ГОСТ 33137-2014

ОбозначениеГОСТ 33137-2014
НаименованиеДороги автомобильные общего пользования. Битумы нефтяные дорожные вязкие. Метод определения динамической вязкости ротационным вискозиметром
СтатусДействует
Дата введения10.01.2015
Дата отмены-
Заменен на-
Код ОКС93.080.20
Текст ГОСТа


ГОСТ 33137-2014



МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Дороги автомобильные общего пользования

БИТУМЫ НЕФТЯНЫЕ ДОРОЖНЫЕ ВЯЗКИЕ

Метод определения динамической вязкости ротационным вискозиметром

Automobile roads of general use. Viscous road petroleum bitumens. Method for determination of dynamic viscosity by rotational viscometer


МКС 93.080.20

Дата введения 2015-10-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Автономной некоммерческой организацией "Научно-исследовательский институт транспортно-строительного комплекса" (АНО "НИИ ТСК"), Межгосударственным техническим комитетом по стандартизации МТК 418 "Дорожное хозяйство"

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 5 декабря 2014 г. N 46)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Азербайджан

AZ

Азстандарт

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Казахстан

KZ

Госстандарт Республики Казахстан

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

Узбекистан

UZ

Узстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 29 мая 2015 г. N 523-ст межгосударственный стандарт ГОСТ 33137-2014 введен в действие в качестве национального стандарта Российской Федерации с 1 октября 2015 г.

5 ВВЕДЕН ВПЕРВЫЕ

6 ПЕРЕИЗДАНИЕ. Август 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

Настоящий стандарт распространяется на вязкие дорожные нефтяные битумы (далее - битумы), предназначенные в качестве вяжущего материала при строительстве, реконструкции и ремонте дорожных покрытий, и устанавливает метод определения динамической вязкости битумов с помощью ротационных вискозиметров при температуре от 40°С и в диапазоне значений от 0,001 до 5000 Па·с.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 12.1.004 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.005 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны

ГОСТ 12.1.007 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.1.044 Система стандартов безопасности труда. Пожаровзрывоопасность веществ и материалов. Номенклатура показателей и методы их определения

ГОСТ 12.4.131 Халаты женские. Технические условия

ГОСТ 12.4.132 Халаты мужские. Технические условия

ГОСТ 2517 Нефть и нефтепродукты. Методы отбора проб

ГОСТ 6613 Сетки проволочные тканые с квадратными ячейками. Технические условия

ГОСТ 28846 (ИСО 4418-78) Перчатки и рукавицы. Общие технические условия

ГОСТ 33133 Дороги автомобильные общего пользования. Битумы нефтяные дорожные вязкие. Технические требования

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

3.1 В настоящем стандарте применены термины по ГОСТ 33133, а также следующие термины с соответствующими определениями.

3.1.1 скорость сдвига: Величина, определяемая градиентом скорости в битуме, перпендикулярным к напряжению сдвига.

Примечание - В системе СИ единицей измерения скорости сдвига является с.

3.1.2 напряжение сдвига: Величина, определяемая отношением силы, производящей сдвигающее действие, к площади воздействия.

Примечание - Напряжение сдвига выражают в паскалях.

3.1.3 конфигурация: Присоединенные к вискозиметру соосно расположенные элементы, способные вращаться относительно друг друга вокруг общей оси, непосредственно соприкасающиеся с образцом и при вращении вызывающие сдвиговую деформацию образца.

3.1.4 ротационный вискозиметр: Техническое устройство ротационного типа, предназначенное для измерения динамической вязкости.

4 Требования к средствам измерений, вспомогательным устройствам и реактивам

4.1 При выполнении измерений применяют следующие средства измерений, вспомогательные устройства и реактивы:

4.1.1 Ротационный вискозиметр, способный прилагать к образцу битума напряжение сдвига, вызывая тем самым его течение таким образом, чтобы скорость сдвига была одинаковой по всему объему образца и поддавалась точному расчету в зависимости от частоты относительного вращения элементов конфигурации и их геометрических размеров. Прибор должен позволять задавать необходимую скорость сдвига напрямую или через частоту относительного вращения элементов конфигурации. Прибор должен позволять определять данную скорость сдвига, напряжение сдвига и температуру испытания, необходимые для определения динамической вязкости образца. Прибор должен позволять поддерживать необходимую скорость вращения с точностью, необходимой для поддержания скорости сдвига образца с точностью до 5%.

