении отношения силы тока фотоприемника при попадании на него светового потока, прошедшего сквозь исследуемый образец стекла, к силе тока при попадании светового потока непосредственно на фотоприемник.

6.1.2 Порядок проведения испытания

6.1.2.1 Световой пучок от источника света направляют на фотоприемник.

6.1.2.2 Измеряют силу тока фотоприемника .

6.1.2.3 Между источником света и фотоприемником помещают исследуемый образец стекла.

6.1.2.4 Измеряют силу тока фотоприемника .

6.1.3 Обработка результатов

6.1.3.1 Коэффициент направленного пропускания света определяют по формуле

где - сила тока фотоприемника с исследуемым образцом, А;

- сила тока фотоприемника без образца, А.

6.1.3.2 Относительную погрешность измерения определяют по формуле

где - абсолютная погрешность определения коэффициента направленного пропускания света;

- абсолютная погрешность измерения значения силы тока фотоприемника (абсолютная погрешность фотометра) с исследуемым образцом;

- абсолютная погрешность измерения значения силы тока фотоприемника (абсолютная погрешность фотометра) без образца.

6.2 Метод Б

6.2.1 Сущность метода состоит в определении отношения силы тока фотоприемника при попадании на него светового потока, прошедшего сквозь исследуемый образец стекла, к силе тока фотоприемника при попадании на него светового потока, прошедшего сквозь образец стекла, имеющий аттестованный коэффициент направленного пропускания света, с учетом этого коэффициента.

6.2.2 Порядок проведения испытания

6.2.2.1 Между источником света и фотоприемником помещают образец стекла с аттестованным коэффициентом направленного пропускания света (эталонный образец).

6.2.2.2 Измеряют силу тока фотоприемника .

6.2.2.3 Между источником света и фотоприемником помещают исследуемый образец стекла.

6.2.2.4 Измеряют силу тока фотоприемника .

6.2.3 Обработка результатов

6.2.3.1 Коэффициент направленного пропускания света определяют по формуле

где - аттестованный коэффициент направленного пропускания света эталонного образца;

- сила тока фотоприемника с исследуемым образцом;

- сила тока фотоприемника с эталонным образцом.

6.2.3.2 Относительную погрешность измерения определяют по формуле

где - абсолютная погрешность определения коэффициента направленного пропускания света;

- абсолютная погрешность измерения силы тока фотоприемника (абсолютная погрешность фотометра) с исследуемым образцом;

- абсолютная погрешность измерения силы тока фотоприемника (абсолютная погрешность фотометра) с эталонным образцом;

- абсолютная погрешность аттестованного коэффициента направленного пропускания света эталонного образца.

Примечание - Допускается за относительную погрешность измерения (6.1.3.2 и 6.2.3.2) принимать установленную погрешность фотометра.

7 Определение коэффициента направленного отражения света

7.1 Метод В

7.1.1 Сущность метода состоит в определении отношения значения силы тока фотоприемника при попадании на него светового потока, отраженного от исследуемого образца стекла, к значению силы тока при попадании светового потока непосредственно на фотоприемник.

7.1.2 Порядок проведения испытания

7.1.2.1 Световой пучок от источника света направляют на фотоприемник.

7.1.2.2 Измеряют силу тока фотоприемника .

7.1.2.3 Задают плоскость измерений.

7.1.2.4 Аппаратуру располагают в соответствии с оптической схемой, приведенной в приложении А.

7.1.2.5 В плоскости измерений помещают исследуемый образец.

7.1.2.6 Измеряют силу тока фотоприемника .

7.1.3 Обработка результатов

7.1.3.1 Коэффициент направленного отражения света определяют по формуле

где - сила тока фотоприемника с исследуемым образцом, А;

- сила тока фотоприемника без образца, А.

7.1.3.2 Относительную погрешность измерения определяют по формуле

где - абсолютная погрешность определения коэффициента направленного отражения света;

- абсолютная погрешность измерения силы тока фотоприемника (абсолютная погрешность фотометра) с исследуемым образцом;

- абсолютная погрешность измерения силы тока фотоприемника (абсолютная погрешность фотометра) без образца.

7.2 Метод Г

7.2.1 Сущность метода состоит в определении отношения силы тока фотоприемника при попадании на него светового потока, отраженного от исследуемого образца стекла, к силе тока фотоприемника при попадании на него светового потока, отраженного от образца, имеющего аттестованное значение коэффициента направленного отражения света, с учетом этого коэффициента.

7.2.2 Порядок проведения испытания

7.2.2.1 Задают плоскость измерений.

7.2.2.2 Аппаратуру располагают в соответствии с оптической схемой, приведенной в приложении А.

7.2.2.3 В плоскость измерений помещают образец с аттестованным коэффициентом направленного отражения света (эталонный образец).

7.2.2.4 Измеряют силу тока фотоприемника .

7.2.2.5 В плоскость измерений помещают исследуемый образец.

