ГОСТ 32946-2014

ОбозначениеГОСТ 32946-2014
НаименованиеДороги автомобильные общего пользования. Знаки дорожные. Методы контроля
СтатусДействует
Дата введения09.08.2016
Дата отмены-
Заменен на-
Код ОКС93.080.30
Текст ГОСТа


ГОСТ 32946-2014



МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ



Дороги автомобильные общего пользования


ЗНАКИ ДОРОЖНЫЕ


Методы контроля


Automobile roads of the general use. Road signs. Test methods

МКС 93.080.30

Дата введения 2016-09-08

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН республиканским дочерним унитарным предприятием "Белорусский дорожный научно-исследовательский институт "БелдорНИИ", Межгосударственным техническим комитетом по стандартизации МТК 418 "Дорожное хозяйство"

2 ВНЕСЕН Государственным комитетом по стандартизации Республики Беларусь

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации по переписке (протокол от 30 сентября 2014 г. N 70-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Казахстан

KZ

Госстандарт Республики Казахстан

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 31 августа 2016 г. N 992-ст межгосударственный стандарт ГОСТ 32946-2014 введен в действие в качестве национального стандарта Российской Федерации с 8 сентября 2016 г.

5 ВВЕДЕН ВПЕРВЫЕ

6 ПЕРЕИЗДАНИЕ. Сентябрь 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

Настоящий стандарт распространяется на вновь устанавливаемые дорожные знаки (далее - знаки), а также на материалы, применяемые для изготовления световозвращающих поверхностей (далее - световозвращающие материалы) по ГОСТ 32945, и устанавливает методы их контроля.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие межгосударственные стандарты:

ГОСТ 9.302 (ИСО 1463-82, ИСО 2064-80, ИСО 2106-82, ИСО 2128-76, ИСО 2177-85, ИСО 2178-82, ИСО 2360-82, ИСО 2361-82, ИСО 2819-80, ИСО 3497-76, ИСО 3543-81, ИСО 3613-80, ИСО 3882-86, ИСО 3892-80, ИСО 4516-80, ИСО 4518-80, ИСО 4522-1-85, ИСО 4522-2-85, ИСО 4524-1-85, ИСО 4524-3-85, ИСО 4524-5-85, ИСО 8401-86) Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Методы контроля

ГОСТ 9.307 (ИСО 1461-89, СТ СЭВ 4663-84) Единая система защиты от коррозии и старения. Покрытия цинковые горячие. Общие требования и методы контроля

ГОСТ 427 Линейки измерительные металлические. Технические условия

ГОСТ 2746 (МЭК 238-87) Патроны резьбовые для электрических ламп. Общие технические условия

________________

Действует ГОСТ IEC 60061-2-2017 "Цоколи и патроны для источников света с калибрами для проверки взаимозаменяемости и безопасности. Часть 2. Патроны".

ГОСТ 2768 Ацетон технический. Технические условия

ГОСТ 7721 Источники света для измерений цвета. Типы. Технические требования. Маркировка

ГОСТ 25336 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 26433.1 Система обеспечения точности геометрических параметров в строительстве. Правила выполнения измерений. Элементы заводского изготовления

ГОСТ 32945-2014 Дороги автомобильные общего пользования. Знаки дорожные. Технические требования

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применяют термины с соответствующими определениями по ГОСТ 32945.

4 Методы контроля

4.1 Испытания знаков на соответствие требованиям настоящего стандарта проводят при температуре воздуха (20±5)°С и относительной влажности 40%-90%, если в методике испытания не установлено иное.

4.2 Количество образцов для испытания каждого показателя - не менее трех.

4.3 Геометрические параметры знаков определяют по ГОСТ 26433.1.

4.4 Толщину горячего цинкового покрытия знаков определяют по ГОСТ 9.302.

4.5 Внешний вид горячего цинкового покрытия знаков контролируют внешним осмотром.

4.6 Сцепление горячего цинкового покрытия определяют методом нанесения сетки царапин или методом нагрева по ГОСТ 9.307.

4.7 Устойчивость конструкции знака к деформациям в результате воздействия расчетной ветровой нагрузки, динамической нагрузки от снегоуборки, вертикальной и горизонтальной точечной нагрузки проверяют в соответствии с приложением А.

4.8 Отклонение угловых размеров изображений знаков определяют по ГОСТ 26433.1.

4.9 Координаты цветности х и у точек пересечения граничных линий цветовых областей, коэффициент яркости и флуоресцентный коэффициент яркости определяют с помощью спектрофотометра с погрешностью измерения ±3%-5%, колориметра с погрешностью измерения ±5% или спектроколориметра с погрешностью измерения ±5% при освещении под углом (45±5)° и измерении под углом (0±5) ° для стандартного источника света D по ГОСТ 7721. Углы измеряются по отношению к перпендикуляру к измеряемой поверхности.

