ГОСТ Р 54327-2011

ОбозначениеГОСТ Р 54327-2011
НаименованиеСтекло и остекление. Метод определения звукоизолирующей способности
СтатусОтменен
Дата введения07.01.2012
Дата отмены-
Заменен на-
Код ОКС81.040.20
Текст ГОСТа


ГОСТ Р 54327-2011
(ИСО 16940:2008)

Группа И19



НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

СТЕКЛО И ОСТЕКЛЕНИЕ

Метод определения звукоизолирующей способности

Glass and glazing. Sound insulation determination method

ОКС 81.040.20

Дата введения 2012-07-01



Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. N 184-ФЗ "О техническом регулировании", а правила применения национальных стандартов Российской Федерации - ГОСТ Р 1.0-2004 "Стандартизация в Российской Федерации. Основные положения"

Сведения о стандарте

1 ПОДГОТОВЛЕН Открытым акционерным обществом "Институт стекла" на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 41 "Стекло"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 3 июня 2011 г. N 113-ст

4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 16940:2008* "Стекло в строительстве. Остекление и изоляция воздушного шума. Измерение механического сопротивления многослойного стекла" (ISO 16940:2008 "Glass in building - Glazing and airborne sound insulation - Measurement of the mechanical impedance of laminated glass") путем изменения отдельных фраз (слов, значений показателей, ссылок), которые выделены в тексте курсивом. При этом в него не включены ссылки на ИСО 140-1:1997*, ИСО 140-3:1995*, ИСО 717-1:1996* примененного международного стандарта, которые нецелесообразно применять в российской национальной стандартизации в связи с тем, что их отсутствие не влияет на содержание настоящего стандарта и не создает затруднений в его применении.

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - .

Внесение указанных технических отклонений направлено на учет особенностей объекта стандартизации, характерных для Российской Федерации, и целесообразности использования ссылочных национальных стандартов вместо ссылочных международных стандартов.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5-2004 (пункт 3.5)

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемых информационных указателях "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

Настоящий стандарт устанавливает метод измерения коэффициента затухания звуковых колебаний и динамического модуля упругости при изгибе образцов листового стекла, стекла с покрытием, многослойного стекла с целью сравнения их звукоизолирующих свойств. По этим параметрам (а также по плотности и толщине компонентов стекла) можно оценить звукоизолирующую способность остекления.

Примечание - Для определения звукоизолирующей способности может быть использовано уравнение Кремера, как показано в приложении С.

2 Нормативные ссылки

В настоящем стандарте использована нормативная ссылка на следующий стандарт:

ГОСТ Р 54171-2010 Стекло многослойное. Технические условия (ИСО 12543-1:1998 "Стекло в строительстве. Многослойное стекло и многослойное безопасное стекло. Часть 1. Определения и описание составных частей", NEQ)

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ Р 54171, а также следующий термин с соответствующим определением:

3.1 многослойное стекло (laminated glass): Конструкция, состоящая из двух листов стекла, соединенных внутренним слоем, свойства которого определяют с помощью метода, установленного настоящим стандартом.

Примечание 1 - Определение не противоречит ГОСТ Р 54171.

Примечание 2 - Тип и состав внутреннего слоя должны быть указаны.

4 Метод испытания

4.1 Измерение механического сопротивления многослойного стекла

4.1.1 Принцип

Коэффициент затухания звуковых колебаний и динамический модуль упругости при изгибе определяют по результатам измерения входного сопротивления образца стекла, имеющего форму бруска. Входное сопротивление является передаточной функцией между приложенной в одной точке силой и скоростью. Передаточная функция имеет резонансы, соответствующие максимуму отклика системы (резонансная частота).

4.1.2 Измерение

Входное сопротивление измеряют датчиком сопротивления, фиксирующим оба параметра (силу и скорость) в точке крепления образца. Образцы для испытаний представляют собой бруски размером (25±2)х(300±1) мм, что ограничивает количество резонансов в заданной полосе частот по сравнению с образцом в виде пластины. Для целей сравнения применяют листы стекла номинальной толщиной 4 мм. Входное сопротивление измеряют в центре образца, то есть на половине длины. Следует точно определить центральную часть образца, чтобы создать равновесие между левой и правой сторонами. Примеры мод колебаний, представляющих собой изгибные колебания двух свободно зажатых половин бруска, приведены на рисунке 1.


Рисунок 1 - Примеры мод колебаний

Образец приклеивают цианоакрилатным клеем к ударной опоре диаметром 15 мм. Ударная опора должна быть плоской (см. приложение А).

