ГОСТ 32312-2011

ОбозначениеГОСТ 32312-2011
НаименованиеИзделия теплоизоляционные, применяемые для инженерного оборудования зданий и промышленных установок. Метод определения максимальной рабочей температуры
СтатусДействует
Дата введения10.01.2015
Дата отмены-
Заменен на-
Код ОКС91.100.60
Текст ГОСТа

ГОСТ 32312-2011
(EN 14706:2005)

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ИЗДЕЛИЯ ТЕПЛОИЗОЛЯЦИОННЫЕ, ПРИМЕНЯЕМЫЕ ДЛЯ ИНЖЕНЕРНОГО ОБОРУДОВАНИЯ ЗДАНИЙ И ПРОМЫШЛЕННЫХ УСТАНОВОК

Метод определения максимальной рабочей температуры

Thermal insulating products for engineering equipment of buildings and industrial installations. Method for determination of maximum service temperature



МКС 91.100.60

Дата введения 2015-10-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Некоммерческим партнерством "Производители современной минеральной изоляции "Росизол" на основе собственного перевода на русский язык англоязычной версии европейского стандарта, указанного в пункте 5

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и оценке соответствия в строительстве (протокол от 8 декабря 2011 г. N 39)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Азербайджан

AZ

Азстандарт

Армения

AM

Минэкономики Республики Армения

Казахстан

KZ

Госстандарт Республики Казахстан

Киргизия

KG

Кыргызстандарт

Молдова

MD

Молдова-Стандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

Узбекистан

UZ

Узстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 9 апреля 2015 г. N 240-ст межгосударственный стандарт ГОСТ 32312-2011 (EN 14706:2005) введен в действие в качестве национального стандарта Российской Федерации с 1 октября 2015 г.

5 Настоящий стандарт модифицирован по отношению к европейскому стандарту ЕN 14706:2005* "Теплоизоляционные изделия, применяемые для инженерного оборудования зданий и промышленных установок. Определение максимальной рабочей температуры" ("Thermal insulating products for building equipment and industrial installations - Determination of maximum service temperature", MOD) путем исключения ссылок на европейский региональный и международные стандарты, не принятые в качестве межгосударственных стандартов (EN 12429, ISO 7884-1, ISO 7884-7).

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - .

Наименование настоящего стандарта изменено по отношению к наименованию европейского стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).

Сведения о соответствии ссылочных межгосударственных стандартов европейским стандартам, используемым в качестве ссылочных, приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Декабрь 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

Настоящий стандарт распространяется на плоские теплоизоляционные изделия, применяемые для инженерного оборудования зданий и промышленных установок, и устанавливает требования к средствам испытания и методике определения максимальной рабочей температуры.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ EN 823 Изделия теплоизоляционные, применяемые в строительстве. Метод определения толщины

ГОСТ EN 12085 Изделия теплоизоляционные, применяемые в строительстве. Методы определения линейных размеров образцов, предназначенных для испытаний

ГОСТ 32313 (EN 14303:2009) Изделия из минеральной ваты теплоизоляционные промышленного производства, применяемые для инженерного оборудования зданий и промышленных установок. Общие технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации (www.easc.by) или по указателям национальных стандартов, издаваемым в государствах, указанных в предисловии, или на официальных сайтах соответствующих национальных органов по стандартизации. Если на документ дана недатированная ссылка, то следует использовать документ, действующий на текущий момент, с учетом всех внесенных в него изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то следует использовать указанную версию этого документа. Если после принятия настоящего стандарта в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение применяется без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применен следующий термин с соответствующим определением:

3.1

максимальная рабочая температура: Наиболее высокая температура, при которой теплоизоляционное изделие заданной толщины, предназначенное для конкретного применения, будет продолжать функционировать в установленных пределах эксплуатационных характеристик.

[ГОСТ 31913-2011 (EN ISO 9229:2007), статья 2.6.9.1]

Примечания

1 К эксплуатационным характеристикам могут быть отнесены: стабильность размеров, теплофизические или механические показатели, изменение внешнего вида и сопротивляемость к появлению опасных явлений, например внутренний разогрев (см. приложения А и С), а также возможные требования в стандартах или технических условиях на изделия конкретных видов.

2 В соответствии с методом, приведенным в настоящем стандарте, образец подвергается воздействию температур, начиная с температуры окружающей среды до максимальной рабочей температуры. Данный метод может не отражать реальных условий применения изделия, когда изделие подвергается воздействию температур с обеих лицевых поверхностей, например в многослойных системах, или когда изделие имеет покрытие, ограничивающее его максимальную рабочую температуру.

4 Сущность метода

При одностороннем термическом воздействии при заданной скорости подъема температуры до максимальной рабочей температуры в течение заданного времени измеряют толщину образца в процессе термического воздействия, длину и ширину - до термического воздействия и после остывания образца до температуры окружающей среды.

Примечание - Процедура может быть итерационным процессом.

Дополнительные требования к оценке максимальной рабочей температуры конкретного изделия описаны в приложениях к настоящему стандарту или могут быть приведены в стандартах или технических условиях на изделие конкретного вида.

5 Средства испытаний

Пример устройства, рекомендуемого для определения максимальной рабочей температуры, приведен на рисунке 1.

Устройство включает в себя:

5.1 Плоскую квадратную или круглую нагревательную пластину с равномерным распределением температуры в зоне измерения на горячей поверхности и тепловым потоком, проходящим перпендикулярно к поверхности пластины. Отклонение от плоскостности нагревательной пластины не должно превышать 1 мм в зоне измерений при окружающей температуре.

Температура нагревательной пластины должна быть регулируемой с точностью ±10°С или ±2% заданной температуры (выбирают меньшее значение). Нагревательная пластина должна нагреваться со скоростью 50°С/ч и/или 300°С/ч.

5.2 Теплоизоляцию боковых граней образца с наименьшим возможным зазором (например, 1 мм/100 мм размера стороны образца), позволяющим свободно перемещать образец и нагружающую пластину в процессе испытаний.

5.3 Квадратную или круглую нагружающую пластину размером, равным размеру образца, и массой, достаточной для создания требуемой нагрузки на образец.

5.4 Прибор (например, электромеханический) для измерения толщины образца в процессе испытаний с точностью до 0,1 мм.

При определении толщины образца следует учитывать изменение размеров деталей прибора вследствие термического расширения (например, кварцевого стержня) до момента достижения максимальной рабочей температуры.

5.5 Температурные датчики (например, термопары), фиксирующие температуру нагревательной пластины с точностью ±1%, но менее ±1°С. Термопары располагают в канавках нагревательной пластины.