Измерения выполняют в соответствии с инструкциями к приборам.

4.10 Удельный коэффициент световозвращения световозвращающего материала изображения знака определяют в соответствии с приложением Б.

4.11 Ускоренное искусственное старение световозвращающего материала проводят в соответствии с приложением В в течение 2000 ч при параметрах, приведенных в таблице 1.

Таблица 1

Наименование параметра

Лампа с воздушным охлаждением

Лампа с водяным охлаждением

Цикл:

- освещение

Непрерывное

Непрерывное

- распыление воды

Каждые 2 ч в течение 18 мин

Каждые 2 ч в течение 18 мин

Температура на черном стандартном термометре

(65±5)°С

(65±5)°С

Относительная влажность

(50±5)%

(50±5)%

Плотность потока излучения в диапазоне:

- от 300 до 400 нм

(60±6) Вт/м

(60±6) Вт/м

- от 300 до 800 нм

(550±55) Вт/м

(630±63) Вт/м

Примечание - Вода, используемая для распыления на образец, должна содержать не более 1 мг/дм кремния.

4.12 Адгезию световозвращающего материала и несветовозвращающего материала черного цвета к основе знака определяют в соответствии с приложением Г.

4.13 Устойчивость световозвращающего материала к воздействию ударной нагрузки определяют в соответствии с приложением Д.

4.14 Количество частей, из которых состоит изображение дорожного знака, контролируют внешним осмотром.

4.15 Для проверки яркости изображения знака с внутренним освещением его разделяют на равные участки в форме квадрата со стороной не более 150 мм. Размер стороны выбирают таким образом, чтобы было выделено не менее 10 участков, распределенных по возможности равномерно по поверхности измеряемого элемента. Измерение яркости выполняют фотоэлектрическим фотометром с погрешностью установки длины волны ±2 нм в центре каждого участка и определяют ее среднеарифметическое значение для каждого цвета.

Для проверки минимальной и максимальной яркости изображения на знаке визуально выбирают на цветном элементе две точки с минимальной и максимальной яркостью и измеряют значения их яркости.

4.16 Проверку равномерности распределения яркости производят для знаков в сборе в указанной ниже последовательности.

Для каждого цвета визуально выделяют на поверхности знака площадки с центрами в точках 1 и 2 с наибольшим возможным перепадом яркости, расположенных на расстоянии 50 мм друг от друга (см. рисунок 1).

Размеры в миллиметрах


Рисунок 1

Измеряют фотоэлектрическим фотометром значения яркости L1, L2 и Lz (кд·м) в точках 1, 2 и z, симметрично расположенной между точками 1 и 2 соответственно, и определяют равномерность распределения яркости, которая считается допустимой при соблюдении неравенства: /L1-L2/0,5 Lz.

4.17 Освещенность измеряют люксметром с максимальной погрешностью ±10% с верхним пределом измерения не менее 500 лк в соответствии с инструкцией к прибору.

4.18 Фиксированную установку резьбовых электропатронов проверяют по ГОСТ 2746.

4.19 Проверку плотности соединения стекла с корпусом знака проводят в указанной ниже последовательности.

Знаки устанавливают в рабочее положение и воздействуют на них струями воды под давлением (203680±1000) Па с высоты 1,5-2 м от верхней точки знака под углом (30±2)° к вертикали, перекрывающими габаритные размеры знаков не менее чем на 200 мм. Продолжительность испытания - (15±1) мин. Через каждые 3 мин знаки поворачивают вокруг вертикальной оси на угол (90±2)°. Допускается прерывать испытания на время поворота знаков.

По окончании испытания с наружной поверхности удаляют воду, вскрывают и осматривают знаки. Знаки считают выдержавшими испытания, если на лампах и контактах не будут обнаружены капли воды.

4.20 Сопротивление изоляции проверяют без ламп, установленных на знаке. Сопротивление изоляции должно измеряться мегомметром постоянного тока напряжением 500 В с погрешностью измерения ±15%.

Знак считается прошедшим испытание, если сопротивление изоляции между токоведущими проводами и заземляющим контактом составляет не менее 20 МОм в обесточенном состоянии.

4.21 Электрическую прочность изоляции проверяют без ламп, установленных на знаке, на высоковольтной установке переменного тока частотой (50±2) Гц и мощностью не менее 500 Вт. Напряжение повышают плавно от нуля или от значения, не превышающего номинального, до испытательного значения в течение (20±2) с.

Под испытательным напряжением в (1500±50) В знаки выдерживают в течение (60±2) с, после чего напряжение плавно (не менее чем за (10±1) с) снижают до нуля.

Знак считается прошедшим испытание, если изоляция между токоведущими проводами и заземляющим контактом выдержала испытательное напряжение без пробоя или перекрытия.

