ГОСТ Р 51947-2002

ОбозначениеГОСТ Р 51947-2002
НаименованиеНефть и нефтепродукты. Определение серы методом энергодисперсионной рентгенофлуоресцентной спектрометрии
СтатусДействует
Дата введения07.01.2003
Дата отмены-
Заменен на-
Код ОКС75.080
Текст ГОСТа


ГОСТ Р 51947-2002

Группа Б09

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

НЕФТЬ И НЕФТЕПРОДУКТЫ


Определение серы методом энергодисперсионной рентгенофлуоресцентной спектрометрии

Petroleum and petroleum products. Determination of sulphur by method of energy-dispersive X-ray fluorescence spectrometry

МКС 75.080

ОКСТУ 0209

Дата введения 2003-07-01

Предисловие

1 РАЗРАБОТАН Техническим комитетом по стандартизации ТК 31 "Нефтяные топлива и смазочные материалы" (ОАО “ВНИИНП”)

ВНЕСЕН Госстандартом России

2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 9 октября 2002 г. N 368-ст

3 ВВЕДЕН ВПЕРВЫЕ

4 Настоящий стандарт представляет собой аутентичный текст национального стандарта США АСТМ Д 4294-98 "Нефтепродукты. Определение серы методом энергодисперсионной рентгенофлуоресцентной спектрометрии"

5 ПЕРЕИЗДАНИЕ

ВНЕСЕНА поправка, опубликованная в ИУС N 6, 2008 год

Поправка внесена изготовителем базы данных

ВНЕСЕНО Изменение N 1, утвержденное и введенное в действие Приказом Росстандарта от 10.04.2012 N 35-ст c 01.06.2012

Изменение N 1 внесено изготовителем базы данных по тексту ИУС N 6, 2012 год

1 Область применения

1.1 Настоящий стандарт устанавливает метод определения массовой доли серы от 0,0150% до 5,00% в дизельном топливе, нефте, керосине, нефтяных остатках, основах смазочных масел, гидравлических маслах, реактивных топливах, сырых нефтях, бензине (неэтилированном) и других дистиллятных нефтепродуктах.

Пользуясь этой методикой, можно анализировать серу в других продуктах, таких как топлива М-85 и М-100, содержащих 85% и 100% метанола.

Метод обеспечивает быстрое и точное измерение общей серы в нефти и нефтепродуктах с минимальной подготовкой образца. Время анализа образца обычно 2-4 мин.

Сущность метода состоит в том, что испытуемый образец помещают в пучок лучей, испускаемых источником рентгеновского излучения. Измеряют характеристики энергии возбуждения от рентгеновского излучения и сравнивают полученный сигнал счетчика импульсов с сигналами счетчика, полученными при испытании заранее подготовленных калибровочных образцов.

Для определения серы от 0,0150% до 5,00% требуются две группы калибровочных образцов.

Образцы с массовой долей серы более 5,0% могут быть разбавлены таким образом, чтобы массовая доля серы в разбавленном продукте находилась в диапазоне от 0,0150% до 5,00%.

Примечание - При испытании разбавленных образцов значения показателей прецизионности могут быть выше, чем установленные в разделе 10 для неразбавленных образцов.

(Измененная редакция, Изм. N 1).

1.2 Мешающие факторы

При использовании данного метода испытания могут возникнуть два типа помех.

Спектральные помехи (перекрывание спектральных пиков) возникают, если испытуемый образец содержит воду, алкилированный свинец, кремний, фосфор, кальций, калий и галоидные соединения при концентрациях, превышающих измеренной концентрации серы или более чем несколько сот миллиграмм на килограмм.

Кроме спектральных помех, существуют помехи, вызванные изменениями концентрации элементов в образце, приводящими к изменению интенсивности каждого элемента.

К таким помехам относится присутствие в испытуемом образце присадок, улучшающих эксплуатационные свойства нефтепродукта, например оксигенаты в бензине.

Оба типа помех компенсируются в современных приборах использованием вмонтированного программного обеспечения.

Рекомендуется время от времени проверять автоматическую коррекцию этих помех, предложенную изготовителем, воспользовавшись инструкцией к прибору.

