ГОСТ 29127-91

ОбозначениеГОСТ 29127-91
НаименованиеПластмассы. Термогравиметрический анализ полимеров. Метод сканирования по температуре
СтатусДействует
Дата введения01.01.1993
Дата отмены-
Заменен на-
Код ОКС83.080
Текст ГОСТа


ГОСТ 29127-91
(ИСО 7111-87)

Группа Л08



МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Пластмассы

ТЕРМОГРАВИМЕТРИЧЕСКИЙ АНАЛИЗ ПОЛИМЕРОВ

Метод сканирования по температуре

Plastics. Thermogravity of polymers. Temperature scanning method

MKC 83.080

ОКСТУ 2209

Дата введения 1993-01-01



ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. ПОДГОТОВЛЕН И ВНЕСЕН ТК 230 "Пластмассы, полимерные материалы и методы испытаний*

________________

* Текст документа соответствует оригиналу. - .

2. УТВЕРЖДЕН И ВВВДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартизации и метрологии СССР от 15.11.91 N 1747

Настоящий стандарт подготовлен методом прямого применения международного стандарта ИСО 7111-87* "Пластмассы. Термогравиметрический анализ полимеров. Метод сканирования по температуре" и полностью ему соответствует

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - .

3. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта

ГОСТ 12423-66

7.2

4. ПЕРЕИЗДАНИЕ. Июль 2004 г.

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

1.1. Настоящий стандарт устанавливает основные условия для выполнения термогравиметрических измерений полимеров.

1.2. Данные термогравиметрического анализа могут быть использованы для определения начальной температуры и скорости разложения полимеров; совместно с термогравиметрическим анализом может проводиться измерение количества летучих, добавок и наполнителей.

1.3. Настоящий стандарт распространяется на полимеры в порошкообразной форме и на отформованные изделия, из которых может быть вырезан образец соответствующих размеров (разд.7).

1.4. Обычный температурный интервал исследований - от комнатной температуры до 600 или 800°С (в зависимости от аппаратуры).


2. ОПРЕДЕЛЕНИЕ

Термогравиметрия (ТГ) - регистрация изменения массы вещества как функции температуры при воздействии температуры на вещество по заданной программе.

3. ПРИНЦИП

Регистрируют изменение массы образца как функцию от температуры при нагревании образца с постоянной скоростью. Данные термогравиметрического анализа откладываются на оси ординат , а температура - на оси абсцисс .

4. ЗНАЧЕНИЕ МЕТОДА

4.1. Термическая стабильность материала оценивается по степени и скорости потери или увеличения массы как функции от температуры. Данные ТГ могут быть использованы для сравнительной оценки поведения при нагревании полимеров одинаковой химической природы на основе измерений, выполненных при одних и тех же условиях.

4.2. Данные ТГ могут быть использованы для контроля в процессе изготовления, для контроля в процессе разработки и оценки материала.

4.3. Долговременная термостабильность является сложной функцией эксплуатации и окружающих условий. Данные ТГ сами по себе не могут охарактеризовать способность полимера противостоять воздействию тепла в этих условиях.

5. АППАРАТУРА

Можно использовать любые калиброванные инструменты, способные обеспечивать выполнение измерений, которые отвечают требованиям настоящего стандарта.


6. ОСНОВНЫЕ УСЛОВИЯ ИСПЫТАНИЯ

Масса образца: до 500 мг, измеренная с точностью 0,4%.

Скорость потока газа во время измерения: 50-100 см/мин. Газ выбирают в соответствии с требуемыми условиями окисления (п.8.5):

процедура А -

условия без окисления (условия с использованием инертной среды). Следует использовать инертный газ - сухой и без кислорода, за исключением материалов, не чувствительных к окислению, для которых в качестве альтернативного газа можно использовать сухой воздух.

Для эталонных испытаний в качестве газа для продувки следует использовать азот, содержащий менее 0,001% (по массе) воды и менее 0,001% (по объему) кислорода;

процедура В -

условия с окислением (условия с использованием окислительной среды). В качестве газа для продувки следует использовать воздух, содержащий менее 0,001% (по массе воды).

