ГОСТ Р 57418-2017

ОбозначениеГОСТ Р 57418-2017
НаименованиеМатериалы и изделия минераловатные теплоизоляционные. Метод определения срока эффективной эксплуатации
СтатусЗаменен
Дата введения07.01.2017
Дата отмены-
Заменен наГОСТ Р 57418-2020
Код ОКС91.100.60
Текст ГОСТа


ГОСТ Р 57418-2017



НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ


МАТЕРИАЛЫ И ИЗДЕЛИЯ МИНЕРАЛОВАТНЫЕ ТЕПЛОИЗОЛЯЦИОННЫЕ


Метод определения срока эффективной эксплуатации


Mineral wool heat-insulating materials and products. Method of determining the effective operation period

ОКС 91.100.60

Дата введения 2017-07-01

Предисловие

1 РАЗРАБОТАН Некоммерческим партнерством "Производители современной минеральной изоляции "Росизол"

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 13 марта 2017 г. N 117-ст

4 ВВЕДЕН ВПЕРВЫЕ

5 ПЕРЕИЗДАНИЕ. Ноябрь 2019 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение

Настоящий стандарт устанавливает метод экспериментального определения теплофизических характеристик минераловатных изоляционных материалов и изделий в условиях моделирования их эксплуатации в ограждающих конструкциях.

Метод, установленный в настоящем стандарте, позволяет прогнозировать изменение теплофизических характеристик в процессе их эксплуатации и экспериментально определять срок эффективной эксплуатации минераловатных изоляционных материалов.

1 Область применения

Настоящий стандарт устанавливает метод экспериментального определения срока эффективной эксплуатации минераловатных изоляционных материалов и изделий, применяемых при устройстве ограждающих конструкций зданий и сооружений во всех климатических зонах Российской Федерации, до 50 лет включительно.

Метод, установленный в настоящем стандарте, распространяется на все минераловатные материалы и изделия заводского изготовления, которые применяются в качестве тепловой изоляции ограждающих конструкций от температурных воздействий внешней среды.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 112 Термометры метеорологические стеклянные. Технические условия

ГОСТ 166 (ИСО 3599-76) Штангенциркули. Технические условия

ГОСТ 427 Линейки измерительные металлические. Технические условия

ГОСТ 7076 Материалы и изделия строительные. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме

ГОСТ 10354 Пленка полиэтиленовая. Технические условия

ГОСТ 17177 Материалы и изделия строительные теплоизоляционные. Методы испытаний

ГОСТ 18321 Статистический контроль качества. Методы случайного отбора выборок штучной продукции

ГОСТ 31925 (EN 12667:2001) Материалы и изделия строительные с высоким и средним термическим сопротивлением. Методы определения термического сопротивления на приборах с горячей охранной зоной и оснащенных тепломером

ГОСТ EN 12085 Изделия теплоизоляционные, применяемые в строительстве. Методы определения линейных размеров образцов, предназначенных для испытаний

ГОСТ Р 53228 Весы неавтоматического действия. Часть 1. Метрологические и технические требования. Испытания

СП 50.13330.2012 "СНиП 23-02-2003 Тепловая защита зданий"

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 минеральная вата (минераловатный изоляционный материал): Теплоизоляционный материал, имеющий структуру ваты и изготовленный из расплава горной породы, шлака или стекла.

3.2 влажность материала по массе: Отношение массы влаги в килограммах, содержащейся в парообразной, жидкой и твердой фазах в порах материала к массе сухого материала, выраженное в процентах.

3.3 замораживание: Процесс термического воздействия низких температур, который состоит в охлаждении образца испытуемого материала и его выдержке при заданной отрицательной температуре до полного завершения фазового перехода воды от жидкого состояния к твердому.

3.4 оттаивание: Процесс термического воздействия температур, который заключается в выдержке после замораживания образца испытуемого материала при положительной температуре до полного завершения фазового перехода воды от твердого состояния к жидкому.

3.5 срок эффективной эксплуатации: Условный эксплуатационный период, в течение которого изделие сохраняет свои теплоизоляционные свойства на уровне проектных показателей. Устанавливают в условных годах эксплуатации (сроке службы).