4.1.2 Конфигурация для битума (пример конфигурации представлен на рисунке 1) при температурах испытания ниже 100°С, обеспечивающая отношение радиусов 1,3R/R1,07, зазор между рабочими


1 - контейнер для битума; 2 - валик; 3 - толщина рабочего слоя битума; 4 - испытуемый битум; R - радиус валика; R - внутренний радиус контейнера

Рисунок 1 - Схема конфигурации (принцип устройства)

поверхностями валика и контейнера от 0,4 до 6 мм и высоту рабочей поверхности валика не менее R. Для испытаний битумов при температурах выше 100°С допускается применение конфигураций различных размеров, при условии что они подходят для измерения вязкости с необходимой скоростью сдвига или скоростью относительного вращения элементов конфигурации в диапазоне, соответствующем динамической вязкости образца. Пределы допускаемой приведенной погрешности ротационного вискозиметра не должны превышать ±5%.

Для возможности корректного сравнения результатов испытаний необходимо проводить испытание при постоянной скорости сдвига и температуре образца.

4.1.3 Термостат, поддерживающий температуру среды с точностью 0,3°С.

4.1.4 Весы для определения массы пробы битума, обеспечивающие точность взвешивания до 0,1 г.

4.1.5 Нагревательный прибор, способный нагревать емкость с битумом до температуры 160°С и обеспечивающий доступ к емкости для постоянного помешивания битума.

4.1.6 Сушильный шкаф, обеспечивающий поддержание температуры от 40°С до 160°С.

4.1.7 Сито с металлической сеткой N 07 по ГОСТ 6613 или другие сита с сеткой аналогичных размеров.

4.1.8 Палочка стеклянная или металлическая для перемешивания битума.

5 Метод испытаний

Настоящий метод испытаний заключается в измерении относительного сопротивления течению, вызванному сдвиговым воздействием на битум вращающимися элементами конфигурации. Динамическую вязкость вычисляют как отношение между приложенным напряжением сдвига и скоростью сдвига.

Условия сдвиговых воздействий при определении динамической вязкости:

- условие 1. Динамическую вязкость определяют при одной определенной скорости сдвига и температуре образца, при этом оценивают устойчивость структуры битума к воздействию сдвиговых нагрузок;

- условие 2. Динамическую вязкость определяют при одной определенной скорости сдвига и одной температуре образца, при этом сначала определяют динамическую вязкость в соответствии с условием 1, затем скорость сдвига многократно повышают, после достижения максимальной скорости сдвига происходит обратное снижение скорости сдвига до первоначальной и снова определяют динамическую вязкость. По разности значений динамической вязкости, измеренных при начальной скорости сдвига до и после многократного повышения скорости сдвига, оценивают устойчивость структуры битума к воздействию сдвиговых нагрузок.

6 Требования безопасности и охраны окружающей среды

6.1 Битумы относятся к 4-му классу опасности и являются малоопасными веществами по степени воздействия на организм человека.

6.2 При работе с битумом необходимо соблюдать требования техники безопасности, указанные в ГОСТ 12.1.007 и требования противопожарной безопасности в соответствии с ГОСТ 12.1.004.

6.3 Предельно допустимая концентрация паров углеводородов битумов в воздухе рабочей зоны производственных помещений - 300 мг/м в соответствии с ГОСТ 12.1.005.

6.4 При работе с битумами используют специальную защитную одежду по ГОСТ 12.4.131 или ГОСТ 12.4.132. Для защиты рук используют перчатки по ГОСТ 28846.

6.5 Битумы согласно ГОСТ 12.1.044 относятся к трудногорючим жидкостям.

6.6 Испытанный битум утилизируют в соответствии с рекомендациями предприятия-изготовителя, указанными в технической документации на материал.