Для новых составов поправки обязательно должны быть проверены.

1.3 Требования безопасности приведены в приложении А.

1.4 Величины, установленные в системе СИ, рассматривают как стандартные.

Предпочтительной единицей является массовая доля серы в процентах.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на нормативные документы, указанные в приложении В.

3 Аппаратура

3.1 Энергодисперсионный рентгеновский флуоресцентный анализатор.

Используют любые энергодисперсионные рентгеновские флуоресцентные анализаторы, если их конструкция включает перечисленные в 3.1.1-3.1.6 элементы.

Необходимы следующие конструктивные детали:

3.1.1 Источник рентгеновского излучения с энергией выше 2,5 кэВ (килоэлектрон-вольт).

3.1.2 Съемная кювета для образца, оснащенная окнами с заменяемыми прозрачными для рентгеновских лучей органическими полимерными пленками и обеспечивающая высоту загрузки образца не менее 4 мм.

3.1.3 Детектор рентгеновского излучения с чувствительностью 2,3 кэВ и разрешающей способностью, не превышающей 800 эВ.

Подходящим к использованию является газовый пропорциональный счетчик.

3.1.4 Фильтры или другие средства, позволяющие отделить -излучение серы от другого рентгеновского излучения с более высокой энергией.

3.1.5 Электронное оборудование для преобразования сигнала и обработки данных, которое включает:

- подсчет интенсивности рентгеновского излучения как минимум по двум энергетическим зонам для коррекции по фону;

- поправки спектральных наложений;

- перевод интенсивности рентгеновского излучения серы в ее процентную концентрацию.

3.1.6 Дисплей или принтер, регистрирующий показания содержания серы в процентах (по массе).

3.2 Весы аналитические с погрешностью взвешивания не более 0,1 мг.

4 Реактивы и материалы

4.1 Чистота реактивов

Используют реактивы квалификации х.ч.

Если нет других указаний, реактивы должны соответствовать спецификациям Комитета по аналитическим реактивам Американского химического общества [1]. Рекомендации, касающиеся реагентов, не вошедших в перечень Американского химического общества, приведены в [2].

Допускается использовать реактивы другой квалификации при условии, что они не снижают точности определения.

4.2 Ди-н-бутилсульфид (DBS) высокой степени чистоты, сертифицированный по содержанию серы.

Сертифицированное содержание серы используют при расчете точных концентраций калибровочных стандартных растворов.

Примечание - Важно знать концентрацию серы в ди-н-бутилсульфиде, так как примеси также могут содержать соединения серы.

4.3 Минеральное масло белое с массовой долей серы менее 2 мг/кг.

(Измененная редакция, Изм. N 1).

4.4 Пленка, проницаемая для рентгеновских лучей.

Используют любую пленку, которая устойчива к действию испытуемого образца и не содержит серу. Пригодными являются пленки из полиэфира, полипропилена, поликарбоната и полиамида.

Образцы с высоким содержанием ароматики могут растворять полиэфирные и поликарбонатные пленки. В таких случаях взамен этих пленок, из которых изготовляют окошечки кювет под образцы для рентгеновского облучения, могут быть использованы другие материалы, не загрязненные примесями других элементов.

Предпочтительным материалом для изготовления окошечек является полиамидная фольга, так как несмотря на то, что сильнее других материалов поглощает рентгеновское излучение, она намного более стойка к химическому воздействию ароматики и обладает более высокой механической прочностью.

4.5 Кювета для образца, стойкая к химическому воздействию испытуемого образца и отвечающая геометрическим требованиям спектрометра.

5 Подготовка аппаратуры

5.1 Устанавливают аппаратуру в соответствии с инструкциями изготовителей. По возможности прибор должен быть постоянно включен для поддержания его оптимально стабильной работы.

5.2 Кюветы для образцов при повторном использовании очищают и сушат, при этом заменяют рентгеновскую пленку на новую.

Избегают касания внутренней поверхности кюветы, а также пленки кюветы и окошечка прибора. Пленка кюветы должна быть чистой и натянутой, так как морщины на пленке влияют на интенсивность рентгеновского излучения серы.