4 Обозначения

В настоящем стандарте применены следующие обозначения:

- масса в сухом состоянии, кг;

- экспериментальная масса, кг;

N - число условных годовых циклов, г;

- расчетный срок эксплуатации, г;

- срок эффективной эксплуатации, г;

R - термическое сопротивление, Вт/(м·°С);

- расчетная влажность, %;

- экспериментальная влажность, %;

- допустимое приращение влажности, %;

- теплопроводность, Вт/(м·°С).

5 Сущность метода

5.1 Сущность метода заключается в том, что образец испытуемого материала подвергают циклическим климатическим воздействиям, имитирующим условия эксплуатации материала или изделия в ограждающих конструкциях, и определяют изменения теплофизических характеристик материала (теплопроводности в сухом состоянии и термического сопротивления). По результатам измерений теплофизических характеристик оценивают срок эффективной эксплуатации материала до 50 лет включительно.

5.2 Циклические климатические воздействия на испытуемые образцы заключаются в увлажнении образцов до предельно допустимого значения влажности минераловатного изделия в строительной конструкции и в последующем периодическом замораживании и оттаивании образцов.

Два цикла замораживания и оттаивания приравнивают к одному условному году эффективной эксплуатации материала.

Образцы материалов испытывают через 30, 60, 100 циклов замораживания и оттаивания, что соответствует 15, 30, 50 условным годам эффективной эксплуатации.

6 Порядок отбора образцов для испытаний

6.1 Испытания проводят на образцах материалов или изделий, изготовленных в соответствии с требованиями стандартов или технических условий на эти материалы и изделия.

Примечание - Допускается проведение испытаний новых материалов на стадии их разработки при отсутствии нормативных документов на их изготовление.

6.2 Отбор образцов проводят методом случайной выборки по ГОСТ 18321. Для определения срока эффективной эксплуатации материала отбирают три образца для определения исходных характеристик - теплопроводности и термического сопротивления материала (контрольные образцы) и по три образца для определения характеристик материала после климатических воздействий (опытные образцы), эквивалентных 15, 30 и 50 условным годам эффективной эксплуатации материала.

6.3 Отбор образцов для испытаний оформляют актом отбора, в котором приводят:

- дату отбора образцов;

- данные предприятия-изготовителя материала (изделия);

- наименование, вид и марку материала (изделия);

- стандарт или технические условия, по которым изготовлены материал или изделие;

- место отбора образцов;

- условия хранения образцов.

7 Испытательное оборудование и средства контроля

7.1 Для проведения испытаний применяют следующие оборудование и средства измерений:

- климатические камеры, которые позволяют задавать и поддерживать температуру воздуха от минус 20°С до плюс 20°С с точностью ±2°С;

- прибор для определения теплопроводности по ГОСТ 31925 или ГОСТ 7076;

- лабораторный сушильный электрошкаф;

- весы по ГОСТ Р 53228;

- измерительные металлические линейки по ГОСТ 427;

- штангенциркули по ГОСТ 166;

- термометры по ГОСТ 112;

- установка для принудительного увлажнения материалов.

Принципиальная схема установки для принудительного увлажнения образцов водяным паром приведена в приложении А. Допускается применение других, отличных по конструкции от описанной в приложении А установок и методов для принудительного увлажнения образцов.

7.2 Все средства измерений и испытательное оборудование должны иметь удостоверение государственной метрологической поверки в установленном порядке.

8 Подготовка к испытаниям

8.1 Срок эффективной эксплуатации определяют на образцах в виде прямоугольного параллелепипеда, лицевые грани которого имеют форму квадрата длиной стороны не менее 250 мм. Толщина образца может составлять от 20 до 50 мм. Разность между максимальной и минимальной значениями толщины не должна превышать 5 мм. Лицевые грани образца должны быть плоскими. Линейные размеры образцов измеряют по ГОСТ EN 12085 или ГОСТ 17177. Отклонения по ширине и длине образца не должны превышать ±3,0 мм.

8.2 Контрольные и опытные образцы высушивают в лабораторном сушильном шкафу до постоянной массы при температуре (105±5)°С, если в нормативном документе или технических условиях на продукцию конкретного вида не указана другая температура, исключающая возможность деструкции материала. Образец считают высушенным до постоянной массы, если разность между результатами двух последовательных измерений массы после очередного взвешивания не превышает 0,1% за период не менее 0,5 ч.

8.3 Определяют массу каждого образца в сухом состоянии в килограммах.