7 Требования к условиям испытаний

При проведении испытаний следует соблюдать следующие условия для помещений, в которых проводят испытание битума:

- температура воздуха - (21±4)°С;

- относительная влажность воздуха - не более 80%.

8 Подготовка к выполнению испытаний

8.1 При подготовке к выполнению испытаний проводят следующие мероприятия:

- отбор проб;

- подготовку образцов;

- подготовку и настройку оборудования для испытаний.

8.1.1 Отбор проб

Отбор проб проводят в соответствии с ГОСТ 2517.

8.1.2 Подготовка образцов

При подготовке образцов для испытаний необходимо осуществить следующие операции:

- образец битума доводят до подвижного состояния и обезвоживают, сначала нагревают его в сушильном шкафу до температуры (105±5)°С, затем, не допуская локальных перегревов, доводят температуру битума при постоянном перемешивании до температуры, на (90±10)°С выше температуры размягчения, но не ниже 120°С и не выше 160°С. Время нагревания битума при указанных условиях не должно превышать 50 мин.

Примечание - Температура в сушильном шкафу в момент нагрева образца не должна превышать 160°С. Чтобы разогреть за указанное время образец объемом более 1 л, его рекомендуется сначала разделить на образцы объемом менее 1 л, например с помощью разогретого ножа.

Расплавленный до подвижного состояния и обезвоженный битум процеживают через сито и затем тщательно перемешивают до полного удаления пузырьков воздуха.

8.1.3 Подготовка к испытаниям

8.1.3.1 Элементы конфигурации нагревают в сушильном шкафу до температуры (85±5)°С. Разогревают термостатирующее оборудование до температуры (85±5)°С. Далее без задержки, чтобы элементы конфигурации не остыли, заполняют конфигурацию битумом до необходимого уровня и присоединяют к вискозиметру. Подсоединяют термостатирующее оборудование и доводят температуру образца до температуры испытания. После достижения температуры испытания заполненную конфигурацию термостатируют в течение (45±15) мин. Время между извлечением элементов конфигурации из сушильного шкафа, до окончания заполнения не должно превышать 2 мин, а до полного подсоединения заполненной конфигурации и термостатирующего оборудования - 5 мин. В случае если вискозиметр имеет встроенное или трудносъемное термостатирующее устройство, нагрев элементов конфигурации перед наполнением допускается в вискозиметре с помощью этого устройства. В этом случае разогретую конфигурацию нагревают с помощью такого термостата, затем отсоединяют и без задержки, чтобы части измерительной геометрии не остыли, заполняют конфигурацию битумом и присоединяют ее обратно к вискозиметру. Время между отсоединением ненаполненных компонентов конфигурации от вискозиметра до окончательного подсоединения заполненной конфигурации к вискозиметру не должно превышать 3 мин.

8.1.3.2 Количество битума, которым заполняют конфигурацию, должно соответствовать, с учетом юстировки аппарата, рекомендациям производителя вискозиметра для обеспечения необходимой точности измерений. При заполнении конфигурации необходимо избегать попадания пузырьков воздуха в образец.

8.1.3.3 При подсоединении заполненной конфигурации к вискозиметру соблюдают рекомендации производителя и не допускают погружения шпинделя на глубину более глубины погружения при испытании.

8.1.3.4 Проверяют горизонтальность установки вискозиметра с помощью уровнемера (например, пузырькового).

8.1.3.5 В период достижения стабилизации температуры испытания допускается вращение валика со скоростью не более 1 об/мин.

8.1.3.6 Поддерживают температуру в течение термостатирования и испытания с точностью до 0,3°С.

8.1.3.7 Между испытаниями контейнер для битума и валик промывают растворителем. Сушат контейнер для битума и валик в сушильном шкафу при температуре от 100°С до 120°С до полного удаления следов растворителя.

9 Порядок выполнения испытаний

9.1 Для измерения динамической вязкости при условии 1 проводят следующие операции:

9.1.1 Проводят подготовку образца в соответствии с 8.1.3.

9.1.2 Устанавливают скорость вращения валика так, чтобы достигнуть требуемой скорости сдвига с точностью 5%. Проводят измерения в течение трех последовательных промежутков времени по (45±5) с.