1 - винтовые упоры для задания и/или фиксации толщины образца ; 2 - прибор для измерения толщины образца (например, электромеханический); 3 - нагружающая пластина; 4 - теплоизоляция боковых граней образца; 5 - нагревательная пластина; 6 - термопара; 6.1 - дополнительная термопара для испытаний на внутреннее самонагревание; 7 - зазор; 8 - образец

Рисунок 1 - Пример устройства для определения максимальной рабочей температуры

6 Образцы

6.1 Размеры образцов

Образцы вырезают в виде цилиндра (если необходимо) или используют плоские образцы с квадратным поперечным сечением следующих размеров (длинаширина):

100100 мм (или диаметром 100 мм) или

150150 мм (или диаметром 150 мм), или

200200 мм (или диаметром 200 мм), или

300300 мм (или диаметром 300 мм).

Толщина образца - 100 мм или наибольшая возможная толщина, если толщина изделия менее 100 мм.

Длина и ширина или диаметр для отдельных видов изделий указаны в приложениях А-D или могут быть приведены в стандарте или технических условиях на изделие конкретного вида.

Примечания

1 В случае отсутствия стандарта или технических условий на изделие размеры образцов могут быть согласованы между заинтересованными сторонами.

2 С целью создания реальных условий применения изделия испытания могут быть проведены для многослойных систем, в которых применяют данное изделие.

6.2 Число образцов

Число образцов указывают в стандарте или технических условиях на изделие. Если число образцов не указано, то испытывают не менее трех образцов.

Примечание - В случае отсутствия стандарта или технических условий на изделие число образцов может быть согласовано между заинтересованными сторонами.

6.3 Кондиционирование образцов

Образцы перед испытанием выдерживают не менее 6 ч при температуре (23±5)°С. В случае разногласий образцы выдерживают при температуре (23±2)°С и относительной влажности воздуха (50±5)% в течение времени, указанного в стандарте или технических условиях на изделие конкретного вида, но не менее 24 ч.

7 Методика проведения испытаний

7.1 Условия проведения испытаний

Начальная температура образца и нагревательной пластины должна быть (23±5)°С.

7.2 Проведение испытаний

Измеряют длину и ширину (или диаметр) образца в соответствии с ГОСТ EN 12085 с точностью до 0,5 мм.

Измеряют толщину образца в соответствии с ГОСТ EN 823 под нагрузкой, значение которой указывают в стандарте или технических условиях на изделие.

Образец помещают в устройство так, чтобы был обеспечен достаточный контакт между образцом и нагревательной пластиной.

К образцу прикладывают нагрузку 500 Па и фиксируют толщину с точностью до 0,1 мм.

Примечание - Для изделий из полиэтилена и эластичной пенорезины см. приложение D.

Температуру нагрева образца повышают со скоростью 50°С/ч или 300°С/ч в соответствии со стандартом или техническими условиями на изделие или в соответствии с приложениями к настоящему стандарту.

По достижении ожидаемой максимальной рабочей температуры нагрев прекращают и поддерживают достигнутую температуру нагревательной пластины в течение 72 ч с допуском ±10°С или ±2% достигнутой температуры (выбирают меньшее значение).

Непрерывно фиксируют толщину образца с точностью до 0,1 мм в процессе испытания и через 72 ч после установления максимальной рабочей температуры.

Образец охлаждают, не вынимая из устройства, до температуры не выше 35°С и измеряют его толщину с точностью до 0,1 мм, если в стандарте или технических условиях на изделие или в приложениях к настоящему стандарту не указано иное.

Образец извлекают из устройства и измеряют его длину и ширину (или диаметр) с точностью до 0,5 мм.

При измерении и следует учитывать непрямоугольность граней образца, если такая деформация произошла при испытании.

Визуально осматривают образец и фиксируют все изменения, произошедшие с образцом при испытании.

Дополнительные требования, указанные в стандарте или технических условиях на изделие или в приложениях к настоящему стандарту, в части визуальных наблюдений и/или испытаний должны быть выполнены.

8 Обработка и представление результатов испытаний

8.1 Изменение толщины во времени

Строят графики зависимости изменения толщины образца и температуры нагревательной пластины от времени. Пример графика приведен на рисунке 2.

1 - период нагревания; 2 - период испытания; - изменение толщины, %; - температура нагревательной пластины, °С; t - время, ч

Рисунок 2 - Пример графика изменения толщины образца и температуры нагревательной пластины во времени

8.2 Изменение размеров

Изменение толщины , длины и ширины образца в процентах рассчитывают по формулам:

, (1)

, (2)

, (3)


где - толщина образца, измеренная в устройстве до нагревания, мм;

- толщина образца, измеренная в устройстве после его выдержки в течение 72 ч при постоянной температуре, мм;

- толщина образца, измеренная после его охлаждения до температуры не выше 35°С, мм;

, - длина и ширина образца, измеренные до нагревания, мм;

, - длина и ширина образца, измеренные в устройстве после его выдержки в течение 72 ч при постоянной температуре и охлаждении, мм.

В случае если образцы имеют цилиндрическую форму, вместо значений длины и ширины в расчетах применяют значения диаметра и изменения диаметра образца, подставляя в формулу (2) вместо значения длины значение диаметра.

Если изменение толщины, рассчитанное по формуле (1) с использованием значения толщины , больше, чем при использовании значения толщины , то толщина должна применяться при обработке результатов испытаний.

Результаты испытаний рассчитывают как среднеарифметические значения изменения размеров , , в процентах, округленные до ближайших 0,5% результатов испытаний каждого образца.

Если среднеарифметическое значение изменения какого-либо размера превышает значение, заданное в стандарте или технических условиях на изделие, то испытания следует повторить при меньших температурах до получения результатов, соответствующих требованиям стандарта или технических условий на изделие. В этом случае достигнутую температуру считают максимальной рабочей температурой (см. рисунок 3), обеспечивается выполнение требований 8.3 и 8.4.


- изменение толщины, %; - температура нагревательной пластины, °С; 1 - максимальное изменение толщины в процентах, заданное стандартом или техническими условиями на изделие; 2 - максимальная рабочая температура, °С

Рисунок 3 - Пример определения максимальной рабочей температуры через 72 ч

Шаг для максимальной рабочей температуры, °С, приведен в приложениях к настоящему стандарту или задан в стандарте или технических условиях на изделие. Если шаг не задан, то максимальную рабочую температуру ниже 100°С декларируют с шагом не менее 5°С, выше 100°С - с шагом 10°С.

Примечание - Не допускается сравнивать результаты испытаний изделий разной толщины и/или испытанных под разными нагрузками.

8.3 Дополнительные испытания и/или наблюдения

Результаты визуальных наблюдений должны фиксироваться.

Если приложения к настоящему стандарту и/или стандарт или технические условия на изделие содержат какие-либо дополнительные требования, то они должны учитываться при расчетах и/или визуальных наблюдениях.

8.4 Внутренний разогрев

Явление внутреннего разогрева наблюдается в случае, когда температура образца в любой момент испытания превышает температуру нагревательной пластины.