4.22 Устойчивость световозвращающего материала к воздействию очищающих жидкостей определяют в соответствии с приложением Е. Для испытания отбирают две жидкости из приведенных в ГОСТ 32945. При этом одна жидкость должна быть из используемых для очистки от грязи и пыли, другая - для удаления нефтепродуктов и угольной пыли.

4.23 Комплектность, маркировку и упаковку контролируют внешним осмотром.

4.24 При измерении параметров знаков допускается применять другие средства измерений, метрологические характеристики которых позволяют определять контролируемые показатели с заданной точностью.

Приложение А
(обязательное)

Методика определения устойчивости конструкции знака

А.1 Сущность методики

Сущность методики заключается в определении максимального временного отклонения конструкции дорожного знака под воздействием расчетной ветровой нагрузки, динамической нагрузки от снегоуборки, вертикальной и горизонтальной точечной нагрузки.

А.2 Точность результатов испытания

Настоящая методика обеспечивает получение результатов испытания с точностью до 1%.

А.3 Средства испытания, вспомогательные устройства и материалы

Груз, обеспечивающий давление на конструкцию дорожного знака с точностью до 1%.

Линейка металлическая - по ГОСТ 427, с ценой деления 1 мм.

А.4 Условия проведения испытания

Испытания проводят при температуре воздуха не ниже 5°С и относительной влажности не более 75%.

Образец дорожного знака прикрепляют к опоре при помощи крепежных деталей, предоставленных изготовителем, в соответствии с сопроводительной документацией.

А.5 Порядок подготовки и проведения испытания

Стойка дорожного знака жестко закрепляется в зажимном устройстве.

К дорожному знаку прикладывается нагрузка m в течение 5 мин в соответствии со схемой испытания на:

- воздействие расчетной ветровой нагрузки (рисунок А.1);

- воздействие динамической нагрузки от снегоуборки (рисунок А.2);

- воздействие вертикальной точечной нагрузки (рисунок А.3);

- воздействие горизонтальной точечной нагрузки (рисунок А.4).


Рисунок А.1 - Схема приложения расчетной ветровой нагрузки

Размеры в миллиметрах


Рисунок А.2 - Схема приложения динамической нагрузки от снегоуборки


Рисунок А.3 - Схема приложения вертикальной точечной нагрузки


Рисунок А.4 - Схема приложения горизонтальной точечной нагрузки

Линейкой измеряется максимальное временное отклонение конструкции дорожного знака d (рисунок А.5).


Рисунок А.5 - Схема измерения максимального временного отклонения конструкции дорожного знака

А.6 Порядок обработки результатов испытания

Максимальное временное отклонение конструкции дорожного знака , мм/м, с точностью до 1 мм/м определяют по формуле

, (А.1)

где d - максимальное временное отклонение, мм;

h - расстояние от оси отклонения, м.

Образец считают прошедшим испытание, если конструкция знака не разрушится, а максимальное временное отклонение составит не более 25 мм/м.

Приложение Б
(обязательное)

Методика определения удельного коэффициента световозвращения световозвращающего материала

Б.1 Сущность методики испытания

Сущность методики заключается в определении количества света, отраженного световозвращающим материалом в сторону наблюдателя от источника света, при определенном угле наблюдения и угле освещения .

Б.2 Точность результатов испытания

Настоящая методика обеспечивает получение результатов испытания с точностью до 1%.

Б.3 Средства испытаний

Источник света, относительное спектральное распределение энергии которого соответствует стандартному источнику МКО А по ГОСТ 7721, с максимальной апертурой 20".

Фотоприемник, относительная спектральная чувствительность которого соответствует относительной спектральной световой эффективности для дневного зрения V(), с максимальной апертурой 20".

Люксметр с диапазоном измерения от 10 до 200000 лк, с максимальной погрешностью ±10%.

Поворотное устройство для вращения образца в двух взаимно перпендикулярных плоскостях.

Б.4 Условия проведения испытания

Испытания проводят при температуре воздуха не ниже 5°С и относительной влажности не более 75%.

Образец световозвращающего материала должен быть в форме квадрата со стороной (100±5) мм.

Поверхность световозвращающего материала в зоне измерения должна быть очищена от пыли и просушена (если проводилась влажная очистка).

Б.5 Порядок подготовки и проведения испытания

Удельный коэффициент световозвращения световозвращающего материала определяют при угле наблюдения и угле освещения , указанных в ГОСТ 32945-2014 (пункты 6.1.7-6.1.9). При этом углы выставляются при помощи поворотного устройства с погрешностью ±0,05°. Расположение источника света и фотоприемника относительно поверхности образца световозвращающего материала должно соответствовать схемам, приведенным на рисунках Б.1 и Б.2. Расстояние между образцом световозвращающего материала и источником света должно составлять не менее 3 м.