Скорость нагревания: (10±1) °С/мин. Можно использовать меньшую или большую скорость, которую следует указать в протоколе испытаний.

Примечание. В связи с тем, что спецификации на различные приборы отличаются друг от друга, могут быть приведены только диапазоны экспериментальных условий. Фактические параметры следует выбирать для используемого прибора, так чтобы они находились в определенном диапазоне.

7. ПОДГОТОВКА ОБРАЗЦОВ

7.1. Образец пластмассы следует испытывать в порошкообразной форме или в форме вырезанного кусочка.

7.2. Перед измерением образец следует кондиционировать при температуре (23±2)°С и (50±5)% относительной влажности в течение 3 ч (ГОСТ 12423).

7.3. В особых случаях можно использовать альтернативные условия кондиционирования; об этом следует указать в протоколе испытания (разд.10).

Примечание. Практически при большом размере образца и высоком содержании летучих размер образца значительно влияет на кривую ТГ.

8. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

8.1. Следуя инструкции изготовителя прибора, проводят калибровку шкалы весов. При калибровке весов следует учитывать дрейф базисной линии в температурном интервале исследований.

8.2. Следуя инструкции изготовителя, проводят температурную калибровку системы.

8.2.1. Температурная калибровка является основным фактором и метод калибровки будет изменяться в зависимости от аппаратуры.

8.2.2. Если нет установочных инструкций изготовителя, положение термопары должно быть таким, чтобы образец не соприкасался с термопарой.

8.3. Ось (ординату) устанавливают на 0.

8.4. Ось (абсцисс) устанавливают на требуемый температурный диапазон.

8.5. Выбирают скорость продувки газа для процедуры В или, если имеются другие требования или указания, - для процедуры А и регулируют скорость продувки газа до установленного значения (разд.6).

8.6. Помещают образец в держатель и записывают начальную массу.

8.7. Устанавливают регулятор на скорость подъема температуры (10±1)°С/мин или на другую выбранную скорость (разд.6).

8.8. Начинают программу нагревания и продолжают сканировать по температуре до тех пор, пока не перестанет регистрироваться потеря массы или пока не будет достигнута максимальная температура испытания.

9. ВЫРАЖЕНИЕ РЕЗУЛЬТАТОВ

Приведенные примеры и черт.1-3 представляют типичные идеализированные случаи расчетов и определений. При фактических измерениях кривые могут иметь различные формы в зависимости от совокупности различных факторов.

9.1. Привес массы

Привес массы в процентах вычисляют по формуле

,

где - масса в точке максимального отклонения от горизонтальной нулевой линии;

- начальная масса (горизонтальная нулевая линия).

Кривая привеса массы в идеализированном случае приведена на черт.1.

Масса привеса


Черт.1

9.2. Потеря массы

Потерю массы в процентах вычисляют по формуле

,

где - масса пробы перед потерей;

- масса пробы после потери;

- см. п.9.1.

На черт.2 приведена кривая для двухступенчатой потери массы.

Потеря массы и остаток


черт.2

9.3. Остаток

Остаток в процентах вычисляют по формуле

,

где и имеют то же значение, что и в пп.9.1 и 9.2.

Черт.2 иллюстрирует метод расчета остатка.

9.4. Температуры разложения (черт.3)

Температура разложения


Черт.3

9.4.1. Начальная температура разложения - температура в градусах Цельсия, соответствующая пересечению касательной, проведенной в точке перегиба, характеризующей ступень разложения, с горизонтальной нулевой линией на кривой . Производная сигнала, получаемая на некоторых приборах, обеспечивает объективное определение этой точки перегиба.

9.4.2. Температура полупериода этапа разложения - температура, соответствующая середине кривой, характеризующей ступень потери массы. Средняя точка находится на вертикальной равноотстоящей между горизонтальной нулевой линией кривой продольной квазигоризонтальной линией после ступени разложения.

9.4.3. Завершающая температура ступени разложения - это температура, соответствующая пересечению продолжаемой квазигоризонтальной линии ступени разложения с касательной в точке перегиба.

Примечание. Если разложение происходит в две или более ступени, то определяется соответствующее число значений температуры разложения.