Методика испытаний по определению наличия внутреннего разогрева приведена в приложениях к настоящему стандарту.

9 Точность метода

Примечание - Настоящий стандарт не содержит данных о точности метода, однако при последующем его пересмотре такие данные будут в него включены.

10 Отчет об испытаниях

Отчет об испытаниях должен содержать:

а) ссылку на настоящий стандарт;

b) идентификацию изделия:

1) наименование изделия, предприятия-изготовителя или поставщика,

2) код маркировки изделия,

3) вид изделия,

4) вид упаковки,

5) форму поставки изделия в лабораторию,

6) дополнительную информацию (если необходимо), например номинальные размеры, номинальную плотность;

c) методику проведения испытания:

1) подготовку к испытанию и порядок отбора образцов, например, кто и в каком месте проводил отбор образцов,

2) условия кондиционирования образцов,

3) любые отклонения от требований, приведенных в разделах 6 и 7 (если необходимо),

4) дату проведения испытаний,

5) размеры и число образцов,

6) выбранную скорость повышения температуры,

7) общую информацию об испытаниях,

8) обстоятельства, которые могли бы повлиять на результаты испытаний.

Примечание - Сведения об оборудовании и о лаборанте, проводившем испытания, должны находиться в лаборатории, однако в отчете их не указывают;

d) результаты испытаний:

1) все графики отдельных испытаний при определении зависимости изменения размеров и температуры нагревательной пластины от времени,

2) все единичные и среднеарифметические значения изменений размеров. Указывают вид изменения размеров: расширение или усадка,

3) все единичные и среднеарифметические значения максимальной рабочей температуры,

4) результаты визуальных наблюдений,

5) дополнительные результаты, требуемые в соответствии с приложениями к настоящему стандарту, стандартом или техническими условиями на изделие.

Приложение А
(обязательное)

Изменения и дополнения к общему методу испытаний для изделий из минеральной ваты

А.1 Введение

Для изделий из минеральной ваты в метод испытаний, приведенный в настоящем стандарте, должны быть внесены следующие дополнительные требования.

А.2 Образцы

А.2.1 Кондиционирование образцов

У прошивных матов с обкладкой из металлической сетки перед испытаниями должны быть удалены сетка и прошивка.

Любой профиль на поверхности плит должен быть срезан. Обкладки не удаляют.

А.2.2 Размеры образцов

Для изделий толщиной более 100 мм образцы подготавливают способом нарезания или расслоения до толщины , равной (100±5) мм, под удельной нагрузкой в соответствии с ГОСТ 32313. Плотность изготовленного образца должна оставаться равной плотности изделия.

А.3 Методика проведения испытаний

А.3.1 Условия испытаний

Испытания начинают при начальных температурах образца и нагревательной пластины от 20°С до 50°С. В случае разногласий выбирают температуру (23±5)°С.

Нагрузка на образец должна быть 500 Па.

Для изделий, применяемых в специальных условиях, между заинтересованными сторонами может быть согласована другая нагрузка, о чем должно быть заявлено. Толщина должна определяться при согласованной нагрузке.

А.3.2 Проведение испытаний

Для изделий из минеральной ваты определяют только изменение толщины.

Для прошивных матов, для которых толщина больше толщины , образец сжимают до толщины с помощью винтовых упоров (см. рисунок А.1), что исключает любое увеличение толщины в процессе испытания.

Температуру нагрева образца повышают со скоростью 300°С/ч.

После охлаждения образца до температуры не выше 35°С измеряют его толщину .

1 - винтовые упоры для задания и/или фиксации толщины образца ; 2 - прибор для измерения толщины; 3 - нагружающая пластина (500 Па); 4 - изоляция боковых граней образца; 5 - нагревательная пластина; 6 - термопара; 6.1 - дополнительная термопара для испытаний на внутреннее самонагревание (см. А.5); 7 - зазор; 8 - образец

Рисунок А.1 - Схема устройства для определения максимальной рабочей температуры прошивных матов с металлической сеткой

А.4 Дополнительные испытания и/или наблюдения

После измерения толщины и охлаждения образец извлекают из устройства и разрезают вертикально по центру, после чего осматривают поверхности среза с целью установления признаков разрушения волокнистой структуры образца. Если появились пустоты или образец разрушился, то результаты испытаний считают неудовлетворительными. Испытание повторяют при более низкой температуре.

Примечание - Любое органическое вещество, как правило, выгорает в какой-либо части образца при температуре около 250°С, что не ухудшает теплофизических свойств изделия, поэтому результат испытания не может считаться неудовлетворительным.

А.5 Испытание на наличие внутреннего разогрева

Если необходимо, проводят испытание в целях определения наличия внутреннего разогрева образцов. В середине образца (по его толщине) размещают дополнительную термопару (см. 6.1 на рисунке А.1). Температура в середине образца (по его толщине) под прибором для измерения толщины в процессе испытаний не должна превышать температуры нагревательной пластины . Оценку результатов испытаний проводят в соответствии с рисунком А.2. Результат испытания считают неудовлетворительным, если [см. рисунок А.2с) - обширный внутренний разогрев]. В этом случае испытание повторяют при более низкой температуре.

1 - температура, °С; 2 - время, ч

Рисунок А.2 - Типовые температурные графики испытаний по определению внутреннего разогрева

Приложение В
(обязательное)

Изменения и дополнения к общему методу испытаний для изделий из пеностекла

В.1 Введение

Для изделий из пеностекла в метод испытаний, приведенный в настоящем стандарте, должны быть внесены следующие дополнительные требования.

В.2 Средства испытаний

Ширина теплоизоляции боковых граней образца в устройстве должна быть не менее 100 мм.

В.3 Образцы

В.3.1 Кондиционирование образцов

При кондиционировании с образцов не удаляют обкладки.

В.3.2 Размеры образцов

Образцы должны иметь размеры 150150 мм.

В.4 Методика проведения испытаний

Образец нагревают со скоростью 50°С/ч.

В.5 Дополнительные испытания и/или наблюдения

В.5.1 Наблюдения

После измерения толщины и охлаждения до температуры не выше 35°С образец извлекают из устройства и осматривают. Если появились пустоты или образец разрушился, то результат испытания считают неудовлетворительным. Испытание повторяют при более низкой температуре.

Примечание - Изменение цвета при температуре, превышающей 250°С, не является браковочным признаком и не ухудшает теплофизических свойств изделия, поэтому не может считаться неудовлетворительным результатом испытания.

Приложение С
(обязательное)

Изменения и дополнения к общему методу испытаний для изделий из фенольного пенопласта

С.1 Введение

Для изделий из фенольного пенопласта в метод испытаний, приведенный в настоящем стандарте, должны быть внесены следующие дополнительные требования.