Повторное калибрование прибора необходимо проводить при замене типа и толщины, а также при применении каждого нового рулона или партии пленки.

6 Калибрование и стандартизация условий измерения

6.1 Приготовление стандартных растворов

6.1.1 Готовят первичные стандартные растворы с массовой долей серы 0,1% и 5%, не применяя для их приготовления способ разбавления единого концентрата. Точное содержание серы в каждом стандартном растворе рассчитывают с точностью до четвертого десятичного знака.

В устойчивый узкогорлый сосуд (контейнер) взвешивают заданное количество разбавителя с точностью до 0,1 мг (таблица 1). Затем в этот же сосуд точно взвешивают заданное количество ди-н-бутилсульфида. Тщательно его перемешивают при комнатной температуре, применяя магнитную мешалку, покрытую политетрафторэтиленом (ПТФЭ).

Примечание - Разбавитель калибровочного образца должен быть по своей химической природе близок к типу анализируемого образца. В качестве альтернативного разбавителя приемлемо белое минеральное масло (4.3).

Таблица 1 - Состав первичных стандартных растворов

Массовая доля серы, %

Масса белого масла, г

Масса ди-н-бутилсульфида, г

5,0

48,6

14,4

0,1

43,6

0,200

6.1.2 Готовят серию калибровочных стандартных растворов с двумя заданными диапазонами массовых долей серы (таблица 2) разбавлением каждого первичного стандартного раствора (6.1.1) разбавителем, соответствующим исследуемому образцу.

Таблица 2 - Калибровочные стандартные растворы

Номер стандартного раствора

Массовая доля серы, %, в диапазоне, %

0,0020-0,1

0,1-5,0

1

0,0000

0,00

2

0,0020

0,10

3

0,0050

0,50

4

0,0100

1,00

5

0,0300

2,50

6

0,0600

5,00

7

0,1000

-

6.1.3 Альтернативно могут быть использованы сертифицированные стандарты Национального института стандартов и технологии (NIST), содержащие следы анализируемого элемента и приготовленные по методике, описанной выше, или составленные из анализируемого образца.

6.1.4 Если разбавитель образца, используемый при подготовке стандартных растворов, содержит серу, то значение соответствующей ей концентрации прибавляют к расчетному содержанию серы приготовленных стандартных растворов.

При этом следует проконсультироваться у поставщика реактивов о сертифицированной сере или провести испытание минерального масла по методу испытания [3] или по другому эквивалентному методу с чувствительностью по сере не более 1 ppm.

6.1.5 Массовую долю серы, , %, рассчитывают по уравнению

, (1)

где - фактическая масса ди-н-бутилсульфида, г;

- массовая доля серы в ди-н-бутилсульфиде, обычно 21,91%;

- фактическая масса минерального масла (разбавителя), г;

- массовая доля серы в минеральном масле, %.

6.2 Сертифицированные калибровочные стандартные растворы

Эти стандартные растворы включают в себя стандартные эталонные материалы (SRM), приготовленные и сертифицированные Национальным институтом стандартов и технологии (NIST), т.е. SRM 2724 для серы в дизельном топливе. Стандарты должны охватывать диапазоны номинальных концентраций, представленных в таблице 2.

6.3 Калибровочные стандартные растворы для поверки

Несколько дополнительных стандартных растворов, которые не использовались для построения калибровочной кривой, применяют для поверки.

Примечание - Стандартные растворы для поверки можно готовить по 6.1 или использовать сертифицированные стандарты по 6.2.

6.4 Образцы контроля качества

Стабильные образцы нефти или нефтепродуктов, типичные для исследуемых образцов, которые регулярно анализируются для подтверждения, что система работает стабильно (см. приложение Б).

6.5 Хранение стандартных растворов и образцов контроля качества

До использования все стандартные растворы хранят в стеклянных бутылках (темных или обернутых в светонепроницаемый материал), закрытых стеклянными пробками, винтовыми колпачками с внутренней подложкой из инертного полимера или другими инертными непроницаемыми затворами, в темном прохладном месте.

При появлении в стандартном растворе осадка или изменения концентрации его выбрасывают.