При использовании прибора с визуальной фиксацией крутящего момента показания прибора фиксируются сразу по истечении каждого из промежутков.

9.1.3 Регистрируют следующие параметры:

- напряжение сдвига;

- скорость сдвига (при температурах испытания ниже 100°С);

- скорость относительного вращения элементов конфигурации (при температурах испытания выше 100°С);

- температуру;

- динамическую вязкость.

Примечание - Если прибор не позволяет фиксировать значение динамической вязкости, ее значение рассчитывают вручную, как отношение напряжения сдвига к скорости сдвига.

9.2 При определении динамической вязкости для оценки устойчивости структуры битума к сдвиговым нагрузкам при условии 2 проводят следующие операции:

- проводят измерение динамической вязкости () при скорости сдвига 1,5 с в соответствии с 9.1.1 и 9.1.2;

- регистрируют напряжение сдвига, скорость сдвига, температуру и динамическую вязкость;

- повышают многократно сдвиговую нагрузку, для чего, не изменяя температуру испытания, повышают скорость сдвига до значения 30 с с точностью 5% за время не более 1 мин и поддерживают данную скорость сдвига в течение (3,0±0,1) мин;

- снижают скорость сдвига до первоначального значения 1,5 с за время не более 1 мин;

- проводят измерение динамической вязкости () при скорости сдвига 1,5 с в соответствии с 9.1.2;

- регистрируют напряжение сдвига, скорость сдвига, температуру и динамическую вязкость.

10 Обработка результатов испытаний

10.1 Вычисление динамической вязкости при условии 1 осуществляют по формуле

, (1)

где - динамическая вязкость, Па·с;

- напряжение сдвига, Па;

- скорость сдвига, с.

За результат испытания принимают среднеарифметическое значение динамических вязкостей (Па·с), измеренных в трех последовательных промежутках времени.

10.2 Вычисление динамической вязкости при условии 2 до воздействия многократной сдвиговой нагрузки осуществляют аналогично 10.1.

Для определения изменения динамической вязкости после воздействия многократной сдвиговой нагрузки вычисляют разницу значений динамической вязкости по формуле

, (2)

где - разница значений динамической вязкости, Па·с;

- динамическая вязкость до воздействия многократной сдвиговой нагрузки при 1,5 с, Па·с;

- динамическая вязкость после воздействия многократной сдвиговой нагрузки при 1,5 с, Па·с.

Процентное изменение динамической вязкости после воздействия сдвиговой нагрузки вычисляют по формуле

, (3)

где - процентное изменение динамической вязкости после воздействия сдвиговой нагрузки, %;

- динамическая вязкость до повышения скорости сдвига при 1,5 с, Па·с;

- динамическая вязкость после повышения скорости сдвига до 30 с и его снижения до 1,5 с, Па·с.

За результат испытания принимают процентное изменение динамической вязкости после воздействия сдвиговой нагрузки (), округленное до 0,1%.

10.3 Сходимость результатов

Расхождение результатов последовательных определений, полученных одним исполнителем на одном и том же вискозиметре в идентичных условиях на одном и том же битуме, не должно превышать 8% среднеарифметического значения (с доверительной вероятностью 95%).

Расхождение результатов двух определений, полученных в разных лабораториях на одном и том же битуме, не должно превышать 12% среднеарифметического значения измерений динамической вязкости.

11 Оформление результатов испытаний

Результаты испытаний оформляют в виде протокола, который должен содержать:

- идентификацию испытуемого образца по паспорту;

- дату проведения испытаний;

- дату отбора проб;

- наименование организации, проводившей испытания;

- ссылку на настоящий стандарт и отклонения от его требований;

- ссылку на акт отбора проб;

- информацию о применяемом испытательном оборудовании;

- динамическую вязкость, скорость сдвига, напряжение сдвига и температуру.

12 Контроль точности результатов измерений

Точность результатов измерений обеспечивается:

- соблюдением требований настоящего стандарта;

- проведением периодической оценки метрологических характеристик средств измерений;

- проведением периодической аттестации оборудования.

Лицо, проводящее измерения, должно быть ознакомлено с требованиями настоящего стандарта.