С.2 Образцы

С.2.1 Размеры образцов

Образцы вырезают с поперечным сечением в форме квадрата размерами 100100 мм.

С.2.2 Кондиционирование образцов

Образцы перед испытанием высушивают при температуре (70±2)°С, а затем выдерживают при температуре (23±2)°С и относительной влажности воздуха (50±5)%.

С.3 Методика проведения испытаний

Образец нагревают со скоростью 50°С/ч до температуры, декларируемой производителем как максимальная рабочая температура.

С.4 Дополнительные испытания и/или наблюдения

Если необходимо, проводят испытание на внутренний разогрев. В середине образца (по его толщине) размещают дополнительную термопару (см. 6.1 на рисунке А.1). Температура в центре образца (по его толщине) под прибором для измерения толщины в процессе испытаний не должна превышать температуру нагревательной пластины . Оценку результатов испытаний проводят по графикам на рисунке С.1. Результат испытания считают неудовлетворительным, если [см. рисунок С.1с) - обширный внутренний разогрев]. Испытание повторяют при более низкой температуре.

1 - температура, °С; 2 - время, ч

Примечание - Обесцвечивание или изменение цвета образца не ухудшает теплофизических свойств изделия, поэтому не может считаться неудовлетворительным результатом испытания.

Рисунок С.1 - Типовые температурные графики испытаний по определению внутреннего разогрева

Приложение D
(обязательное)

Изменения и дополнения к общему методу испытаний для изделий из пенополиэтилена (PEF) и эластичной пенорезины (FEF)

D.1 Введение

Для изделий из пенополиэтилена и эластичной пенорезины в метод испытаний, приведенный в настоящем стандарте, должны быть внесены следующие дополнительные требования.

D.2 Средства испытаний

Ширина теплоизоляции боковых граней образца в устройстве должна быть не менее 20 мм. Зазор должен быть минимальным, например, не более 3 мм.

D.3 Размеры образцов

Образцы вырезают с поперечным сечением в форме квадрата размерами 100100 мм или 200200 мм.

D.4 Методика проведения испытаний

Для изделий из пенополиэтилена и эластичной пенорезины определяют только изменение толщины.

Измеряют толщину (начальная толщина) в соответствии с ГОСТ EN 823 и толщину при температуре окружающей среды и через 24 ч после того, как на образец была помещена пластина для придания ему плоской формы. Толщину определяют в соответствии с 7.2. Толщину не определяют.

В случае если невозможно добиться плотного прилегания образца к нагревательной пластине, его приклеивают к ней или к другой равномерно плоской металлической пластине. Укладывают образец на нагревательную пластину металлической пластиной вниз. Следует убедиться, что нагревательная и металлическая пластины имеют плотный контакт. Нагрузку на образец создают с помощью нагружающей плоской металлической пластины: 50 Па - для эластичной пенорезины, 250 Па - для пенополиэтилена.

Образец оставляют в спокойном состоянии на 24 ч для разглаживания всех незначительных неровностей на его поверхности, после чего измеряют толщину .

Скорость повышения температуры при нагреве образца - 50°С/ч.

Ожидаемую максимальную рабочую температуру поддерживают с нагреваемой стороны образца в течение 72 ч с точностью ±2% или ±10°С от этой температуры (принимают меньшее значение).

Фиксируют толщину образца с точностью ±0,1 мм в процессе испытания и после его окончания (через интервалы времени не менее 0; 0,5; 1; 6; 24; 48; 72 ч).

Примечание - Вследствие термического расширения газа в порах ячеистого материала во время его нагревания от начальной температуры до максимальной рабочей температуры (газовый закон) толщина образца может увеличиться (см. график на рисунке D.1).


- изменение толщины, %; - температура нагревательной пластины, °С; t - время, ч;

1 - условия окружающей среды с приложением нагрузки на образец; 2 - период нагревания; 3 - период испытания; 4 - дополнительный период охлаждения и повторного нагревания (только для иллюстрации)

Рисунок D.1 - Типовой пример графиков зависимости изменения толщины образца и температуры нагревательной пластины от времени

D.5 Обработка и представление результатов испытаний

Изменение размеров рассчитывают по формуле (1).

Примечание - Толщина стенки образца при комнатной температуре не является значимой для данного вида изделий, так как снижение температуры вызывает снижение давления газа в порах материала, которое приводит к обратимому уменьшению толщины стенки. При повторном нагреве толщина стенки восстанавливается близко к той, которая была ранее при температурной нагрузке.

Приложение ДА
(справочное)

Сведения о соответствии ссылочных межгосударственных стандартов европейским стандартам


Таблица ДА.1

Обозначение ссылочного межгосударственного стандарта

Степень соответствия

Обозначение и наименование ссылочного международного стандарта

ГОСТ EN 823-2011

IDT

EN 823:1994 "Теплоизоляционные изделия, применяемые в строительстве. Определение толщины"

ГОСТ EN 12085-2011

IDT

EN 12085:1997 "Теплоизоляционные изделия, применяемые в строительстве. Определение линейных размеров образцов для испытания"

ГОСТ 32313-2011 (EN 14303:2009)

MOD

EN 14303:2009 "Теплоизоляционные изделия, применяемые для инженерного оборудования зданий и промышленных установок. Изделия из минеральной ваты заводского изготовления. Технические условия"

Примечание - В настоящей таблице использованы следующие условные обозначения степени соответствия стандартов:

- IDT - идентичные стандарты;

- MOD - модифицированные стандарты.

УДК 662.998.3:006.354

МКС 91.100.60

MOD

Ключевые слова: теплоизоляционные изделия, максимальная рабочая температура, испытания, расчет




Электронный текст документа
и сверен по:

, 2019

Другие госты в подкатегории

    ГОСТ 10060-87

    ГОСТ 10060.1-95

    ГОСТ 10060.2-95

    ГОСТ 10060.0-95

    ГОСТ 10140-71

    ГОСТ 10140-2003

    ГОСТ 10178-62

    ГОСТ 10178-76

    ГОСТ 10179-62

    ГОСТ 10060.3-95

    ГОСТ 10179-74

    ГОСТ 10140-80

    ГОСТ 10181.0-81

    ГОСТ 10174-90

    ГОСТ 10178-85

    ГОСТ 10296-79

    ГОСТ 10181.4-81

    ГОСТ 10499-67

    ГОСТ 10499-95

    ГОСТ 10832-64

    ГОСТ 10923-64

    ГОСТ 10832-91

    ГОСТ 10999-64

    ГОСТ 10181.1-81

    ГОСТ 10923-93

    ГОСТ 11052-74

    ГОСТ 1148-41

    ГОСТ 11830-66

    ГОСТ 12394-66

    ГОСТ 125-2018

    ГОСТ 12730.0-2020

    ГОСТ 12730.0-78

    ГОСТ 125-79

    ГОСТ 12730.2-2020

    ГОСТ 12730.3-2020

    ГОСТ 12730.2-78

    ГОСТ 12730.1-2020

    ГОСТ 10181.3-81

    ГОСТ 12730.3-78

    ГОСТ 12730.1-78

    ГОСТ 12803-76

    ГОСТ 12730.4-2020

    ГОСТ 12852.1-77

    ГОСТ 11310-90

    ГОСТ 12852.0-77

    ГОСТ 12852.2-77

    ГОСТ 12852.4-77

    ГОСТ 12852.3-77

    ГОСТ 12852.6-77

    ГОСТ 12852.5-77

    ГОСТ 12865-67

    ГОСТ 13015-2003

    ГОСТ 13450-68

    ГОСТ 10060.4-95

    ГОСТ 13578-2019

    ГОСТ 13580-2021

    ГОСТ 13015-2012

    ГОСТ 13996-84

    ГОСТ 12730.4-78

    ГОСТ 14256-78

    ГОСТ 13087-2018

    ГОСТ 14356-69

    ГОСТ 14295-75

    ГОСТ 14357-69

    ГОСТ 14791-69

    ГОСТ 15588-70

    ГОСТ 1581-2019

    ГОСТ 1581-91

    ГОСТ 15825-80

    ГОСТ 15836-70

    ГОСТ 15836-79

    ГОСТ 1581-96

    ГОСТ 14791-79

    ГОСТ 16136-2003

    ГОСТ 13087-81

    ГОСТ 16136-70

    ГОСТ 16233-77

    ГОСТ 16233-70

    ГОСТ 13996-93

    ГОСТ 16381-77

    ГОСТ 16136-80

    ГОСТ 16557-78

    ГОСТ 15879-70

    ГОСТ 16475-81

    ГОСТ 10180-2012

    ГОСТ 17057-89

    ГОСТ 15588-2014

    ГОСТ 17177-87

    ГОСТ 17624-2021

    ГОСТ 10832-2009

    ГОСТ 10181-2000

    ГОСТ 1779-83

    ГОСТ 12730.5-84

    ГОСТ 18109-72

    ГОСТ 17608-91

    ГОСТ 18124-75

    ГОСТ 10060-2012

    ГОСТ 18124-95

    ГОСТ 18623-82

    ГОСТ 10181-2014

    ГОСТ 10180-90

    ГОСТ 12730.5-2018

    ГОСТ 18659-81

    ГОСТ 13996-2019

    ГОСТ 17623-87

    ГОСТ 18105-2018

    ГОСТ 19570-2018

    ГОСТ 20429-84

    ГОСТ 20430-84

    ГОСТ 19222-2019

    ГОСТ 20916-2021

    ГОСТ 20916-87

    ГОСТ 21880-2011

    ГОСТ 16297-80

    ГОСТ 21880-2022

    ГОСТ 12784-78

    ГОСТ 21880-94

    ГОСТ 21880-86

    ГОСТ 22237-85

    ГОСТ 22023-76

    ГОСТ 22266-76

    ГОСТ 17624-2012

    ГОСТ 2245-43

    ГОСТ 18956-73

    ГОСТ 22266-94

    ГОСТ 18866-93

    ГОСТ 18124-2012

    ГОСТ 22690.0-77

    ГОСТ 22690.1-77

    ГОСТ 22690.2-77

    ГОСТ 22266-2013

    ГОСТ 22690.3-77

    ГОСТ 22690.4-77

    ГОСТ 22783-2022

    ГОСТ 22688-2018

    ГОСТ 17608-2017

    ГОСТ 22950-78

    ГОСТ 23208-2003

    ГОСТ 22950-95

    ГОСТ 23208-2022

    ГОСТ 20910-2019

    ГОСТ 23208-83

    ГОСТ 23307-78

    ГОСТ 22856-89

    ГОСТ 23342-78

    ГОСТ 23464-79

    ГОСТ 17624-87

    ГОСТ 22783-77

    ГОСТ 12801-98

    ГОСТ 23250-78

    ГОСТ 20910-90

    ГОСТ 23233-78

    ГОСТ 19222-84

    ГОСТ 23499-79

    ГОСТ 18105-86

    ГОСТ 23835-79

    ГОСТ 23668-79

    ГОСТ 12801-84

    ГОСТ 24316-2022

    ГОСТ 22263-76

    ГОСТ 23735-2014

    ГОСТ 23342-2012

    ГОСТ 24467-80

    ГОСТ 23735-79

    ГОСТ 23558-94

    ГОСТ 24545-2021

    ГОСТ 24640-91

    ГОСТ 24099-80

    ГОСТ 23732-79

    ГОСТ 24748-2003

    ГОСТ 20054-2016

    ГОСТ 23789-2018

    ГОСТ 24986-81

    ГОСТ 23789-79

    ГОСТ 25094-82

    ГОСТ 24099-2013

    ГОСТ 22688-77

    ГОСТ 24748-81

    ГОСТ 25137-82

    ГОСТ 24816-2014

    ГОСТ 23422-87

    ГОСТ 18105-2010

    ГОСТ 24816-81

    ГОСТ 25214-82

    ГОСТ 25192-82

    ГОСТ 2551-64

    ГОСТ 2551-75

    ГОСТ 25591-83

    ГОСТ 25192-2012

    ГОСТ 25328-82

    ГОСТ 25597-83

    ГОСТ 23732-2011

    ГОСТ 25607-94

    ГОСТ 25246-82

    ГОСТ 25226-96

    ГОСТ 22690-88

    ГОСТ 24316-80

    ГОСТ 25781-2018

    ГОСТ 25820-2021

    ГОСТ 25818-91

    ГОСТ 25877-83

    ГОСТ 24544-2020

    ГОСТ 25880-83

    ГОСТ 25094-2015