Примечание - Зафиксировать равновесие легче при использовании опоры в виде перевернутой буквы "V", однако используют плоские опоры, так как они более доступны.

При испытании используют белый шум в диапазоне частот от 0 до 5000 Гц.

4.1.3 Определение резонансных частот и коэффициентов затухания звуковых колебаний

После измерения передаточной функции, соответствующей входному сопротивлению, отмечают резонансные частоты и рассматривают резонансные кривые для каждой резонансной частоты (индекс соответствует -му резонансу).

Используемая ширина полос частот достаточна для получения высокой точности. Как правило, используют ширину полос частот 1,25 Гц. Коэффициент затухания звуковых колебаний , являющийся функцией частоты (см. рисунок 2), вычисляют по формуле

. (1)


Рисунок 2 - Определение коэффициента затухания звуковых колебаний

Если в результате измерения (см. приложение D) не получены четкие значения по обеим сторонам пика при минус 3 дБ, следует использовать значения при минус 2 дБ с пересчетом по формуле

. (2)

4.1.4 Испытательное оборудование

Испытательная установка (см. приложение А) состоит из:

- камеры с контролируемыми параметрами окружающей среды или комнаты с системой кондиционирования воздуха;

- генератора белого шума;

- усилителя мощности;

- вибратора;

- датчика сопротивления;

- двух измерительных усилителей;

- двухканального частотного анализатора и вычислительной системы.

Испытательная установка должна соответствовать размерам и массе образцов.

Датчик сопротивления представляет собой интегрированную систему, состоящую из динамометра и акселерометра. Динамометр - это пьезоэлектрический преобразователь, генерирующий выходное напряжение, пропорциональное входной силе.

Акселерометр - это пьезоэлектрический, тензометрический или другой преобразователь, генерирующий выходное напряжение, пропорциональное входному ускорению.

Испытательное оборудование представлено в приложении А. Типичный пример результата измерения приведен в приложении D.

Расчеты могут быть выполнены по данным анализатора или автоматически при использовании специального программного обеспечения.

4.2 Проведение испытания

Измерения проводят при температуре (20±1) °С. Перед испытанием образцы следует выдержать при указанной температуре не менее одного часа, поскольку измерения очень чувствительны к температуре.

Определяют значения резонансной частоты и коэффициента затухания звуковых колебаний для первых трех мод.

Динамические модули упругости при изгибе определяют для первых трех мод по приложению В.

Соответствующие кривые звукоизолирующей способности определяют для моды третьего порядка по приложению С.

Индекс звукоизоляции определяют по [1] и округляют до одной цифры после запятой.

4.3 Протокол испытаний

В протоколе испытаний приводят значения резонансных частот и коэффициентов затухания звуковых колебаний для первых трех колебательных мод.

Приложение А
(обязательное)


Испытательная установка


1 - термометр; 2 - камера с контролируемыми параметрами окружающей среды; 3 - образец; 4 - ударная опора; 5 - быстро схватывающийся клей; 6 - вибратор; 7 - датчик сопротивления; 8 - измерительные усилители механического сопротивления; 9 - усилитель мощности; 10 - частотный анализатор; 11 - компьютер; 12 - генератор шума

Рисунок А.1 - Схема испытательной установки


Приложение В
(обязательное)


Определение динамического модуля упругости при изгибе

Динамический модуль упругости при изгибе , Н·м, вычисляют для каждой резонансной частоты по формуле

, (В.1)

где - плотность на единицу поверхности образца, кг/м;

- безразмерный параметр, заданный для граничных условий свободного закрепления (см. [2], [3]), равный:

1,87510 для 1;

4,69410 для 2;

7,85476 для 3;

10,99554 для 4.

- половина длины бруска, т.е. 150 мм.

Примечание - Полученный динамический модуль упругости при изгибе зависит от частоты.

Приложение С
(обязательное)


Определение звукоизолирующей способности

Звукоизолирующую способность , дБ, в узкой полосе частот пластины, состоящей из одинаковых листов стекла, вычисляют по формуле (см. [4]):

при 75°, (C.1)


где - средний коэффициент пропускания звука, вычисляемый по формуле

, (C.2)


где - коэффициент пропускания звука, падающего под углом , вычисляемый по формуле

(С.3)

где - интенсивность звука, Вт/м;

- звуковое давление, Н/м;

- коэффициент затухания звуковых колебаний многослойной пластины;

- поверхностная плотность пластины, кг/м( - плотность материала пластины, кг/м; - толщина пластины, м);

- плотность воздуха, кг/м;

- скорость звука в воздухе, м/с;

- угол падения;

- упругость при изгибе пластины на единицу ширины, Н·м;

( - частота, Гц).