7 Подготовка к испытанию

7.1 Отбор и подготовка проб - в соответствии с [4], [5].

Перед отбором пробы для анализа образец тщательно перемешивают.

7.2 Испытуемые образцы с массовой долей серы более 5,0% разбавляют таким образом, чтобы значение массовой доли серы в разбавленном продукте не превышала верхнее значение диапазона, указанного в 1.1. В качестве разбавителя рекомендуется использовать минеральное белое масло по 4.3.

(Измененная редакция, Изм. N 1).

7.3 Измерительную кювету заполняют анализируемым образцом, не допуская наличия воздушных пузырьков. Предпочтительно следует использовать одноразовые измерительные кюветы.

Измерительную кювету закрывают окошечком из полиэфирной или поликарбонатной пленки. Для получения надежных результатов следует натянуть пленку без складок, влияющих на интенсивность пропускаемых рентгеновских лучей.

Следует избегать касания кюветы для образца изнутри, а также части пленки окошечка измерительных кювет или окошечка прибора на пути рентгеновского излучения.

При замене типа или изменении толщины пленки окошечка измерительной кюветы необходимо провести калибровку прибора по 8.2.

Испытуемые образцы анализируют сразу же после заполнения ими кюветы и исчезновения воздушных пузырьков, вызванных перемешиванием.

(Введен дополнительно, Изм. N 1).

8 Проведение испытания

8.1 Заполняют объема кюветы испытуемым образцом, оставляя сверху свободное пространство, предусмотрев вентиляционное отверстие для предотвращения прогибания пленки окошечка кюветы во время испытания летучих образцов.

Примечание - Не допускается проливать образец внутрь анализатора.

8.2 Калибровка прибора

Прибор калибруют по соответствующему диапазону, представленному в таблице 2, следуя инструкциям завода-изготовителя.

Обычно процедура калибровки включает установку прибора на запись суммарной интенсивности рентгеновского излучения серы, после чего проводят измерение известных стандартных растворов.

8.2.1 Получают два показания для стандартного раствора, используя рекомендуемое время счета для прибора, согласно таблице 3.

Таблица 3 - Время счета для определения содержания серы

Диапазон массовой доли серы, %

Время счета, с

0,0000-0,1000

200-300

0,1000-5,0

100

При минимальной задержке повторяют процедуру, используя свежеприготовленные кюветы и свежие порции стандартного раствора.

Когда все стандартные растворы единожды проанализированы, строят оптимальную калибровочную кривую, основанную на подсчетах суммарной серы для каждого стандартного раствора. Сразу же после калибровки определяют концентрацию серы одного или более калибровочных стандартных растворов поверки (6.3). Измеренные значения должны находиться в пределах 3% относительно сертифицированных величин.

8.2.2 При возникновении сомнений относительно полученных результатов необходимо провести повторную калибровку. При оценке калибровки следует принимать во внимание расхождение результатов между испытуемыми и стандартными образцами.

8.3 Анализ образцов с неизвестным содержанием серы

Заполняют кювету испытуемым образцом, как описано в 8.1.

Вязкие образцы следует подогреть для обеспечения их текучести; воздушные пузырьки должны отсутствовать в пространстве между окном кюветы и поверхностью образца.

Измеряют каждый образец в соответствии с рекомендуемым в таблице 3 временем счета для определенного диапазона концентрации.

При минимальной задержке повторяют измерение, используя свежеприготовленные кюветы и свежие пробы образца.

Получают среднее из двух значений содержания серы в испытуемом образце.

Если среднее значение выходит за пределы концентрации по калибровке, повторяют измерение дважды, используя диапазон, включающий в себя это среднее значение.

9 Обработка результатов

9.1 Концентрацию серы в образце рассчитывают автоматически по калибровочной кривой.

9.2 Результат записывают как общую массовую долю серы, выраженную в процентах, округляя до трех значащих цифр, используя руководство [6] с указанием настоящего метода испытания.

10 Точность метода и отклонение

10.1 Точность метода, полученная статистическим исследованием результатов межлабораторных испытаний, приведена в 10.1.1-10.1.3.