8.4 Опытные образцы материалов или изделий увлажняют. Увлажнение опытных образцов проводят на установке, принципиальная схема которой показана на рисунке А.1 приложения А, или на отличной от описанной конструкции установке. Образец для испытания 3 располагают в горизонтальном положении на воздухонепроницаемой основе 1 между нижней опорной сеткой 2 и верхней прижимной сеткой 4. Устраивают воздухонепроницаемый короб 5, на который устанавливают воздушный насос 7. В нижней части воздухонепроницаемой основы 1 устанавливают электропароувлажнитель 6, который включают после включения воздушного насоса 7.

Продолжительность процедуры увлажнения - от 5 до 15 мин. Процедуру увлажнения повторяют, переворачивая образец.

Примечание - Альтернативным способом увлажнения является введение воды в образец материала с помощью шприца. Рассчитывают необходимый для введения объем воды для достижения массы образца, близкой к требуемой (экспериментальной). Данный объем вводят в образец по 0,1-0,25 см в различные точки образца по всем граням с различной глубиной проникновения иглы шприца.

8.5 Увлажнение продолжают до достижения массы образца не менее требуемой (экспериментальной)

, (1)

где - экспериментальная влажность образца, определяемая по 8.8;

- масса сухого образца, кг.

8.6 После достижения требуемого (экспериментального) значения влажности (требуемой массы) образец заворачивают в полиэтиленовую водонепроницаемую пленку толщиной не менее 0,02 мм по ГОСТ 10354, запаивают по всем граням и помещают в сушильный электрошкаф на 24 ч для равномерного распределения влаги внутри образца. В сушильном электрошкафу поддерживают температуру 65°С. Во время выдержки в сушильном шкафу образец необходимо переворачивать каждые 4 ч с грани на грань (лицевую либо торцевую). Затем образец выдерживают 24 ч при комнатной температуре: 12 ч на одной лицевой грани, 12 ч - на другой.

8.7 После выдерживания опытных образцов в сушильном электрошкафу по 8.6 проводят контрольное взвешивание с учетом массы полиэтиленовой пленки.

8.8 Требуемую экспериментальную влажность образца , %, вычисляют по формуле

%, (2)

где - максимальная расчетная влажность, соответствующая условиям эксплуатации Б согласно приложению Т СП 50.13330.2012 [для всех типов минераловатных изоляционных материалов (из каменного и стеклянного волокна) =5% по массе];

- предельно допустимое значение влажности в материале.

Для проведения испытаний по определению срока эффективной эксплуатации минераловатных изоляционных материалов указанное значение экспериментальной влажности следует увеличить на значение предельно допустимого приращения влажности в материале =3% (согласно таблице 10 СП 50.13330.2012). Опытные образцы материалов до проведения циклов замораживания и оттаивания должны быть увлажнены до значения экспериментальной влажности с точностью ±2%. Следовательно, экспериментальная влажность по массе испытуемых образцов должна быть равна

%. (3)

9 Проведение испытаний

9.1 Для всех образцов (контрольных и опытных) определяют теплопроводность в сухом состоянии и термическое сопротивление по ГОСТ 7076 или ГОСТ 31925. Полученные значения являются контрольными результатами.

9.2 После увлажнения в соответствии с 8.4-8.6 опытные образцы размещают равномерно по всему рабочему объему климатической камеры с промежутками между ними таким образом, чтобы обеспечить движение воздушных потоков и исключить образование застойных зон.

9.3 Температуру замораживания образцов устанавливают минус (20±2)°С. Продолжительность замораживания образцов составляет не менее 6 ч.

Примечание - Указанная температура замораживания обоснована экспериментальным фактом фазового перехода воды от жидкого состояния к твердому в порах всех типов строительных материалов при температуре ниже минус 15°С.

9.4 Оттаивание образцов осуществляют при температуре воздуха плюс (20±2)°С. Продолжительность оттаивания составляет не менее 6 ч.

9.5 Через 30, 60, 100 циклов замораживания и оттаивания (15, 30 и 50 условных годовых циклов) опытные образцы высушивают в соответствии с 8.2 и определяют теплопроводность и термическое сопротивление в соответствии с 9.1.

9.6 Результаты испытаний фиксируют в протоколе (см. приложение Б).

10 Обработка результатов испытаний

10.1 За результат каждого испытания (контрольного, после 15, 30 и 50 условных годовых циклов) по определению теплопроводности и термического сопротивления принимают среднеарифметическое значение результатов каждого испытания (контрольного, после 15, 30 и 50 условных годовых циклов) трех образцов.