7.2.2.6 Измеряют силу тока фотоприемника .

7.2.3 Обработка результатов

7.2.3.1 Коэффициент направленного отражения света определяют по формуле

где - аттестованный коэффициент направленного отражения света эталонного образца;

- сила тока фотоприемника с исследуемым образцом, А;

- сила тока фотоприемника с эталонным образцом, А.

7.2.3.2 Относительную погрешность измерения определяют по формуле

где - абсолютная погрешность определения коэффициента направленного отражения света;

- абсолютная погрешность измерения силы тока фотоприемника (абсолютная погрешность фотометра) с исследуемым образцом;

- абсолютная погрешность измерения силы тока фотоприемника (абсолютная погрешность фотометра) с эталонным образцом;

- абсолютная погрешность аттестованного коэффициента направленного отражения света эталонного образца.

Примечание - За относительную погрешность измерения (7.1.3.2 и 7.2.3.2) допускается принимать установленную погрешность фотометра.

8 Оформление результатов испытаний

Результаты испытаний оформляют в виде протокола испытаний, который должен содержать:

- наименование испытательной лаборатории;

- количество испытаний;

- дату проведения испытаний;

- обозначение настоящего стандарта;

- наименование (обозначение) продукции;

- наименование предприятия, представившего образцы на испытания;

- вид испытаний (метод);

- марка прибора;

- значение коэффициента направленного пропускания (отражения) света.

Приложение А

(обязательное)


Оптическая схема методов В и Г


1 - источник света; 2 - ось светового пучка, падающего на образец; 3 - угол падения; 4 - угол отражения;
5 - ось светового пучка, отраженного от образца; 6 - фотоприемник; 7 - плоскость измерений

Рисунок А.1

Текст документа сверен по:

МНТКС - М.: Издательство стандартов, 1994

Другие госты в подкатегории

    ГОСТ 10134.0-82

    ГОСТ 10134.2-82

    ГОСТ 10134.1-82

    ГОСТ 10134.3-82

    ГОСТ 10377-2018

    ГОСТ 10958-2018

    ГОСТ 10279-80

    ГОСТ 10377-78

    ГОСТ 10134.0-2017

    ГОСТ 11067-2013

    ГОСТ 11067-85

    ГОСТ 111-2014

    ГОСТ 11103-2018

    ГОСТ 21836-2021

    ГОСТ 17716-2014

    ГОСТ 17716-91

    ГОСТ 10134.2-2017

    ГОСТ 22290-76

    ГОСТ 22290-2021

    ГОСТ 22291-83

    ГОСТ 22291-2021

    ГОСТ 22292-2021

    ГОСТ 22293-76

    ГОСТ 1663-2016

    ГОСТ 111-2001

    ГОСТ 22551-2019

    ГОСТ 22552.5-2019

    ГОСТ 21836-88

    ГОСТ 1663-81

    ГОСТ 22552.6-2019

    ГОСТ 22552.7-2019

    ГОСТ 22292-76

    ГОСТ 13521-68

    ГОСТ 10134.3-2017

    ГОСТ 22552.1-2019

    ГОСТ 23671-2020

    ГОСТ 23673.5-2020

    ГОСТ 23673.6-2020

    ГОСТ 23672-2020

    ГОСТ 25535-2013

    ГОСТ 25535-82

    ГОСТ 26302-2021

    ГОСТ 22552.4-2019

    ГОСТ 26302-84

    ГОСТ 21992-83

    ГОСТ 26821-86

    ГОСТ 27460-87

    ГОСТ 11103-85

    ГОСТ 26822-86

    ГОСТ 10134.1-2017

    ГОСТ 27904-88

    ГОСТ 22552.0-2019

    ГОСТ 23673.0-2020

    ГОСТ 30407-2019

    ГОСТ 27903-88

    ГОСТ 23673.3-2020

    ГОСТ 23673.4-2020

    ГОСТ 30698-2000

    ГОСТ 23673.2-2020

    ГОСТ 24866-2014

    ГОСТ 30779-2001

    ГОСТ 31364-2014

    ГОСТ 27902-88

    ГОСТ 32280-2013

    ГОСТ 30733-2000

    ГОСТ 30733-2014

    ГОСТ 24866-89

    ГОСТ 30698-2014

    ГОСТ 32357-2013

    ГОСТ 22552.2-2019

    ГОСТ 32361-2013

    ГОСТ 32362-2013

    ГОСТ 32529-2013

    ГОСТ 32530-2013

    ГОСТ 32539-2013

    ГОСТ 10978-83

    ГОСТ 32540-2013

    ГОСТ 31364-2007

    ГОСТ 30826-2001

    ГОСТ 32562.2-2013

    ГОСТ 32562.3-2013

    ГОСТ 32360-2013

    ГОСТ 32557-2013

    ГОСТ 32281.3-2013

    ГОСТ 32564.1-2013

    ГОСТ 32566-2013

    ГОСТ 32559-2013

    ГОСТ 32996-2014

    ГОСТ 32997-2014

    ГОСТ 30779-2014

    ГОСТ 10978-2014

    ГОСТ 32999-2014

    ГОСТ 30826-2014

    ГОСТ 30407-96

    ГОСТ 22552.3-2019

    ГОСТ 33002-2014

    ГОСТ 33004-2014

    ГОСТ 33001-2014

    ГОСТ 111-90

    ГОСТ 33086-2014

    ГОСТ 33088-2014

    ГОСТ 33089-2014

    ГОСТ 32562.4-2013

    ГОСТ 32568-2013

    ГОСТ 33560-2015

    ГОСТ 33003-2014

    ГОСТ 33561-2015

    ГОСТ 33559-2015

    ГОСТ 34279-2017

    ГОСТ 32281.5-2013

    ГОСТ 5533-2013

    ГОСТ 5533-86

    ГОСТ 32564.2-2013

    ГОСТ 5635-2018

    ГОСТ 33017-2014

    ГОСТ 32562.1-2013

    ГОСТ 6799-2021

    ГОСТ 6799-2005

    ГОСТ 7342-79

    ГОСТ 6799-80

    ГОСТ 33090-2014

    ГОСТ 8325-78

    ГОСТ 8894-2018

    ГОСТ 32998.4-2014

    ГОСТ 33891-2016

    ГОСТ 9272-66

    ГОСТ 7481-2013

    ГОСТ 9272-2017

    ГОСТ 24866-99

    ГОСТ 4.205-79

    ГОСТ 9272-75

    ГОСТ 5635-80

    ГОСТ 33575-2015

    ГОСТ 32563-2013

    ГОСТ 33087-2014

    ГОСТ 32281.1-2013

    ГОСТ 7481-78

    ГОСТ 32998.6-2014

    ГОСТ 9553-74

    ГОСТ 9900-85

    ГОСТ 9424-79

    ГОСТ 9541-75

    ГОСТ 9272-81

    ГОСТ 9553-2017

    ГОСТ EN 14321-1-2015

    ГОСТ EN 13541-2013

    ГОСТ 9900-2013

    ГОСТ EN 12600-2015

    ГОСТ 32281.2-2013

    ГОСТ EN 12758-2015

    ГОСТ EN 14179-1-2015

    ГОСТ EN 12898-2014

    ГОСТ 33000-2014

    ГОСТ EN 572-1-2016

    ГОСТ EN 14178-1-2016

    ГОСТ EN 15683-1-2017

    ГОСТ EN 1748-1-1-2016

    ГОСТ EN 14179-2-2015

    ГОСТ ISO 11485-3-2016

    ГОСТ EN 14321-2-2015

    ГОСТ EN 1748-2-1-2016

    ГОСТ 5727-88

    ГОСТ Р 51969-2002

    ГОСТ ISO 16932-2014

    ГОСТ ISO 11485-1-2016

    ГОСТ EN 572-7-2017

    ГОСТ Р 54163-2010

    ГОСТ ISO 21005-2016

    ГОСТ Р 51968-2002

    ГОСТ ISO 11485-2-2016

    ГОСТ ISO 9385-2013

    ГОСТ Р 52172-2003

    ГОСТ EN 674-2016

    ГОСТ Р 54161-2010

    ГОСТ Р 51136-98

    ГОСТ Р 54168-2010

    ГОСТ Р 54162-2010

    ГОСТ 32278-2013

    ГОСТ Р 54176-2010

    ГОСТ Р 54170-2010

    ГОСТ 32565-2013

    ГОСТ Р 51136-2008

    ГОСТ 8894-86

    ГОСТ Р 54181-2010

    ГОСТ Р 54177-2010

    ГОСТ Р 54182-2010

    ГОСТ Р 54183-2010

    ГОСТ Р 54173-2010

    ГОСТ EN 675-2014

    ГОСТ Р 54175-2010

    ГОСТ Р 56212-2014

    ГОСТ Р 54174-2010

    ГОСТ Р 56210-2014

    ГОСТ Р 54179-2010

    ГОСТ ISO 14438-2014

    ГОСТ Р ИСО 6486-2-2007

    ГОСТ Р 56208-2014

    ГОСТ Р 54178-2010

    ГОСТ ISO 11479-2-2017

    ГОСТ Р 54171-2010

    ГОСТ Р ИСО 6486-1-2007

    ГОСТ Р 54167-2010

    ГОСТ Р 54180-2010

    ГОСТ Р 54172-2010

    ГОСТ Р 54327-2011

    ГОСТ Р 54165-2010

    ГОСТ 32298-2013

    ГОСТ Р ИСО 16932-2011

    ГОСТ Р 54169-2010

    ГОСТ Р 54495-2011

    ГОСТ EN 673-2016

    ГОСТ Р 54164-2010

    ГОСТ Р 54166-2010

    ГОСТ EN 410-2014