    ГОСТ 25592-91

    ГОСТ 25485-2019

    ГОСТ 25820-2000

    ГОСТ 25592-2019

    ГОСТ 25094-94

    ГОСТ 26193-84

    ГОСТ 26281-84

    ГОСТ 25820-83

    ГОСТ 22690-2015

    ГОСТ 26627-85

    ГОСТ 25898-83

    ГОСТ 26589-85

    ГОСТ 25898-2020

    ГОСТ 26633-85

    ГОСТ 25820-2014

    ГОСТ 2678-65

    ГОСТ 26644-85

    ГОСТ 2678-87

    ГОСТ 25881-83

    ГОСТ 26798.0-85

    ГОСТ 26798.1-85

    ГОСТ 26798.2-85

    ГОСТ 24452-80

    ГОСТ 26871-86

    ГОСТ 2694-67

    ГОСТ 26417-85

    ГОСТ 2697-64

    ГОСТ 2694-78

    ГОСТ 24545-81

    ГОСТ 17177-94

    ГОСТ 2697-83

    ГОСТ 25485-89

    ГОСТ 24544-81

    ГОСТ 26798.2-96

    ГОСТ 24983-81

    ГОСТ 27798-2019

    ГОСТ 25945-98

    ГОСТ 26633-2015

    ГОСТ 26633-2012

    ГОСТ 26798.1-96

    ГОСТ 28013-89

    ГОСТ 2889-67

    ГОСТ 2889-80

    ГОСТ 26134-84

    ГОСТ 29167-2021

    ГОСТ 25818-2017

    ГОСТ 27006-2019

    ГОСТ 30301-95

    ГОСТ 27180-2001

    ГОСТ 30340-95

    ГОСТ 27006-86

    ГОСТ 28570-2019

    ГОСТ 28570-90

    ГОСТ 30444-97

    ГОСТ 30491-97

    ГОСТ 24332-88

    ГОСТ 26134-2016

    ГОСТ 28013-98

    ГОСТ 25898-2012

    ГОСТ 30108-94

    ГОСТ 27180-86

    ГОСТ 27005-86

    ГОСТ 27005-2014

    ГОСТ 30693-2000

    ГОСТ 30778-2001

    ГОСТ 30547-97

    ГОСТ 310.1-76

    ГОСТ 310.3-76

    ГОСТ 30740-2000

    ГОСТ 310.2-76

    ГОСТ 30459-2003

    ГОСТ 310.6-2020

    ГОСТ 30643-2020

    ГОСТ 310.4-81

    ГОСТ 310.6-85

    ГОСТ 31108-2020

    ГОСТ 31189-2003

    ГОСТ 30744-2001

    ГОСТ 31311-2022

    ГОСТ 31189-2015

    ГОСТ 26633-91

    ГОСТ 31309-2005

    ГОСТ 30459-96

    ГОСТ 27180-2019

    ГОСТ 30459-2008

    ГОСТ 31360-2007

    ГОСТ 31356-2007

    ГОСТ 26589-94

    ГОСТ 310.5-88

    ГОСТ 31357-2007

    ГОСТ 31377-2008

    ГОСТ 31386-2008

    ГОСТ 31387-2008

    ГОСТ 31424-2010

    ГОСТ 31359-2007

    ГОСТ 31898-1-2011

    ГОСТ 31108-2003

    ГОСТ 31426-2010

    ГОСТ 31899-1-2011

    ГОСТ 31362-2007

    ГОСТ 31913-2011

    ГОСТ 23499-2009

    ГОСТ 30340-2012

    ГОСТ 31436-2011

    ГОСТ 31430-2011

    ГОСТ 31897-2011

    ГОСТ 32021-2012

    ГОСТ 31108-2016

    ГОСТ 31899-2-2011

    ГОСТ 31915-2011

    ГОСТ 30629-99

    ГОСТ 30515-97

    ГОСТ 31376-2008

    ГОСТ 21216-2014

    ГОСТ 31358-2007

    ГОСТ 29167-91

    ГОСТ 32301-2011

    ГОСТ 32311-2012

    ГОСТ 32315.1-2012

    ГОСТ 32018-2012

    ГОСТ 32316.1-2012

    ГОСТ 30290-94

    ГОСТ 31914-2012

    ГОСТ 30256-94

    ГОСТ 32303-2011

    ГОСТ 30515-2013

    ГОСТ 31358-2019

    ГОСТ 32313-2020

    ГОСТ 32302-2011

    ГОСТ 32317-2012

    ГОСТ 2678-94

    ГОСТ 32026-2012

    ГОСТ 32806-2014

    ГОСТ 32496-2013

    ГОСТ 32495-2013

    ГОСТ 32497-2013

    ГОСТ 33174-2014

    ГОСТ 32805-2014

    ГОСТ 30629-2011

    ГОСТ 33126-2014

    ГОСТ 33742-2016

    ГОСТ 32319-2012

    ГОСТ 33083-2014

    ГОСТ 33793-2021

    ГОСТ 33792-2021

    ГОСТ 33699-2015

    ГОСТ 33928-2016

    ГОСТ 34532-2019

    ГОСТ 34669-2020

    ГОСТ 3476-2019

    ГОСТ 32588-2013

    ГОСТ 3476-74

    ГОСТ 34850-2022

    ГОСТ 34804-2021

    ГОСТ 3580-67

    ГОСТ 32614-2012

    ГОСТ 379-69

    ГОСТ 378-76

    ГОСТ 378-60

    ГОСТ 379-79

    ГОСТ 32803-2014

    ГОСТ 32318-2012

    ГОСТ 379-2015

    ГОСТ 3344-83

    ГОСТ 33949-2016

    ГОСТ 32313-2011

    ГОСТ 32493-2013

    ГОСТ 34275-2017

    ГОСТ 379-95

    ГОСТ 34719-2021

    ГОСТ 4.206-83

    ГОСТ 4.202-79

    ГОСТ 4.204-79

    ГОСТ 4.210-79

    ГОСТ 4001-66

    ГОСТ 4.219-81

    ГОСТ 4001-84

    ГОСТ 4.228-83

    ГОСТ 4013-2019

    ГОСТ 4.203-79

    ГОСТ 4640-66

    ГОСТ 4.229-83

    ГОСТ 4795-49

    ГОСТ 4795-53

    ГОСТ 4796-49

    ГОСТ 4797-49

    ГОСТ 4001-2013

    ГОСТ 4799-49

    ГОСТ 4798-49

    ГОСТ 4800-49

    ГОСТ 4801-49

    ГОСТ 4640-93

    ГОСТ 4861-65

    ГОСТ 4.201-79

    ГОСТ 4861-74

    ГОСТ 4640-2011

    ГОСТ 530-54

    ГОСТ 4013-82

    ГОСТ 530-71

    ГОСТ 5382-73

    ГОСТ 530-80

    ГОСТ 5578-2019

    ГОСТ 5578-76

    ГОСТ 4.212-80

    ГОСТ 4.211-80

    ГОСТ 5742-2021