10.1.1 Сходимость

Расхождение результатов последовательных испытаний, полученных одним и тем же оператором на одной и той же аппаратуре в постоянных рабочих условиях на идентичных испытуемых материалах в длительном процессе работы при правильном выполнении метода испытания, может превысить следующие значения только в одном случае из двадцати:

,

где - массовая доля серы, %.

10.1.2 Воспроизводимость

Расхождение между двумя отдельными и независимыми результатами испытаний, полученными разными операторами, работающими в разных лабораториях на идентичном испытуемом материале в длительном процессе работы, может превысить следующие значения только в одном случае из двадцати:

,

где - массовая доля серы, %.

10.1.3 Отклонение

Межлабораторное исследование включило восемь эталонных материалов NIST. В таблице 4 приведены сертифицированные значения и отклонения при определении серы.

Таблица 4 - Отклонение

Стандарт NIST

Массовая доля серы, %

Отклонение

Значимость

SRM 1616а

0,0146

0,0009

Нет

SRM 2724а

0,0430

0,0008

"

SRM 1617а

0,173

0,0003

"

SRM 1623с

0,381

-0,0119

Да

SRM 1621е

0,948

-0,0198

Нет

SRM 2717

3,02

0,0072

"

ПРИЛОЖЕНИЕ А
(справочное)


Требования безопасности

А.1 Эксплуатация аппаратуры, используемой в настоящем стандарте, должна осуществляться в соответствии с инструкцией завода-изготовителя.

А.2 Применение радиоактивного источника требует в дополнение к другим требованиям техники безопасности использование обязательного экранирования, что должно выполняться квалифицированным исполнителем с соблюдением всех правил.

A.3 Ниже приведена характеристика наиболее опасного реактива, применяемого в стандарте:

Ди-н-бутилсульфид - воспламеняем и токсичен.

А.4 Настоящий стандарт не предусматривает рассмотрение проблем, связанных с техникой безопасности.

За установление соответствующих норм техники безопасности и охраны здоровья и определение приемлемости регламентированных ограничений перед использованием несет ответственность пользователь.

ПРИЛОЖЕНИЕ Б
(справочное)


Контроль качества

Б.1 Процедура контроля качества является компетенцией отдельной лаборатории.

Результаты регулярных испытаний образцов контроля качества регистрируются и анализируются посредством контрольных диаграмм [7] или других статистически эквивалентных технических приемов, чтобы установить статус статистического контроля всего процесса испытания.

Б.2 Результаты, выпадающие из контрольных данных, требуют повторного испытания калибровки прибора.

В зависимости от критичности измеряемого качества и показываемой стабильности процесса испытания, когда прибор находится в эксплуатации, частота испытания образца контроля качества составляет от одного раза в день до двух раз в неделю.

ПРИЛОЖЕНИЕ В
(обязательное)


Перечень нормативных документов, используемых в настоящем стандарте

[1] (Исключено, Изм. N 1).

[2] “Analar Standards for Laboratory U.K., Chemicals” BDH Ltd., Poole, Dorset; United States Pharmacopeia, and National Formulary, U.S. Pharmacopeial Convention, 1 nc., (USPC), Rockville, MD

[3]* АСТМ Д 3120 Определение следовых количеств серы в светлых жидких нефтяных углеводородах методом окислительной микрокулонометрии

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - .

[4] АСТМ Д 4057 Руководство по ручному отбору проб нефти и нефтепродуктов

[5] АСТМ Д 4177 Руководство по автоматическому отбору проб нефти и нефтепродуктов

[6] АСТМ Е 29 Руководство по применению значимых цифр в данных испытаниях для определения соответствия со спецификациями

[7] АСТМ М 17 Руководство по представлению анализа данных и контрольных диаграмм. Раздел 5, контрольная диаграмма для индивидуального пользования

[8] RR Д 02 1418

______________

Ежегодный сборник стандартов АСТМ, том 05.02.

Ежегодный сборник стандартов АСТМ, том 14.02.