УДК 625.85.06:006.354

МКС 93.080.20

Ключевые слова: автомобильные дороги общего пользования, вязкие дорожные нефтяные битумы, динамическая вязкость, ротационный вискозиметр, конфигурация




Электронный текст документа
и сверен по:

, 2019

Другие госты в подкатегории

    ГОСТ 21.511-83

    ГОСТ 24333-80

    ГОСТ 13508-74

    ГОСТ 25869-90

    ГОСТ 17581-72

    ГОСТ 25695-91

    ГОСТ 30413-96

    ГОСТ 27811-2016

    ГОСТ 30412-96

    ГОСТ 25607-2009

    ГОСТ 31015-2002

    ГОСТ 32703-2014

    ГОСТ 32704-2014

    ГОСТ 24333-97

    ГОСТ 32705-2014

    ГОСТ 32718-2014

    ГОСТ 30491-2012

    ГОСТ 32717-2014

    ГОСТ 23457-86

    ГОСТ 32708-2014

    ГОСТ 31994-2013

    ГОСТ 32719-2014

    ГОСТ 32706-2014

    ГОСТ 32707-2014

    ГОСТ 32720-2014

    ГОСТ 32724-2014

    ГОСТ 32723-2014

    ГОСТ 31970-2012

    ГОСТ 32731-2014

    ГОСТ 32725-2014

    ГОСТ 32721-2014

    ГОСТ 32755-2014

    ГОСТ 32756-2014

    ГОСТ 32758-2014

    ГОСТ 32759-2014

    ГОСТ 32730-2014

    ГОСТ 32729-2014

    ГОСТ 32757-2014

    ГОСТ 32761-2014

    ГОСТ 32762-2014

    ГОСТ 32722-2014

    ГОСТ 32760-2014

    ГОСТ 32726-2014

    ГОСТ 32765-2014

    ГОСТ 32753-2014

    ГОСТ 32728-2014

    ГОСТ 32754-2014

    ГОСТ 32766-2014

    ГОСТ 32768-2014

    ГОСТ 32818-2014

    ГОСТ 32764-2014

    ГОСТ 32816-2014

    ГОСТ 32727-2014

    ГОСТ 32767-2014

    ГОСТ 32817-2014

    ГОСТ 32820-2014

    ГОСТ 32823-2014

    ГОСТ 32819-2014

    ГОСТ 32763-2014

    ГОСТ 32830-2014

    ГОСТ 32824-2014

    ГОСТ 32825-2014

    ГОСТ 32822-2014

    ГОСТ 32836-2014

    ГОСТ 32846-2014

    ГОСТ 32847-2014

    ГОСТ 32843-2014

    ГОСТ 32839-2014

    ГОСТ 32815-2014

    ГОСТ 32826-2014

    ГОСТ 32858-2014

    ГОСТ 32859-2014

    ГОСТ 32844-2014

    ГОСТ 32821-2014

    ГОСТ 32849-2014

    ГОСТ 32863-2014

    ГОСТ 32867-2014

    ГОСТ 32861-2014

    ГОСТ 32829-2014

    ГОСТ 32864-2014

    ГОСТ 32862-2014

    ГОСТ 32860-2014

    ГОСТ 32848-2014

    ГОСТ 32944-2014

    ГОСТ 32947-2014

    ГОСТ 32868-2014

    ГОСТ 32845-2014

    ГОСТ 32842-2014

    ГОСТ 26804-2012

    ГОСТ 32872-2014

    ГОСТ 32866-2014

    ГОСТ 32871-2014

    ГОСТ 32956-2014

    ГОСТ 32865-2014

    ГОСТ 32961-2014

    ГОСТ 32959-2014

    ГОСТ 32950-2014

    ГОСТ 32955-2014

    ГОСТ 32952-2014

    ГОСТ 32964-2014

    ГОСТ 32948-2014

    ГОСТ 32840-2014