Таким образом вычисляют значения в третьоктавной полосе частот.

Приложение D
(справочное)


Пример результата


Рисунок D.1 - Типичный пример результата измерения

Библиография

[1]

ISO 717-1:1996 Acoustics - Rating of sound insulation in buildings and of building elements - Part 1: Airborne sound insulation

[2]

Yoshimura J. and Kanazawa J. Influence of damping characteristics on the transmission loss of laminated glass. InterNoise, 84 (1), pp.589-592

[3]

Techniques de I'lngenieur, A412

[4]

Beranek L.L. (ed.). Noise and vibration control. McGraw-Hill, p.281

Электронный текст документа

и сверен по:

, 2011

Другие госты в подкатегории

    ГОСТ 10134.0-82

    ГОСТ 10134.2-82

    ГОСТ 10134.1-82

    ГОСТ 10134.3-82

    ГОСТ 10377-2018

    ГОСТ 10958-2018

    ГОСТ 10279-80

    ГОСТ 10377-78

    ГОСТ 10134.0-2017

    ГОСТ 11067-2013

    ГОСТ 11067-85

    ГОСТ 111-2014

    ГОСТ 11103-2018

    ГОСТ 21836-2021

    ГОСТ 17716-2014

    ГОСТ 17716-91

    ГОСТ 10134.2-2017

    ГОСТ 22290-76

    ГОСТ 22290-2021

    ГОСТ 22291-83

    ГОСТ 22291-2021

    ГОСТ 22292-2021

    ГОСТ 22293-76

    ГОСТ 1663-2016

    ГОСТ 111-2001

    ГОСТ 22551-2019

    ГОСТ 22552.5-2019

    ГОСТ 21836-88

    ГОСТ 1663-81

    ГОСТ 22552.6-2019

    ГОСТ 22552.7-2019

    ГОСТ 22292-76

    ГОСТ 13521-68

    ГОСТ 10134.3-2017

    ГОСТ 22552.1-2019

    ГОСТ 23671-2020

    ГОСТ 23673.5-2020

    ГОСТ 23673.6-2020

    ГОСТ 23672-2020

    ГОСТ 25535-2013

    ГОСТ 25535-82

    ГОСТ 26302-2021

    ГОСТ 22552.4-2019

    ГОСТ 26302-84

    ГОСТ 21992-83

    ГОСТ 26821-86

    ГОСТ 27460-87

    ГОСТ 11103-85

    ГОСТ 26822-86

    ГОСТ 10134.1-2017

    ГОСТ 27904-88

    ГОСТ 22552.0-2019

    ГОСТ 23673.0-2020

    ГОСТ 30407-2019

    ГОСТ 27903-88

    ГОСТ 23673.3-2020

    ГОСТ 23673.4-2020

    ГОСТ 30698-2000

    ГОСТ 23673.2-2020

    ГОСТ 24866-2014

    ГОСТ 30779-2001

    ГОСТ 31364-2014

    ГОСТ 27902-88

    ГОСТ 32280-2013

    ГОСТ 30733-2000

    ГОСТ 30733-2014

    ГОСТ 24866-89

    ГОСТ 30698-2014

    ГОСТ 26302-93

    ГОСТ 32357-2013

    ГОСТ 22552.2-2019

    ГОСТ 32361-2013

    ГОСТ 32362-2013

    ГОСТ 32529-2013

    ГОСТ 32530-2013

    ГОСТ 32539-2013

    ГОСТ 10978-83

    ГОСТ 32540-2013

    ГОСТ 31364-2007

    ГОСТ 30826-2001

    ГОСТ 32562.2-2013

    ГОСТ 32562.3-2013

    ГОСТ 32360-2013

    ГОСТ 32557-2013

    ГОСТ 32281.3-2013

    ГОСТ 32564.1-2013

    ГОСТ 32566-2013

    ГОСТ 32559-2013

    ГОСТ 32996-2014

    ГОСТ 32997-2014

    ГОСТ 30779-2014

    ГОСТ 10978-2014

    ГОСТ 32999-2014

    ГОСТ 30826-2014

    ГОСТ 30407-96