Электронный текст документа

и сверен по:

Нефтепродукты. Методы анализа. Часть 3:

Сб. ГОСТов. - , 2006

Редакция документа с учетом
изменений и дополнений подготовлена

Другие госты в подкатегории

    ГОСТ 10534-78

    ГОСТ 10577-78

    ГОСТ 11362-76

    ГОСТ 11010-84

    ГОСТ 12261-87

    ГОСТ 12329-2021

    ГОСТ 12329-77

    ГОСТ 12417-73

    ГОСТ 10364-90

    ГОСТ 14203-69

    ГОСТ 1461-75

    ГОСТ 1510-2022

    ГОСТ 15171-78

    ГОСТ 1520-2014

    ГОСТ 1756-2000

    ГОСТ 18499-73

    ГОСТ 1431-85

    ГОСТ 1756-52

    ГОСТ 19932-74

    ГОСТ 1510-84

    ГОСТ 20284-74

    ГОСТ 20287-91

    ГОСТ 19121-73

    ГОСТ 19932-99

    ГОСТ 21046-2015

    ГОСТ 21261-2021

    ГОСТ 1437-75

    ГОСТ 21046-86

    ГОСТ 1929-87

    ГОСТ 2070-82

    ГОСТ 21749-76

    ГОСТ 23639-79

    ГОСТ 13380-81

    ГОСТ 25371-82

    ГОСТ 2477-2014

    ГОСТ 2477-65

    ГОСТ 11362-96

    ГОСТ 26028-83

    ГОСТ 26378.0-84

    ГОСТ 26378.0-2015

    ГОСТ 25371-2018

    ГОСТ 26132-84

    ГОСТ 26378.2-2015

    ГОСТ 26378.2-84

    ГОСТ 26378.4-84

    ГОСТ 26378.4-2015

    ГОСТ 2667-82

    ГОСТ 2177-82

    ГОСТ 26378.3-84

    ГОСТ 26378.3-2015

    ГОСТ 26378.1-84

    ГОСТ 26378.1-2015

    ГОСТ 28583-90

    ГОСТ 31738-2012

    ГОСТ 25371-97

    ГОСТ 28582-90

    ГОСТ 31874-2012

    ГОСТ 21261-91

    ГОСТ 32139-2019

    ГОСТ 32153-2013

    ГОСТ 32267-2013

    ГОСТ 2517-2012

    ГОСТ 2517-85

    ГОСТ 32326-2013

    ГОСТ 31873-2012

    ГОСТ 22898-78

    ГОСТ 2177-99

    ГОСТ 32335-2013

    ГОСТ 32324-2013

    ГОСТ 30050-93

    ГОСТ 32329-2013

    ГОСТ 32332-2013

    ГОСТ 32139-2013

    ГОСТ 32379-2020

    ГОСТ 32380-2020

    ГОСТ 32393-2013

    ГОСТ 32402-2013

    ГОСТ 32373-2020

    ГОСТ 29255-91

    ГОСТ 32390-2013

    ГОСТ 32344-2013

    ГОСТ 32328-2013

    ГОСТ 32333-2013

    ГОСТ 32436-2020

    ГОСТ 32392-2013

    ГОСТ 32636-2020

    ГОСТ 32643-2020

    ГОСТ 32404-2013

    ГОСТ 32501-2013

    ГОСТ 32515-2013

    ГОСТ 26976-86

    ГОСТ 33093-2014

    ГОСТ 32367-2020

    ГОСТ 32638-2020

    ГОСТ 32505-2013

    ГОСТ 33110-2014

    ГОСТ 32323-2013

    ГОСТ 32637-2020

    ГОСТ 32536-2020

    ГОСТ 33092-2014

    ГОСТ 33910-2016

    ГОСТ 32500-2013

    ГОСТ 33-82

    ГОСТ 33364-2015

    ГОСТ 34192-2017

    ГОСТ 33690-2015

    ГОСТ 4255-75

    ГОСТ 32403-2013

    ГОСТ 4333-2021

    ГОСТ 34557-2019

    ГОСТ 34658-2020