1 - стандартный источник света типа А; 2 - фотоприемник; 3 - образец световозвращающего материала; - угол наблюдения

Рисунок Б.1 - Схема измерения удельного коэффициента световозвращения (вертикальный угол наблюдения)

1 - стандартный источник света типа А; 2 - фотоприемник; 3 - образец световозвращающего материала; - угол освещения

Рисунок Б.2 - Схема измерения удельного коэффициента световозвращения (горизонтальный угол освещения)

Б.6 Порядок обработки результатов испытания

Удельный коэффициент световозвращения световозвращающего материала R с точностью до 0,1 кд·лк·м определяют для угла наблюдения и угла освещения по формуле

(Б.1)*

_________________

* Формула соответствует оригиналу. - .

где - сила света световозвращающего материала, кд;

- освещенность поверхности световозвращающего материала в плоскости, перпендикулярной направлению падения света, лк;

S - площадь измеряемой поверхности световозвращающего материала, м.

За результат испытания принимают среднеарифметическое значение результатов трех измерений.

Приложение В
(обязательное)

Методика проведения ускоренного искусственного старения световозвращающего материала

В.1 Сущность методики испытания

Сущность методики заключается в определении способности световозвращающего материала сохранять свои характеристики после длительного воздействия атмосферных условий (ускоренного искусственного старения).

В.2 Точность результатов испытания

Настоящая методика обеспечивает получение результатов испытания с точностью до 1%.

В.3 Средства испытаний

Климатическая камера, позволяющая проводить испытания материалов с параметрами в соответствии с таблицей 1.

В.4 Порядок подготовки и проведения испытания

Образец световозвращающего материала, наклеенного на металлическую основу, должен быть в форме квадрата со стороной (100±5) мм.

Перед испытанием у образца световозвращающего материала определяют следующие показатели:

- координаты цветности х и у точек пересечения граничных линий цветовых областей по 4.9;

- коэффициент яркости по 4.9;

- удельный коэффициент световозвращения при угле наблюдения =20' и углах освещения =5° и =30° по 4.10.

Образец световозвращающего материала устанавливают в климатическую камеру таким образом, чтобы непосредственно на него оказывалось влияние атмосферных условий. Испытания проводят в течение 2000 ч при условиях, указанных в таблице 1.

В.5 Порядок обработки результатов испытания

После проведения испытания у образца световозвращающего материала определяют показатели, указанные в В.4.

Образец считают прошедшим испытание, если его показатели в зависимости от класса и цветоустойчивости отвечают следующим требованиям:

- координаты цветности х и у точек пересечения граничных линий цветовых областей соответствуют ГОСТ 32945-2014 (пункты 6.1.1-6.1.4);

- коэффициент яркости световозвращающего материала соответствует ГОСТ 32945-2014 (пункт 6.1.5);

- удельный коэффициент световозвращения световозвращающего материала при угле наблюдения =20' и углах освещения =5° и =30° - не менее 80% от значений, приведенных в ГОСТ 32945-2014 (пункты 6.1.7-6.1.9).

Приложение Г
(обязательное)


Методика определения адгезии материала к основе знака

Г.1 Сущность методики испытания

Сущность методики заключается в определении способности материала не отслаиваться от основы знака после приложения нагрузки массой (0,80±0,01) кг в течение (300±0,2) с.

Г.2 Средства испытаний и материалы

Груз массой (0,80±0,01) кг.

Секундомер с точностью 0,2 с.

Линейка - по ГОСТ 427, с ценой деления 1 мм.

Образец-подложка, изготовленный из материала основы знака, размером не менее 200x70 мм.

Ацетон технический - по ГОСТ 2768.

Г.3 Порядок подготовки и проведения испытания

Из испытываемого материала вырезают образец размером [(25x150)±2] мм. С образца снимают защитную пленку (40%-60% ее общей длины) и наклеивают в соответствии с рекомендациями изготовителя на предварительно обезжиренный ацетоном образец-подложку, изготовленный из материала основы знака.

Примечание - Образец несветовозвращающего материала черного цвета наклеивают на образец-подложку со световозвращающим материалом белого цвета.

Наклеенный образец материала выдерживают до испытания в течение 72 ч при температуре (20±5)°С.

Испытания проводят при температуре (20±5)°С. Устанавливают образец материала, как показано на рисунке Г.1, и навешивают груз массой (0,80±0,01) кг. Нагружают образец в течение (300±0,2) с, после чего измеряют длину отслоения образца материала от образца-подложки при помощи линейки по ГОСТ 427.

Образец считают прошедшим испытание, если длина отслоения не превышает 50 мм.