    ГОСТ 33024-2014

    ГОСТ 33027-2014

    ГОСТ 32962-2014

    ГОСТ 32946-2014

    ГОСТ 32954-2014

    ГОСТ 33046-2014

    ГОСТ 32838-2014

    ГОСТ 33028-2014

    ГОСТ 33031-2014

    ГОСТ 33025-2014

    ГОСТ 33029-2014

    ГОСТ 32960-2014

    ГОСТ 33026-2014

    ГОСТ 33051-2014

    ГОСТ 33052-2014

    ГОСТ 33050-2014

    ГОСТ 32963-2014

    ГОСТ 33055-2014

    ГОСТ 33053-2014

    ГОСТ 33030-2014

    ГОСТ 32870-2014

    ГОСТ 33127-2014

    ГОСТ 33047-2014

    ГОСТ 33128-2014

    ГОСТ 33049-2014

    ГОСТ 33048-2014

    ГОСТ 33100-2014

    ГОСТ 33056-2014

    ГОСТ 33054-2014

    ГОСТ 32869-2014

    ГОСТ 33134-2014

    ГОСТ 33136-2014

    ГОСТ 33138-2014

    ГОСТ 33142-2014

    ГОСТ 33133-2014

    ГОСТ 33141-2014

    ГОСТ 33135-2014

    ГОСТ 33143-2014

    ГОСТ 33062-2014

    ГОСТ 33078-2014

    ГОСТ 32965-2014

    ГОСТ 33109-2014

    ГОСТ 33145-2014

    ГОСТ 33146-2014

    ГОСТ 33144-2014

    ГОСТ 33161-2014

    ГОСТ 32953-2014

    ГОСТ 33129-2014

    ГОСТ 33140-2014

    ГОСТ 33148-2014

    ГОСТ 33382-2015

    ГОСТ 33181-2014

    ГОСТ 33150-2014

    ГОСТ 33147-2014

    ГОСТ 33388-2015

    ГОСТ 33387-2015

    ГОСТ 33475-2015

    ГОСТ 4641-80

    ГОСТ 9128-2009

    ГОСТ 33139-2014

    ГОСТ 33383-2015

    ГОСТ 9128-97

    ГОСТ 33180-2014

    ГОСТ 33151-2014

    ГОСТ 9128-2013

    ГОСТ 33385-2015

    ГОСТ 33386-2015

    ГОСТ 32949-2014

    ГОСТ Р 50798-95

    ГОСТ ISO 22242-2016

    ГОСТ 33057-2014

    ГОСТ 33175-2014

    ГОСТ Р 50970-96

    ГОСТ 33149-2014

    ГОСТ Р 50597-93

    ГОСТ 33101-2014

    ГОСТ Р 50970-2011

    ГОСТ Р 50971-96

    ГОСТ Р 52056-2003

    ГОСТ 33389-2015

    ГОСТ ISO 15643-2016

    ГОСТ Р 52398-2005

    ГОСТ Р 52399-2022

    ГОСТ Р 51567-2000

    ГОСТ Р 52399-2005

    ГОСТ Р 52128-2003

    ГОСТ Р 52606-2006

    ГОСТ Р 52575-2021

    ГОСТ Р 52575-2006

    ГОСТ Р 52765-2007

    ГОСТ ISO 15645-2016

    ГОСТ Р 52576-2021

    ГОСТ Р 52607-2006

    ГОСТ Р 50971-2011

    ГОСТ Р 52576-2006

    ГОСТ Р 53172-2008

    ГОСТ EN 12697-3-2013

    ГОСТ Р 52605-2006

    ГОСТ 33177-2014

    ГОСТ Р 41.27-2001

    ГОСТ 33178-2014

    ГОСТ Р 52767-2007

    ГОСТ Р 53171-2008

    ГОСТ Р 54305-2011

    ГОСТ Р 54400-2020

    ГОСТ Р 54400-2011

    ГОСТ Р 55028-2012

    ГОСТ Р 53170-2008

    ГОСТ Р 55029-2012

    ГОСТ Р 53173-2008

    ГОСТ EN 536-2012