    ГОСТ 4333-87

    ГОСТ 5985-2022

    ГОСТ 34211-2017

    ГОСТ 3877-88

    ГОСТ 4333-2014

    ГОСТ 6356-75

    ГОСТ 6370-2018

    ГОСТ 33848-2016

    ГОСТ 32327-2013

    ГОСТ 6307-75

    ГОСТ 33111-2014

    ГОСТ 6793-74

    ГОСТ 6258-85

    ГОСТ 5344-82

    ГОСТ 8581-2021

    ГОСТ 32635-2020

    ГОСТ 6370-83

    ГОСТ 8674-58

    ГОСТ 8852-74

    ГОСТ 6997-77

    ГОСТ 9549-80

    ГОСТ 33-2000

    ГОСТ 6994-74

    ГОСТ 34659-2020

    ГОСТ 33905-2016

    ГОСТ 6948-81

    ГОСТ 5985-79

    ГОСТ 6243-75

    ГОСТ ISO 20847-2014

    ГОСТ ISO 2049-2015

    ГОСТ 9827-75

    ГОСТ 33768-2015

    ГОСТ ISO 2160-2013

    ГОСТ 9490-75

    ГОСТ 34660-2020

    ГОСТ ISO 3405-2013

    ГОСТ 3900-85

    ГОСТ ISO 3675-2014

    ГОСТ 33550-2015

    ГОСТ ISO 3679-2017

    ГОСТ ISO 14596-2016

    ГОСТ ISO 16591-2015

    ГОСТ ISO 3771-2013

    ГОСТ ISO 8681-2013

    ГОСТ Р 51069-97

    ГОСТ ISO 13357-2-2013

    ГОСТ ISO 2719-2013

    ГОСТ EN 12916-2017

    ГОСТ EN 12916-2012

    ГОСТ Р 51634-2000

    ГОСТ ISO 3733-2013

    ГОСТ ISO 6614-2013

    ГОСТ ISO 8754-2013

    ГОСТ 34661-2020

    ГОСТ ISO 7120-2015

    ГОСТ ISO 2719-2017

    ГОСТ Р 52532-2006

    ГОСТ 7163-84

    ГОСТ Р 52559-2006

    ГОСТ Р 52947-2019

    ГОСТ Р 51933-2002

    ГОСТ Р 52063-2003

    ГОСТ Р 51946-2002

    ГОСТ Р 52946-2008

    ГОСТ 33-2016

    ГОСТ Р 52947-2008

    ГОСТ Р 54267-2010

    ГОСТ Р 51942-2010

    ГОСТ Р 52570-2006

    ГОСТ 8997-89

    ГОСТ ISO 7624-2013

    ГОСТ Р 57033-2016

    ГОСТ ISO 6618-2013

    ГОСТ Р 52659-2006

    ГОСТ Р 59609-2021

    ГОСТ Р 54268-2010

    ГОСТ Р 59683-2021

    ГОСТ Р 54281-2010

    ГОСТ Р 54286-2010

    ГОСТ Р 52658-2006

    ГОСТ Р 53581-2009

    ГОСТ Р 54323-2011

    ГОСТ Р 52030-2003

    ГОСТ Р 52954-2013

    ГОСТ Р ЕН 13016-1-2008

    ГОСТ Р 51859-2002

    ГОСТ ISO 3839-2017

    ГОСТ Р 57038-2016

    ГОСТ Р 53203-2008

    ГОСТ ISO 6619-2013

    ГОСТ Р ЕН 14078-2010

    ГОСТ Р ИСО 10307-1-2009

    ГОСТ Р 53708-2009

    ГОСТ Р ИСО 3675-2007

    ГОСТ Р ЕН ИСО 14596-2008

    ГОСТ Р ЕН 14109-2009

    ГОСТ Р 54278-2010

    ГОСТ Р ЕН ИСО 2719-2008

    ГОСТ Р 57037-2016

    ГОСТ Р ИСО 13736-2010

    ГОСТ Р 54288-2010

    ГОСТ Р ЕН 14331-2010

    ГОСТ Р 54277-2010

    ГОСТ Р ЕН ИСО 22854-2010

    ГОСТ Р 54279-2010

    ГОСТ Р 53707-2009

    ГОСТ Р 57036-2016

    ГОСТ Р ЕН 13132-2008

    ГОСТ Р ЕН 1601-2007