10. ПРОТОКОЛ ИСПЫТАНИЯ

Протокол испытания должен содержать:

а) ссылку на настоящий стандарт;

б) вид используемой аппаратуры;

в) тип держателя образца (его форму, материал и т.д.);

г) тип устройства для измерения температуры (тип термопары);

д) позицию устройства для измерения температуры (внутренний или наружный держатель образца);

е) идентификацию испытуемого материала.

Условия кондиционирования образца (если есть отличия от условий п.7.2);

ж) массу образца;

з) форму и размер образца;

и) используемый газ и скорость газового потока;

к) скорость нагревания;

л) массу привеса, выражаемую в процентах;

м) потерю массы или потерю компонента, в процентах;

н) остаток, выраженный в процентах;

о) температуры разложения (соответственно , , );

п) другие наблюдения, касающиеся условий испытания или поведения образца.

Электронный текст документа

и сверен по:

М.: ИПК Издательство стандартов, 2004

Другие госты в подкатегории

    ГОСТ 10456-80

    ГОСТ 11012-69

    ГОСТ 11035-64

    ГОСТ 10589-2016

    ГОСТ 11012-2017

    ГОСТ 11035.2-93

    ГОСТ 11035.1-93

    ГОСТ 11034-82

    ГОСТ 11234-91

    ГОСТ 10587-84

    ГОСТ 11645-2021

    ГОСТ 11629-2017

    ГОСТ 11629-75

    ГОСТ 12015-66

    ГОСТ 12019-2021

    ГОСТ 12019-66

    ГОСТ 11034-2018

    ГОСТ 11233-65

    ГОСТ 10589-87

    ГОСТ 11645-73

    ГОСТ 10007-80

    ГОСТ 12423-66

    ГОСТ 12099-75

    ГОСТ 12021-84

    ГОСТ 13518-68

    ГОСТ 13537-68

    ГОСТ 14041-91

    ГОСТ 12497-78

    ГОСТ 11772-73

    ГОСТ 14231-88

    ГОСТ 14043-78

    ГОСТ 11235-2017

    ГОСТ 14926-81

    ГОСТ 15088-2014

    ГОСТ 12021-2017

    ГОСТ 15088-83

    ГОСТ 11529-2016

    ГОСТ 10779-78

    ГОСТ 11736-78

    ГОСТ 12423-2013

    ГОСТ 14040-82

    ГОСТ 12271-76

    ГОСТ 15973-82

    ГОСТ 11235-75

    ГОСТ 12020-72

    ГОСТ 16388-2017

    ГОСТ 12020-2018

    ГОСТ 16388-70

    ГОСТ 13744-87

    ГОСТ 15875-80

    ГОСТ 15820-82

    ГОСТ 14039-78

    ГОСТ 15873-2017

    ГОСТ 14332-78

    ГОСТ 16783-2017

    ГОСТ 16783-71

    ГОСТ 11262-80

    ГОСТ 16782-92

    ГОСТ 17648-72

    ГОСТ 16782-2015

    ГОСТ 15882-84

    ГОСТ 15173-70

    ГОСТ 17302-71

    ГОСТ 18268-2017

    ГОСТ 14906-77

    ГОСТ 16704-71

    ГОСТ 16185-82

    ГОСТ 16704-2017

    ГОСТ 17730-79

    ГОСТ 18336-2017

    ГОСТ 15874-81

    ГОСТ 17731-79

    ГОСТ 16336-2013

    ГОСТ 15139-69

    ГОСТ 17648-83

    ГОСТ 19679-74

    ГОСТ 11262-2017

    ГОСТ 19109-84

    ГОСТ 18694-80