1 - образец-подложка; 2 - образец материала до испытания; 3 - образец материала после испытания; 4 - груз массой (0,80±0,01) кг; b - длина отслоения образца материала

Рисунок Г.1 - Схема определения адгезии материала к основе знака

Приложение Д
(обязательное)

Методика определения устойчивости световозвращающего материала к воздействию ударной нагрузки

Д.1 Сущность методики испытания

Сущность методики заключается в определении устойчивости световозвращающего материала к удару груза массой 0,45 кг, падающего с высоты 0,22 м.

Д.2 Средства испытания, вспомогательные устройства и материалы

Груз массой (0,45±0,01) кг с шаровым ударником диаметром (100±1) мм.

Направляющая длиной (0,22±0,01) м.

Д.3 Порядок подготовки и проведения испытания

Перед испытанием образец световозвращающего материала размером [(100х100)±2] мм наклеивают в соответствии с рекомендациями изготовителя на предварительно обезжиренный ацетоном образец-подложку, изготовленный из материала основы знака. Затем его устанавливают световозвращающим материалом вверх на упоры, как показано на рисунке Д.1.

1 - стойка; 2 - держатель; 3 - направляющая; 4 - упоры для установки образца; 5 - образец световозвращающего материала; 6 - груз с шаровым ударником

Рисунок Д.1 - Схема определения устойчивости световозвращающего материала к воздействию ударной нагрузки

На поверхность световозвращающего материала по направляющей сбрасывают груз с шаровым наконечником. Образец считают прошедшим испытание, если после удара на образце отсутствуют трещины и отслаивание от подложки в радиусе 6 мм от точки удара.

Приложение Е
(обязательное)


Методика определения устойчивости световозвращающего материала к очищающим жидкостям

Е.1 Сущность методики испытания

Сущность методики заключается в визуальной оценке световозвращающего материала после его контакта с различными очищающими жидкостями.

Е.2 Средства испытания, вспомогательные устройства и материалы

Стаканы химические - по ГОСТ 25336, объемом не менее 1000 мл.

Стеклянные палочки для подвешивания образцов.

Очищающие жидкости - по ГОСТ 32945-2014 (пункт 8.2).

Фильтровальная бумага.

Е.3 Порядок подготовки и проведения испытания

Перед испытанием образец световозвращающего материала, который должен быть в форме квадрата со стороной (100±2) мм, наклеивают в соответствии с рекомендациями изготовителя на предварительно обезжиренный ацетоном образец-подложку, изготовленный из материала основы знака. Образец-подложка должен иметь отверстие посередине одной из сторон.

Образец навешивают на стеклянную палочку и помещают в стакан с очищающей жидкостью. Расстояние между образцами должно быть не менее 20 мм, время выдержки в очищающей жидкости - (10±1) мин.

По истечении указанного времени образец достают из жидкости, промывают проточной водой и высушивают при помощи фильтровальной бумаги. Образец считают прошедшим испытание, если на поверхности испытанного образца отсутствуют пузырьки, трещины, бугры, вздутия и разводы.

УДК 625.745.6:658.562(476):006.354

МКС 93.080.30

Ключевые слова: знаки дорожные, геометрическая форма, размеры, цвет, символ, группа, яркость, координаты цветности, удельный коэффициент световозвращения

Электронный текст документа

и сверен по:

, 2019

Другие госты в подкатегории

    ГОСТ 21.511-83

    ГОСТ 24333-80

    ГОСТ 13508-74

    ГОСТ 25869-90

    ГОСТ 17581-72

    ГОСТ 25695-91

    ГОСТ 30413-96

    ГОСТ 27811-2016

    ГОСТ 30412-96

    ГОСТ 25607-2009

    ГОСТ 31015-2002

    ГОСТ 32703-2014

    ГОСТ 32704-2014

    ГОСТ 24333-97

    ГОСТ 32705-2014

    ГОСТ 32718-2014

    ГОСТ 30491-2012

    ГОСТ 32717-2014

    ГОСТ 23457-86

    ГОСТ 32708-2014

    ГОСТ 31994-2013

    ГОСТ 32719-2014

    ГОСТ 32706-2014

    ГОСТ 32707-2014

    ГОСТ 32720-2014

    ГОСТ 32724-2014

    ГОСТ 32723-2014

    ГОСТ 31970-2012

    ГОСТ 32731-2014

    ГОСТ 32725-2014

    ГОСТ 32721-2014

    ГОСТ 32755-2014

    ГОСТ 32756-2014

    ГОСТ 32758-2014

    ГОСТ 32759-2014

    ГОСТ 32730-2014

    ГОСТ 32729-2014

    ГОСТ 32757-2014

    ГОСТ 32761-2014

    ГОСТ 32762-2014

    ГОСТ 32722-2014

    ГОСТ 32760-2014

    ГОСТ 32726-2014

    ГОСТ 32765-2014

    ГОСТ 32753-2014

    ГОСТ 32728-2014

    ГОСТ 32754-2014

    ГОСТ 32766-2014

    ГОСТ 32768-2014

    ГОСТ 32818-2014

    ГОСТ 32764-2014

    ГОСТ 32816-2014

    ГОСТ 32727-2014

    ГОСТ 32767-2014

    ГОСТ 32817-2014

    ГОСТ 32820-2014

    ГОСТ 32823-2014

    ГОСТ 32819-2014

    ГОСТ 32763-2014

    ГОСТ 32830-2014

    ГОСТ 32824-2014

    ГОСТ 32825-2014

    ГОСТ 32822-2014

    ГОСТ 32836-2014

    ГОСТ 32846-2014

    ГОСТ 32847-2014

    ГОСТ 32843-2014

    ГОСТ 32839-2014

    ГОСТ 32815-2014

    ГОСТ 32826-2014

    ГОСТ 32858-2014

    ГОСТ 32859-2014

    ГОСТ 32844-2014

    ГОСТ 32821-2014

    ГОСТ 32849-2014

    ГОСТ 32863-2014

    ГОСТ 32867-2014

    ГОСТ 32861-2014

    ГОСТ 32829-2014

    ГОСТ 32864-2014

    ГОСТ 32862-2014

    ГОСТ 32860-2014

    ГОСТ 32848-2014

    ГОСТ 32944-2014

    ГОСТ 32947-2014

    ГОСТ 32868-2014

    ГОСТ 32845-2014

    ГОСТ 32842-2014

    ГОСТ 26804-2012

    ГОСТ 32872-2014

    ГОСТ 32866-2014

    ГОСТ 32871-2014

    ГОСТ 32956-2014

    ГОСТ 32865-2014

    ГОСТ 32961-2014

    ГОСТ 32959-2014

    ГОСТ 32950-2014

    ГОСТ 32955-2014

    ГОСТ 32952-2014

    ГОСТ 32964-2014

    ГОСТ 32948-2014

    ГОСТ 32840-2014

    ГОСТ 33024-2014

    ГОСТ 33027-2014

    ГОСТ 32962-2014

    ГОСТ 32954-2014

    ГОСТ 33046-2014

    ГОСТ 32838-2014

    ГОСТ 33028-2014

    ГОСТ 33031-2014

    ГОСТ 33025-2014

    ГОСТ 33029-2014

    ГОСТ 32960-2014

    ГОСТ 33026-2014

    ГОСТ 33051-2014

    ГОСТ 33052-2014

    ГОСТ 33050-2014

    ГОСТ 32963-2014

    ГОСТ 33055-2014

    ГОСТ 33053-2014

    ГОСТ 33030-2014

    ГОСТ 32870-2014

    ГОСТ 33127-2014

    ГОСТ 33047-2014

    ГОСТ 33128-2014

    ГОСТ 33049-2014

    ГОСТ 33048-2014

    ГОСТ 33100-2014

    ГОСТ 33056-2014

    ГОСТ 33054-2014

    ГОСТ 32869-2014

    ГОСТ 33134-2014

    ГОСТ 33136-2014

    ГОСТ 33138-2014

    ГОСТ 33142-2014

    ГОСТ 33133-2014

    ГОСТ 33141-2014

    ГОСТ 33135-2014

    ГОСТ 33143-2014

    ГОСТ 33062-2014

    ГОСТ 33078-2014

    ГОСТ 32965-2014

    ГОСТ 33109-2014

    ГОСТ 33145-2014

    ГОСТ 33146-2014

    ГОСТ 33144-2014

    ГОСТ 33161-2014

    ГОСТ 32953-2014