    ГОСТ 22552.3-2019

    ГОСТ 33002-2014

    ГОСТ 33004-2014

    ГОСТ 33001-2014

    ГОСТ 111-90

    ГОСТ 33086-2014

    ГОСТ 33088-2014

    ГОСТ 33089-2014

    ГОСТ 32562.4-2013

    ГОСТ 32568-2013

    ГОСТ 33560-2015

    ГОСТ 33003-2014

    ГОСТ 33561-2015

    ГОСТ 33559-2015

    ГОСТ 34279-2017

    ГОСТ 32281.5-2013

    ГОСТ 5533-2013

    ГОСТ 5533-86

    ГОСТ 32564.2-2013

    ГОСТ 5635-2018

    ГОСТ 33017-2014

    ГОСТ 32562.1-2013

    ГОСТ 6799-2021

    ГОСТ 6799-2005

    ГОСТ 7342-79

    ГОСТ 6799-80

    ГОСТ 33090-2014

    ГОСТ 8325-78

    ГОСТ 8894-2018

    ГОСТ 32998.4-2014

    ГОСТ 33891-2016

    ГОСТ 9272-66

    ГОСТ 7481-2013

    ГОСТ 9272-2017

    ГОСТ 24866-99

    ГОСТ 4.205-79

    ГОСТ 9272-75

    ГОСТ 5635-80

    ГОСТ 33575-2015

    ГОСТ 32563-2013

    ГОСТ 33087-2014

    ГОСТ 32281.1-2013

    ГОСТ 7481-78

    ГОСТ 32998.6-2014

    ГОСТ 9553-74

    ГОСТ 9900-85

    ГОСТ 9424-79

    ГОСТ 9541-75

    ГОСТ 9272-81

    ГОСТ 9553-2017

    ГОСТ EN 14321-1-2015

    ГОСТ EN 13541-2013

    ГОСТ 9900-2013

    ГОСТ EN 12600-2015

    ГОСТ 32281.2-2013

    ГОСТ EN 12758-2015

    ГОСТ EN 14179-1-2015

    ГОСТ EN 12898-2014

    ГОСТ 33000-2014

    ГОСТ EN 572-1-2016

    ГОСТ EN 14178-1-2016

    ГОСТ EN 15683-1-2017

    ГОСТ EN 1748-1-1-2016

    ГОСТ EN 14179-2-2015

    ГОСТ ISO 11485-3-2016

    ГОСТ EN 14321-2-2015

    ГОСТ EN 1748-2-1-2016

    ГОСТ 5727-88

    ГОСТ Р 51969-2002

    ГОСТ ISO 16932-2014

    ГОСТ ISO 11485-1-2016

    ГОСТ EN 572-7-2017

    ГОСТ Р 54163-2010

    ГОСТ ISO 21005-2016

    ГОСТ Р 51968-2002

    ГОСТ ISO 11485-2-2016

    ГОСТ ISO 9385-2013

    ГОСТ Р 52172-2003

    ГОСТ EN 674-2016

    ГОСТ Р 54161-2010

    ГОСТ Р 51136-98

    ГОСТ Р 54168-2010

    ГОСТ Р 54162-2010

    ГОСТ 32278-2013

    ГОСТ Р 54176-2010

    ГОСТ Р 54170-2010

    ГОСТ 32565-2013

    ГОСТ Р 51136-2008

    ГОСТ 8894-86

    ГОСТ Р 54181-2010

    ГОСТ Р 54177-2010

    ГОСТ Р 54182-2010

    ГОСТ Р 54183-2010

    ГОСТ Р 54173-2010

    ГОСТ EN 675-2014

    ГОСТ Р 54175-2010

    ГОСТ Р 56212-2014

    ГОСТ Р 54174-2010

    ГОСТ Р 56210-2014

    ГОСТ Р 54179-2010

    ГОСТ ISO 14438-2014

    ГОСТ Р ИСО 6486-2-2007

    ГОСТ Р 56208-2014

    ГОСТ Р 54178-2010

    ГОСТ ISO 11479-2-2017

    ГОСТ Р 54171-2010

    ГОСТ Р ИСО 6486-1-2007

    ГОСТ Р 54167-2010

    ГОСТ Р 54180-2010

    ГОСТ Р 54172-2010

    ГОСТ Р 54165-2010

    ГОСТ 32298-2013

    ГОСТ Р ИСО 16932-2011

    ГОСТ Р 54169-2010

    ГОСТ Р 54495-2011

    ГОСТ EN 673-2016

    ГОСТ Р 54164-2010

    ГОСТ Р 54166-2010

    ГОСТ EN 410-2014