    ГОСТ 19599-90

    ГОСТ 18564-2017

    ГОСТ 18694-2017

    ГОСТ 17555-72

    ГОСТ 16336-77

    ГОСТ 18197-2014

    ГОСТ 21207-81

    ГОСТ 19109-2017

    ГОСТ 16338-85

    ГОСТ 18249-72

    ГОСТ 19459-87

    ГОСТ 21970-76

    ГОСТ 20214-74

    ГОСТ 21228-85

    ГОСТ 14359-69

    ГОСТ 13549-78

    ГОСТ 18616-80

    ГОСТ 21341-75

    ГОСТ 19927-74

    ГОСТ 21970-2015

    ГОСТ 21793-76

    ГОСТ 22181-91

    ГОСТ 19478-74

    ГОСТ 22456-77

    ГОСТ 20812-83

    ГОСТ 23460-79

    ГОСТ 20437-89

    ГОСТ 22181-2015

    ГОСТ 21341-2014

    ГОСТ 18197-82

    ГОСТ 24621-2015

    ГОСТ 22304-77

    ГОСТ 24621-91

    ГОСТ 20282-86

    ГОСТ 25138-93

    ГОСТ 25139-93

    ГОСТ 24947-81

    ГОСТ 22234-76

    ГОСТ 16337-77

    ГОСТ 25276-82

    ГОСТ 18992-80

    ГОСТ 25055-87

    ГОСТ 24622-91

    ГОСТ 20907-2016

    ГОСТ 23553-79

    ГОСТ 26277-2021

    ГОСТ 23630.1-79

    ГОСТ 25265-91

    ГОСТ 23206-2017

    ГОСТ 25271-93

    ГОСТ 26277-84

    ГОСТ 26359-84

    ГОСТ 26311-84

    ГОСТ 26393-84

    ГОСТ 24632-81

    ГОСТ 25737-91

    ГОСТ 27319-87

    ГОСТ 27748-88

    ГОСТ 27952-2017

    ГОСТ 23630.2-79

    ГОСТ 20870-2017

    ГОСТ 25303-92

    ГОСТ 29243-91

    ГОСТ 29326-92

    ГОСТ 27952-88

    ГОСТ 29326-2015

    ГОСТ 28804-90

    ГОСТ 29327-92

    ГОСТ 22304-2015

    ГОСТ 32618.1-2014

    ГОСТ 28157-89

    ГОСТ 29327-2017

    ГОСТ 30095-93

    ГОСТ 22457-90

    ГОСТ 20907-75

    ГОСТ 33694-2015

    ГОСТ 28157-2018

    ГОСТ 25428-82

    ГОСТ 24616-2017

    ГОСТ 33366.2-2015

    ГОСТ 33366.1-2015

    ГОСТ 24778-81

    ГОСТ 34206-2017

    ГОСТ 34358-2017

    ГОСТ 28593-90

    ГОСТ 25209-82

    ГОСТ 31939-2012

    ГОСТ 34362.1-2017

    ГОСТ 21553-76

    ГОСТ 28250-89

    ГОСТ 34371-2017

    ГОСТ 34739.2-2021

    ГОСТ 34739.5-2021

    ГОСТ 34754-2021

    ГОСТ 34368.2-2017

    ГОСТ 34364-2017

    ГОСТ 34376.1-2017

    ГОСТ 409-2017

    ГОСТ 25645.331-91

    ГОСТ 34376.3-2017

    ГОСТ 4559-2017

    ГОСТ 4559-78

    ГОСТ 34376.2-2017

    ГОСТ 4651-2014

    ГОСТ 34163.1-2017

    ГОСТ 26996-86

    ГОСТ 5689-79

    ГОСТ 4650-80

    ГОСТ 34250-2017

    ГОСТ 34370-2017

    ГОСТ 33362-2015

    ГОСТ 34256-2017

    ГОСТ 4670-2015

    ГОСТ 32618.2-2014

    ГОСТ 33693-2015

    ГОСТ ИСО 8620-96

    ГОСТ Р 50029-92

    ГОСТ 4670-91

    ГОСТ 4647-2015

    ГОСТ Р 50096-2015

    ГОСТ Р 50485-93

    ГОСТ 4648-71

    ГОСТ Р 50487-93

    ГОСТ Р 50108-92