    ГОСТ 33129-2014

    ГОСТ 33140-2014

    ГОСТ 33148-2014

    ГОСТ 33382-2015

    ГОСТ 33181-2014

    ГОСТ 33150-2014

    ГОСТ 33147-2014

    ГОСТ 33388-2015

    ГОСТ 33387-2015

    ГОСТ 33475-2015

    ГОСТ 4641-80

    ГОСТ 33137-2014

    ГОСТ 9128-2009

    ГОСТ 33139-2014

    ГОСТ 33383-2015

    ГОСТ 9128-97

    ГОСТ 33180-2014

    ГОСТ 33151-2014

    ГОСТ 9128-2013

    ГОСТ 33385-2015

    ГОСТ 33386-2015

    ГОСТ 32949-2014

    ГОСТ Р 50798-95

    ГОСТ ISO 22242-2016

    ГОСТ 33057-2014

    ГОСТ 33175-2014

    ГОСТ Р 50970-96

    ГОСТ 33149-2014

    ГОСТ Р 50597-93

    ГОСТ 33101-2014

    ГОСТ Р 50970-2011

    ГОСТ Р 50971-96

    ГОСТ Р 52056-2003

    ГОСТ 33389-2015

    ГОСТ ISO 15643-2016

    ГОСТ Р 52398-2005

    ГОСТ Р 52399-2022

    ГОСТ Р 51567-2000

    ГОСТ Р 52399-2005

    ГОСТ Р 52128-2003

    ГОСТ Р 52606-2006

    ГОСТ Р 52575-2021

    ГОСТ Р 52575-2006

    ГОСТ Р 52765-2007

    ГОСТ ISO 15645-2016

    ГОСТ Р 52576-2021

    ГОСТ Р 52607-2006

    ГОСТ Р 50971-2011

    ГОСТ Р 52576-2006

    ГОСТ Р 53172-2008

    ГОСТ EN 12697-3-2013

    ГОСТ Р 52605-2006

    ГОСТ 33177-2014

    ГОСТ Р 41.27-2001

    ГОСТ 33178-2014

    ГОСТ Р 52767-2007

    ГОСТ Р 53171-2008

    ГОСТ Р 54305-2011

    ГОСТ Р 54400-2020

    ГОСТ Р 54400-2011

    ГОСТ Р 55028-2012

    ГОСТ Р 53170-2008

    ГОСТ Р 55029-2012

    ГОСТ Р 53173-2008

    ГОСТ EN 536-2012

    ГОСТ Р 55029-2020

    ГОСТ Р 52748-2007

    ГОСТ Р 54401-2011

    ГОСТ Р 55033-2012

    ГОСТ Р 55396-2013

    ГОСТ Р 55397-2013

    ГОСТ Р 53627-2009

    ГОСТ Р 55398-2013

    ГОСТ Р 55400-2013

    ГОСТ Р 55399-2013

    ГОСТ Р 54308-2011

    ГОСТ Р 54809-2011

    ГОСТ Р 54401-2020

    ГОСТ Р 54306-2011

    ГОСТ Р 55401-2013

    ГОСТ Р 55405-2013

    ГОСТ Р 55408-2013

    ГОСТ Р 55406-2013

    ГОСТ Р 55404-2013

    ГОСТ Р 55402-2013

    ГОСТ Р 52766-2007

    ГОСТ Р 55032-2012

    ГОСТ Р 55030-2012

    ГОСТ Р 55035-2012

    ГОСТ Р 55420-2013

    ГОСТ Р 55034-2012

    ГОСТ Р 55426-2013

    ГОСТ Р 52129-2003

    ГОСТ Р 55052-2012

    ГОСТ Р 55421-2013

    ГОСТ Р 55403-2013

    ГОСТ Р 55031-2012

    ГОСТ Р 55422-2013

    ГОСТ Р 55427-2013

    ГОСТ Р 56419-2015

    ГОСТ Р 54307-2011

    ГОСТ Р 55407-2013

    ГОСТ Р 55424-2013

    ГОСТ Р 56338-2015

    ГОСТ Р 55428-2013

    ГОСТ Р 56335-2015

    ГОСТ Р 55425-2013

    ГОСТ Р 58107.2-2018

    ГОСТ Р 51256-2011

    ГОСТ Р 58368-2019

    ГОСТ Р 55423-2013

    ГОСТ Р 56337-2015

    ГОСТ Р 55409-2013

    ГОСТ Р 58351-2019

    ГОСТ Р 56336-2015

    ГОСТ Р 58400.5-2019

    ГОСТ Р 58107.3-2018

    ГОСТ Р 56339-2015

    ГОСТ Р 58400.4-2019

    ГОСТ Р 58400.10-2019

    ГОСТ Р 58350-2019

    ГОСТ Р 58349-2019

    ГОСТ Р 58400.1-2019

    ГОСТ Р 58400.2-2019

    ГОСТ Р 58397-2019

    ГОСТ 33176-2014

    ГОСТ Р 58401.15-2019

    ГОСТ Р 58401.13-2019

    ГОСТ Р 58401.14-2019

    ГОСТ Р 58401.11-2019

    ГОСТ Р 58401.10-2019

    ГОСТ Р 58401.19-2019

    ГОСТ Р 58401.17-2019

    ГОСТ Р 55419-2013

    ГОСТ Р 55844-2013

    ГОСТ Р 58401.16-2019