    ГОСТ Р 55029-2020

    ГОСТ Р 52748-2007

    ГОСТ Р 54401-2011

    ГОСТ Р 55033-2012

    ГОСТ Р 55396-2013

    ГОСТ Р 55397-2013

    ГОСТ Р 53627-2009

    ГОСТ Р 55398-2013

    ГОСТ Р 55400-2013

    ГОСТ Р 55399-2013

    ГОСТ Р 54308-2011

    ГОСТ Р 54809-2011

    ГОСТ Р 54401-2020

    ГОСТ Р 54306-2011

    ГОСТ Р 55401-2013

    ГОСТ Р 55405-2013

    ГОСТ Р 55408-2013

    ГОСТ Р 55406-2013

    ГОСТ Р 55404-2013

    ГОСТ Р 55402-2013

    ГОСТ Р 52766-2007

    ГОСТ Р 55032-2012

    ГОСТ Р 55030-2012

    ГОСТ Р 55035-2012

    ГОСТ Р 55420-2013

    ГОСТ Р 55034-2012

    ГОСТ Р 55426-2013

    ГОСТ Р 52129-2003

    ГОСТ Р 55052-2012

    ГОСТ Р 55421-2013

    ГОСТ Р 55403-2013

    ГОСТ Р 55031-2012

    ГОСТ Р 55422-2013

    ГОСТ Р 55427-2013

    ГОСТ Р 56419-2015

    ГОСТ Р 54307-2011

    ГОСТ Р 55407-2013

    ГОСТ Р 55424-2013

    ГОСТ Р 56338-2015

    ГОСТ Р 55428-2013

    ГОСТ Р 56335-2015

    ГОСТ Р 55425-2013

    ГОСТ Р 58107.2-2018

    ГОСТ Р 51256-2011

    ГОСТ Р 58368-2019

    ГОСТ Р 55423-2013

    ГОСТ Р 56337-2015

    ГОСТ Р 55409-2013

    ГОСТ Р 58351-2019

    ГОСТ Р 56336-2015

    ГОСТ Р 58400.5-2019

    ГОСТ Р 58107.3-2018

    ГОСТ Р 56339-2015

    ГОСТ Р 58400.4-2019

    ГОСТ Р 58400.10-2019

    ГОСТ Р 58350-2019

    ГОСТ Р 58349-2019

    ГОСТ Р 58400.1-2019

    ГОСТ Р 58400.2-2019

    ГОСТ Р 58397-2019

    ГОСТ 33176-2014

    ГОСТ Р 58401.15-2019

    ГОСТ Р 58401.13-2019

    ГОСТ Р 58401.14-2019

    ГОСТ Р 58401.11-2019

    ГОСТ Р 58401.10-2019

    ГОСТ Р 58401.19-2019

    ГОСТ Р 58401.17-2019

    ГОСТ Р 55419-2013

    ГОСТ Р 55844-2013

    ГОСТ Р 58401.16-2019

    ГОСТ Р 58401.24-2019

    ГОСТ Р 58401.23-2019

    ГОСТ Р 58401.21-2019

    ГОСТ Р 58400.6-2019

    ГОСТ Р 58401.25-2019

    ГОСТ Р 58400.11-2019

    ГОСТ Р 58401.20-2019

    ГОСТ Р 58401.18-2019

    ГОСТ Р 58401.9-2019

    ГОСТ Р 58401.2-2019

    ГОСТ Р 58401.22-2019

    ГОСТ Р 58400.9-2019

    ГОСТ Р 58401.6-2019

    ГОСТ Р 58401.5-2019

    ГОСТ Р 58401.8-2019

    ГОСТ Р 58107.1-2018

    ГОСТ Р 58402.3-2019

    ГОСТ Р 58401.7-2019

    ГОСТ Р 58400.8-2019

    ГОСТ Р 58402.4-2019

    ГОСТ Р 58406.3-2020

    ГОСТ Р 58402.5-2019

    ГОСТ Р 58402.8-2019

    ГОСТ Р 58406.1-2020

    ГОСТ Р 58402.7-2019

    ГОСТ Р 58406.4-2020

    ГОСТ Р 58406.6-2020

    ГОСТ Р 58406.5-2020

    ГОСТ Р 58402.1-2019