    ГОСТ 5742-61

    ГОСТ 4.230-83

    ГОСТ 5742-76

    ГОСТ 6102-78

    ГОСТ 5724-75

    ГОСТ 32310-2020

    ГОСТ 5578-94

    ГОСТ 4.209-79

    ГОСТ 6102-94

    ГОСТ 4.233-86

    ГОСТ 481-80

    ГОСТ 6133-52

    ГОСТ 6266-81

    ГОСТ 6133-84

    ГОСТ 6139-91

    ГОСТ 6139-2020

    ГОСТ 6316-55

    ГОСТ 31911-2011

    ГОСТ 474-90

    ГОСТ 6328-55

    ГОСТ 648-41

    ГОСТ 6427-52

    ГОСТ 6427-75

    ГОСТ 6666-81

    ГОСТ 6788-62

    ГОСТ 6788-74

    ГОСТ 6927-74

    ГОСТ 6928-54

    ГОСТ 7025-67

    ГОСТ 530-95

    ГОСТ 7030-2021

    ГОСТ 6787-2001

    ГОСТ 7032-2021

    ГОСТ 6139-2003

    ГОСТ 33160-2014

    ГОСТ 6133-99

    ГОСТ 7393-71

    ГОСТ 7415-55

    ГОСТ 7392-2002

    ГОСТ 33929-2016

    ГОСТ 6141-91

    ГОСТ 7473-85

    ГОСТ 7392-85

    ГОСТ 7484-69

    ГОСТ 6266-89

    ГОСТ 7483-58

    ГОСТ 7484-78

    ГОСТ 7415-86

    ГОСТ 7487-55

    ГОСТ 8268-82

    ГОСТ 7394-85

    ГОСТ 7473-94

    ГОСТ 8423-57

    ГОСТ 8424-72

    ГОСТ 33370-2015

    ГОСТ 8426-57

    ГОСТ 8462-62

    ГОСТ 8423-75

    ГОСТ 8426-75

    ГОСТ 6665-91

    ГОСТ 8736-85

    ГОСТ 8269-87

    ГОСТ 8747-58

    ГОСТ 6266-97

    ГОСТ 7473-2010

    ГОСТ 8928-81

    ГОСТ 9128-76

    ГОСТ 9179-2018

    ГОСТ 8267-93

    ГОСТ 929-59

    ГОСТ 6482-2011

    ГОСТ 7025-91

    ГОСТ 9179-77

    ГОСТ 8736-2014

    ГОСТ 8736-93

    ГОСТ 9480-89

    ГОСТ 9573-72

    ГОСТ 5802-86

    ГОСТ 9573-82

    ГОСТ 9573-2012

    ГОСТ 9573-96

    ГОСТ 965-89

    ГОСТ 969-2019

    ГОСТ 8462-85

    ГОСТ 9479-2011

    ГОСТ 969-91

    ГОСТ 9480-2012

    ГОСТ 9479-98

    ГОСТ 9757-90

    ГОСТ 530-2012

    ГОСТ EN 1109-2011

    ГОСТ EN 1107-2-2011

    ГОСТ 961-89

    ГОСТ 31925-2011

    ГОСТ 9128-84

    ГОСТ EN 1107-1-2011

    ГОСТ 32314-2012

    ГОСТ 31912-2011

    ГОСТ 8747-88

    ГОСТ EN 1110-2011

    ГОСТ EN 12088-2011

    ГОСТ EN 12085-2011

    ГОСТ EN 1296-2012

    ГОСТ 9479-84

    ГОСТ EN 12039-2011

    ГОСТ EN 12730-2011

    ГОСТ EN 13416-2011

    ГОСТ EN 1108-2012

    ГОСТ EN 12431-2011

    ГОСТ EN 12091-2011

    ГОСТ EN 13897-2012

    ГОСТ EN 12430-2011

    ГОСТ EN 13470-2011

    ГОСТ EN 12090-2011

    ГОСТ EN 13074-1-2013

    ГОСТ EN 1602-2011

    ГОСТ 530-2007

    ГОСТ EN 13467-2011

    ГОСТ EN 1848-1-2011

    ГОСТ EN 13471-2011

    ГОСТ EN 1607-2011

    ГОСТ EN 12089-2011

    ГОСТ EN 1850-2-2011

    ГОСТ EN 1850-1-2011

    ГОСТ EN 1608-2011

    ГОСТ EN 1605-2011

    ГОСТ EN 1928-2011

    ГОСТ EN 1849-1-2011

    ГОСТ 7392-2014

    ГОСТ EN 495-5-2012

    ГОСТ EN 12087-2011

    ГОСТ EN 1849-2-2011

    ГОСТ ISO 10077-1-2021

    ГОСТ EN 825-2011

    ГОСТ Р 51032-97

    ГОСТ EN 13703-2013

    ГОСТ EN 823-2011

    ГОСТ EN 14707-2011

    ГОСТ EN 1609-2011

    ГОСТ EN 822-2011

    ГОСТ Р 51829-2022

    ГОСТ Р 52805-2007

    ГОСТ Р 52953-2008

    ГОСТ 31924-2011

    ГОСТ EN 824-2011

    ГОСТ Р 52908-2008

    ГОСТ Р 53227-2008

    ГОСТ Р 53223-2008

    ГОСТ EN 1604-2011

    ГОСТ Р 50332.1-2019

    ГОСТ EN 12086-2011

    ГОСТ Р 53455-2009

    ГОСТ Р 51263-99

    ГОСТ EN 29053-2011

    ГОСТ Р 54304-2011

    ГОСТ Р 54303-2011

    ГОСТ Р 53223-2016

    ГОСТ Р 53338-2009

    ГОСТ Р 51829-2001

    ГОСТ EN 826-2011

    ГОСТ Р 51795-2019

    ГОСТ Р 55224-2020

    ГОСТ Р 54963-2012

    ГОСТ Р 54194-2010

    ГОСТ Р 55224-2012

    ГОСТ 8735-88

    ГОСТ Р 54854-2011

    ГОСТ 8269.1-97

    ГОСТ Р 53231-2008

    ГОСТ Р 53377-2009

    ГОСТ Р 51263-2012

    ГОСТ Р 55818-2013

    ГОСТ Р 55818-2018

    ГОСТ Р 53378-2009

    ГОСТ Р 56207-2014

    ГОСТ Р 56582-2015

    ГОСТ Р 56583-2015

    ГОСТ Р 56507-2015

    ГОСТ Р 56196-2014

    ГОСТ Р 56584-2015

    ГОСТ Р 56586-2015

    ГОСТ Р 56587-2015

    ГОСТ Р 56387-2018

    ГОСТ Р 56588-2015

    ГОСТ EN 1606-2011

    ГОСТ Р 55936-2018

    ГОСТ Р 55936-2014

    ГОСТ Р 56593-2015

    ГОСТ Р 56704-2022

    ГОСТ Р 56387-2015

    ГОСТ Р 51795-2001

    ГОСТ Р 56704-2015

    ГОСТ Р 54748-2011

    ГОСТ Р 56775-2015

    ГОСТ Р 56686-2015

    ГОСТ Р 56504-2015