    ГОСТ 34163.2-2017

    ГОСТ Р 50491-93

    ГОСТ Р 50486-93

    ГОСТ 34374.2-2017

    ГОСТ Р 50492-2015

    ГОСТ Р 50492-93

    ГОСТ 901-2017

    ГОСТ ИСО 12162-2006

    ГОСТ Р 50490-93

    ГОСТ 4651-82

    ГОСТ Р 50490-2015

    ГОСТ 9550-81

    ГОСТ Р 50578-93

    ГОСТ Р 50486-2015

    ГОСТ Р 54553-2019

    ГОСТ 9359-80

    ГОСТ Р 51695-2000

    ГОСТ Р 25645.338-96

    ГОСТ 4650-2014

    ГОСТ Р 54553-2011

    ГОСТ Р 56723-2015

    ГОСТ Р 54072-2010

    ГОСТ Р 55135-2012

    ГОСТ 4648-2014

    ГОСТ Р 53656.2-2009

    ГОСТ Р 56739-2015

    ГОСТ Р 56211-2014

    ГОСТ Р 56724-2015

    ГОСТ 22648-77

    ГОСТ Р 50583-93

    ГОСТ Р 56722-2015

    ГОСТ Р 56721-2015

    ГОСТ Р 54555-2011

    ГОСТ Р 56756-2015

    ГОСТ Р 56763-2015

    ГОСТ Р 56764-2015

    ГОСТ 34362.2-2017

    ГОСТ Р 56783-2015

    ГОСТ Р 56783-2019

    ГОСТ Р 56784-2015

    ГОСТ Р 56753-2015

    ГОСТ 9439-85

    ГОСТ Р 56761-2015

    ГОСТ Р 56757-2015

    ГОСТ Р 56794-2015

    ГОСТ Р 56809-2015

    ГОСТ Р 56745-2015

    ГОСТ Р 56755-2015

    ГОСТ Р 25645.332-94

    ГОСТ Р 56816-2015

    ГОСТ Р 57225-2016

    ГОСТ Р 56818-2015

    ГОСТ Р 56752-2015

    ГОСТ Р 57222-2016

    ГОСТ 25645.323-88

    ГОСТ Р 57226-2016

    ГОСТ Р 56804-2015

    ГОСТ 4647-80

    ГОСТ Р 57694-2017

    ГОСТ Р 57401-2017

    ГОСТ Р 57400-2017

    ГОСТ Р 56754-2015

    ГОСТ Р 56803-2015

    ГОСТ Р 57219-2016

    ГОСТ Р 52021-2003

    ГОСТ 34367.1-2017

    ГОСТ Р 57727-2017

    ГОСТ Р 57697-2017

    ГОСТ Р 57565-2017

    ГОСТ Р 57779-2017

    ГОСТ Р 57687-2017

    ГОСТ Р 57884-2017

    ГОСТ Р 52021-2015

    ГОСТ Р 57572-2017

    ГОСТ Р 57803-2017

    ГОСТ Р 57785-2017

    ГОСТ Р 57780-2017

    ГОСТ Р 56793-2015

    ГОСТ Р 57593-2017

    ГОСТ Р 57739-2017

    ГОСТ Р 56802-2015

    ГОСТ Р 59100-2020

    ГОСТ Р 59101-2020

    ГОСТ Р 57940-2017

    ГОСТ Р 57920-2017

    ГОСТ Р ИСО 14852-2022

    ГОСТ Р ИСО 22404-2022

    ГОСТ Р 57713-2017

    ГОСТ Р 57731-2017

    ГОСТ Р 57603-2017

    ГОСТ Р 57729-2017

    ГОСТ Р ИСО 306-2012

    ГОСТ Р 58017-2017

    ГОСТ Р 56762-2015

    ГОСТ Р ИСО 22088-3-2010

    ГОСТ Р 57995-2017

    ГОСТ Р 57943-2017

    ГОСТ Р 57748-2017

    ГОСТ Р 57714-2017

    ГОСТ Р 55134-2012

    ГОСТ Р 57919-2017

    ГОСТ Р 57916-2017

    ГОСТ Р ИСО 1159-93

    ГОСТ Р 57954-2017

    ГОСТ Р 57224-2016

    ГОСТ Р 56801-2015

    ГОСТ Р 57950-2017

    ГОСТ Р 57571-2017

    ГОСТ 9.703-79