    ГОСТ Р 58402.6-2019

    ГОСТ Р 58401.4-2019

    ГОСТ Р 58407.6-2020

    ГОСТ Р 58406.8-2019

    ГОСТ Р 58442-2019

    ГОСТ Р 58422.2-2021

    ГОСТ Р 58407.1-2020

    ГОСТ Р 58406.9-2019

    ГОСТ Р 58770-2019

    ГОСТ Р 58406.10-2020

    ГОСТ Р 58654-2019

    ГОСТ Р 58406.7-2020

    ГОСТ Р 58422.1-2021

    ГОСТ Р 58830-2020

    ГОСТ Р 58861-2020

    ГОСТ Р 58911-2020

    ГОСТ Р 58402.2-2019

    ГОСТ Р 58829-2020

    ГОСТ Р 58952.1-2020

    ГОСТ Р 58831-2020

    ГОСТ Р 51256-2018

    ГОСТ Р 58952.11-2020

    ГОСТ Р 58952.10-2020

    ГОСТ Р 58952.2-2020

    ГОСТ Р 58952.5-2020

    ГОСТ Р 58952.4-2020

    ГОСТ Р 58427-2020

    ГОСТ Р 58952.3-2020

    ГОСТ Р 58400.7-2019

    ГОСТ Р 58952.7-2020

    ГОСТ Р 58952.8-2020

    ГОСТ Р 59103-2020

    ГОСТ Р 59104-2020

    ГОСТ Р 58952.9-2020

    ГОСТ Р 58952.6-2020

    ГОСТ Р 59119-2020

    ГОСТ Р 59105-2020

    ГОСТ Р 59118.1-2020

    ГОСТ Р 59120-2021

    ГОСТ Р 58818-2020

    ГОСТ Р 59179-2021

    ГОСТ Р 59201-2021

    ГОСТ Р 59204-2022

    ГОСТ Р 59290-2021

    ГОСТ Р 59291-2021

    ГОСТ Р 59171-2020

    ГОСТ Р 59205-2021

    ГОСТ Р 58406.2-2020

    ГОСТ Р 58401.3-2019

    ГОСТ Р 59180-2021

    ГОСТ Р 59327.1-2021

    ГОСТ Р 58401.1-2019

    ГОСТ Р 59280-2020

    ГОСТ Р 59432-2021

    ГОСТ Р 58862-2020

    ГОСТ Р 59610-2021

    ГОСТ Р 59434-2021

    ГОСТ Р 59691-2021

    ГОСТ Р 59401-2021

    ГОСТ Р 59692-2021

    ГОСТ Р 59697-2021

    ГОСТ Р 59864.1-2022

    ГОСТ Р 59433-2021

    ГОСТ Р 59864.2-2022

    ГОСТ Р 59628-2021

    ГОСТ Р 59698-2021

    ГОСТ Р 59118.2-2020

    ГОСТ Р 59919-2021

    ГОСТ Р 59866-2022

    ГОСТ Р 59300-2021

    ГОСТ Р 59865-2022

    ГОСТ Р 58948-2020

    ГОСТ Р 59980-2022

    ГОСТ Р 70037-2022

    ГОСТ Р 70044-2022

    ГОСТ Р 59982-2022

    ГОСТ Р 70060-2022

    ГОСТ 32945-2014

    ГОСТ Р 70073-2022

    ГОСТ Р 70124-2022

    ГОСТ Р 70197.1-2022

    ГОСТ Р 70072-2022

    ГОСТ Р 58947-2020

    ГОСТ Р 70197.2-2022

    ГОСТ Р 58400.3-2019

    ГОСТ Р 70197.3-2022

    ГОСТ Р 59918-2021

    ГОСТ Р 70092-2022

    ГОСТ Р 70243-2022

    ГОСТ Р 59292-2021

    ГОСТ Р 58401.12-2019

    ГОСТ Р 59983-2022

    ГОСТ Р 59301-2021

    ГОСТ Р 59327.2-2021

    ГОСТ Р 58653-2019

    ГОСТ Р 58426-2020

    ГОСТ Р 59172-2020

    ГОСТ Р 59302-2021

    ГОСТ 10807-78

    ГОСТ Р 58137-2018

    ГОСТ 33063-2014