    ГОСТ Р 56911-2016

    ГОСТ Р 56688-2015

    ГОСТ Р 57293-2016

    ГОСТ Р 56727-2015

    ГОСТ Р 56703-2015

    ГОСТ Р 56910-2016

    ГОСТ Р 57294-2016

    ГОСТ Р 57336-2016

    ГОСТ Р 57334-2016

    ГОСТ Р 57141-2016

    ГОСТ Р 57335-2016

    ГОСТ Р 57333-2016

    ГОСТ Р 57337-2016

    ГОСТ Р 57338-2016

    ГОСТ Р 57349-2016

    ГОСТ Р 57345-2016

    ГОСТ Р 56828.18-2017

    ГОСТ Р 57348-2016

    ГОСТ 8269.0-97

    ГОСТ Р 57347-2016

    ГОСТ 32794-2014

    ГОСТ Р 57418-2020

    ГОСТ Р 57416-2017

    ГОСТ Р 56732-2015

    ГОСТ Р 57808-2017

    ГОСТ Р 57809-2017

    ГОСТ Р 57810-2017

    ГОСТ Р 57811-2017

    ГОСТ Р 57813-2017

    ГОСТ Р 57812-2017

    ГОСТ Р 57814-2017

    ГОСТ Р 57815-2017

    ГОСТ Р 57816-2017

    ГОСТ Р 57819-2017

    ГОСТ Р 57957-2017

    ГОСТ Р 57833-2017

    ГОСТ Р 57789-2017

    ГОСТ Р 57414-2017

    ГОСТ Р 58026-2017

    ГОСТ Р 58002-2017

    ГОСТ Р 56505-2015

    ГОСТ Р 58153-2018

    ГОСТ Р 57796-2017

    ГОСТ Р 58275-2018

    ГОСТ Р 58271-2018

    ГОСТ Р 58277-2018

    ГОСТ Р 58278-2018

    ГОСТ Р 58279-2018

    ГОСТ Р 58063-2018

    ГОСТ Р 58272-2018

    ГОСТ Р 57418-2017

    ГОСТ Р 53376-2009

    ГОСТ Р 57415-2017

    ГОСТ Р 58766-2019

    ГОСТ Р 58767-2019

    ГОСТ Р 58739-2019

    ГОСТ Р 58527-2019

    ГОСТ Р 56178-2014

    ГОСТ Р 57255-2016

    ГОСТ Р 58892-2020

    ГОСТ 9758-86

    ГОСТ Р 58796-2020

    ГОСТ Р 58893-2020

    ГОСТ Р 58276-2018

    ГОСТ Р 58937-2020

    ГОСТ Р 58795-2020

    ГОСТ Р 58894-2020

    ГОСТ Р 59095-2020

    ГОСТ Р 58953-2020

    ГОСТ Р 59097-2020

    ГОСТ Р 58913-2020

    ГОСТ Р 59150-2020

    ГОСТ Р 58896-2020

    ГОСТ Р 59500-2021

    ГОСТ Р 59096-2020

    ГОСТ Р 59122-2020

    ГОСТ Р 58429-2019

    ГОСТ Р 58964-2020

    ГОСТ Р 58257-2018

    ГОСТ Р 59555-2021

    ГОСТ Р 59574-2021

    ГОСТ Р 59561-2021

    ГОСТ Р 59613-2021

    ГОСТ Р 59599-2021

    ГОСТ Р 59634-2021

    ГОСТ Р 56729-2015

    ГОСТ Р 59646-2021

    ГОСТ Р 59658-2021

    ГОСТ Р 58211-2018

    ГОСТ Р 59647-2021

    ГОСТ Р 59714-2021

    ГОСТ Р 59674-2021

    ГОСТ Р 59686-2021

    ГОСТ Р 59659-2021

    ГОСТ Р 59923-2021

    ГОСТ Р 59744-2021

    ГОСТ Р 59715-2022

    ГОСТ Р 59538-2021

    ГОСТ Р 59945-2021

    ГОСТ Р 59940-2021

    ГОСТ Р 59944-2021

    ГОСТ Р 59957-2021

    ГОСТ Р 59946-2021

    ГОСТ Р 70034-2022

    ГОСТ Р 70052-2022

    ГОСТ Р 57417-2017

    ГОСТ Р 70086-2022

    ГОСТ Р 70051-2022

    ГОСТ Р 70075-2022

    ГОСТ Р 70062-2022

    ГОСТ Р 70090-2022

    ГОСТ Р 70222-2022

    ГОСТ Р 70309-2022

    ГОСТ Р 70007-2022

    ГОСТ Р 70307-2022

    ГОСТ Р 58956-2020

    ГОСТ Р 70341-2022

    ГОСТ Р 70344-2022

    ГОСТ Р 70342-2022

    ГОСТ Р 70258-2022

    ГОСТ Р 70343-2022

    ГОСТ Р 58430-2019

    ГОСТ Р 70261-2022

    ГОСТ Р 58405-2019

    ГОСТ Р 59523-2021

    ГОСТ Р 59536-2021

    ГОСТ Р ЕН 1109-2009

    ГОСТ Р ЕН 1110-2008

    ГОСТ Р ЕН 1107-1-2008

    ГОСТ Р ЕН 1296-2011

    ГОСТ Р ЕН 12085-2008

    ГОСТ Р ЕН 13416-2008

    ГОСТ Р ЕН 12088-2010

    ГОСТ Р ЕН 13897-2011

    ГОСТ Р ЕН 12039-2008

    ГОСТ Р ЕН 12091-2010

    ГОСТ Р ЕН 12430-2008

    ГОСТ Р ЕН 12431-2008

    ГОСТ Р ЕН 1602-2008

    ГОСТ Р 58955-2020

    ГОСТ Р ЕН 1607-2008

    ГОСТ Р ЕН 1605-2010

    ГОСТ Р ЕН 1848-1-2008

    ГОСТ Р ЕН 1850-2-2008

    ГОСТ Р ЕН 1850-1-2008

    ГОСТ Р ЕН 1108-2011

    ГОСТ Р ЕН 12090-2008

    ГОСТ Р ЕН 1608-2008

    ГОСТ Р ЕН 1928-2009

    ГОСТ Р ЕН 823-2008

    ГОСТ Р ЕН 1849-1-2009

    ГОСТ Р ИСО 10456-2021

    ГОСТ Р ЕН 12089-2008

    ГОСТ Р ИСО 7345-2021

    ГОСТ Р ЕН 825-2008

    ГОСТ Р ЕН 1609-2008

    ГОСТ Р ЕН 822-2008

    ГОСТ Р ЕН 1603-2014

    ГОСТ Р ЕН 12087-2008

    ГОСТ Р ЕН 824-2008

    ГОСТ Р ЕН 1604-2008

    ГОСТ Р 56590-2016

    ГОСТ Р 56148-2014

    ГОСТ Р ЕН 29053-2008

    ГОСТ Р 59535-2021

    ГОСТ Р ЕН 12086-2008

    ГОСТ Р ЕН 826-2008

    ГОСТ Р 54469-2011

    ГОСТ Р 57546-2017

    ГОСТ Р 56590-2015

    ГОСТ 9758-2012

    ГОСТ Р 54467-2011

    ГОСТ Р ЕН 1606-2010

    ГОСТ 5382-91