    ГОСТ Р 58401.24-2019

    ГОСТ Р 58401.23-2019

    ГОСТ Р 58401.21-2019

    ГОСТ Р 58400.6-2019

    ГОСТ Р 58401.25-2019

    ГОСТ Р 58400.11-2019

    ГОСТ Р 58401.20-2019

    ГОСТ Р 58401.18-2019

    ГОСТ Р 58401.9-2019

    ГОСТ Р 58401.2-2019

    ГОСТ Р 58401.22-2019

    ГОСТ Р 58400.9-2019

    ГОСТ Р 58401.6-2019

    ГОСТ Р 58401.5-2019

    ГОСТ Р 58401.8-2019

    ГОСТ Р 58107.1-2018

    ГОСТ Р 58402.3-2019

    ГОСТ Р 58401.7-2019

    ГОСТ Р 58400.8-2019

    ГОСТ Р 58402.4-2019

    ГОСТ Р 58406.3-2020

    ГОСТ Р 58402.5-2019

    ГОСТ Р 58402.8-2019

    ГОСТ Р 58406.1-2020

    ГОСТ Р 58402.7-2019

    ГОСТ Р 58406.4-2020

    ГОСТ Р 58406.6-2020

    ГОСТ Р 58406.5-2020

    ГОСТ Р 58402.1-2019

    ГОСТ Р 58402.6-2019

    ГОСТ Р 58401.4-2019

    ГОСТ Р 58407.6-2020

    ГОСТ Р 58406.8-2019

    ГОСТ Р 58442-2019

    ГОСТ Р 58422.2-2021

    ГОСТ Р 58407.1-2020

    ГОСТ Р 58406.9-2019

    ГОСТ Р 58770-2019

    ГОСТ Р 58406.10-2020

    ГОСТ Р 58654-2019

    ГОСТ Р 58406.7-2020

    ГОСТ Р 58422.1-2021

    ГОСТ Р 58830-2020

    ГОСТ Р 58861-2020

    ГОСТ Р 58911-2020

    ГОСТ Р 58402.2-2019

    ГОСТ Р 58829-2020

    ГОСТ Р 58952.1-2020

    ГОСТ Р 58831-2020

    ГОСТ Р 51256-2018

    ГОСТ Р 58952.11-2020

    ГОСТ Р 58952.10-2020

    ГОСТ Р 58952.2-2020

    ГОСТ Р 58952.5-2020

    ГОСТ Р 58952.4-2020

    ГОСТ Р 58427-2020

    ГОСТ Р 58952.3-2020

    ГОСТ Р 58400.7-2019

    ГОСТ Р 58952.7-2020

    ГОСТ Р 58952.8-2020

    ГОСТ Р 59103-2020

    ГОСТ Р 59104-2020

    ГОСТ Р 58952.9-2020

    ГОСТ Р 58952.6-2020

    ГОСТ Р 59119-2020

    ГОСТ Р 59105-2020

    ГОСТ Р 59118.1-2020

    ГОСТ Р 59120-2021

    ГОСТ Р 58818-2020

    ГОСТ Р 59179-2021

    ГОСТ Р 59201-2021

    ГОСТ Р 59204-2022

    ГОСТ Р 59290-2021

    ГОСТ Р 59291-2021

    ГОСТ Р 59171-2020

    ГОСТ Р 59205-2021

    ГОСТ Р 58406.2-2020

    ГОСТ Р 58401.3-2019

    ГОСТ Р 59180-2021

    ГОСТ Р 59327.1-2021

    ГОСТ Р 58401.1-2019

    ГОСТ Р 59280-2020

    ГОСТ Р 59432-2021

    ГОСТ Р 58862-2020

    ГОСТ Р 59610-2021

    ГОСТ Р 59434-2021

    ГОСТ Р 59691-2021

    ГОСТ Р 59401-2021

    ГОСТ Р 59692-2021

    ГОСТ Р 59697-2021

    ГОСТ Р 59864.1-2022

    ГОСТ Р 59433-2021

    ГОСТ Р 59864.2-2022

    ГОСТ Р 59628-2021

    ГОСТ Р 59698-2021

    ГОСТ Р 59118.2-2020

    ГОСТ Р 59919-2021

    ГОСТ Р 59866-2022

    ГОСТ Р 59300-2021

    ГОСТ Р 59865-2022

    ГОСТ Р 58948-2020

    ГОСТ Р 59980-2022

    ГОСТ Р 70037-2022

    ГОСТ Р 70044-2022

    ГОСТ Р 59982-2022

    ГОСТ Р 70060-2022

    ГОСТ 32945-2014

    ГОСТ Р 70073-2022

    ГОСТ Р 70124-2022

    ГОСТ Р 70197.1-2022

    ГОСТ Р 70072-2022

    ГОСТ Р 58947-2020

    ГОСТ Р 70197.2-2022

    ГОСТ Р 58400.3-2019

    ГОСТ Р 70197.3-2022

    ГОСТ Р 59918-2021

    ГОСТ Р 70092-2022

    ГОСТ Р 70243-2022

    ГОСТ Р 59292-2021

    ГОСТ Р 58401.12-2019

    ГОСТ Р 59983-2022

    ГОСТ Р 59301-2021

    ГОСТ Р 59327.2-2021

    ГОСТ Р 58653-2019

    ГОСТ Р 58426-2020

    ГОСТ Р 59172-2020

    ГОСТ Р 59302-2021

    ГОСТ 10807-78

    ГОСТ Р 58137-2018

    ГОСТ 33063-2014