10.2 Средние значения теплопроводности в сухом состоянии (см. таблицу Б.1 приложения Б) после контрольного испытания, после 15, 30 и 50 условных годовых циклов наносят на график зависимости теплопроводности , Вт/(м·°С), от числа условных годовых циклов N, лет. Средние значения термического сопротивления (см. таблицу Б.1 приложения Б) после контрольного испытания, после 15, 30 и 50 условных годовых циклов наносят на график зависимости термического сопротивления R, Вт/(м·°С) от числа условных годовых циклов N, лет.

10.3 Построенные графики аппроксимируют линейной функцией:

, (4)


, (5)

где - теплопроводность материала в сухом состоянии после контрольных испытаний (до проведения циклов замораживания и оттаивания), Вт/(м·°С);

и - угловые коэффициенты аппроксимирующих прямых;

- термическое сопротивление образца после контрольных испытаний (до проведения циклов замораживания и оттаивания), Вт/(м·°С).

10.4 Угловые коэффициенты аппроксимирующих прямых и определяют методами регрессионного анализа.

Примечание - Угловые коэффициенты и/или могут быть равны нулю в случае, если в ходе испытаний теплопроводность (термическое сопротивление) материала (образца) не менялась после проведения циклов замораживания и оттаивания.

11 Оценка результатов испытаний

11.1 Определяют расчетный срок эксплуатации , лет, при котором теплопроводность увеличивается не более чем на 5% относительно результатов контрольных испытаний, а термическое сопротивление не более чем на 10% по формулам:

, (6)


, (7)

. (8)

Значение расчетного срока эксплуатации округляют до целого числа.

Расчетный срок эксплуатации или не определяют, если =0 или =0.

11.2 Срок эффективной эксплуатации , лет, минераловатного изоляционного материала или изделия приравнивают к числу проведенных условных годовых циклов испытаний N, лет, если в процессе испытаний теплопроводность материала увеличилась не более чем на 5% относительно результатов контрольных испытаний или не изменилась, т.е. если N< или =0, и термическое сопротивление увеличилось не более чем на 10% относительно результатов контрольных испытаний или не изменилась, т.е. если N< или =0.

Срок эффективной эксплуатации , лет, минераловатного изоляционного материала или изделия принимают равным расчетному сроку эксплуатации , лет, если в процессе испытаний теплопроводность материала увеличилась более чем на 5% или термическое сопротивление увеличилось более чем на 10% относительно результатов контрольных испытаний, т.е. если N>.

(9)*

________________

* Формула и экспликация к ней соответствуют оригиналу. - .

Приложение А
(рекомендуемое)


Схема экспериментальной установки для принудительного увлажнения образцов водяным паром

Принципиальная схема установки для принудительного увлажнения водяным паром образцов приведена на рисунке А.1.

Установка включает в себя:

- воздухонепроницаемую основу 1 квадратного сечения, полую внутри, с опорными полками в верхней части;

- опорную нижнюю металлическую сетку 2 из проволоки диаметром 1 мм с ячейкой размерами 20х20 мм, которая устанавливается на опорных полках основы и на которой располагается образец для испытания 3;

- прижимную верхнюю металлическую сетку 4 из проволоки диаметром 1 мм с ячейкой размерами 20х20 мм, которую помещают на образец для испытаний 3 в целях его удержания на поверхности основы и предотвращения образования больших щелей между образцом 3 и основой 1;

- воздухонепроницаемый колпак 5 в виде параллелепипеда, переходящего в цилиндр, который устанавливается на опорных полках основы 1;

- электропароувлажнитель 6 для образования пароводяной смеси без изменения температуры испаряющейся воды, который располагается внутри основы 1;

- воздушный насос 7, который устанавливают в верхней части колпака 5 и создает разрежение над увлажняемым образцом для испытаний 3, осуществляя удаление отработанной паровоздушной смеси из установки;

- резиновые уплотнители 8, устанавливаемые по периметру прижима колпака 5 к основе 1;

- расставленные по периметру подставки 9 под основу 1 для образования воздушных щелей (зазоров), через которые осуществляется подсос воздуха при работе установки.


1 - воздухонепроницаемая основа; 2 - нижняя опорная сетка; 3 - образец для испытаний; 4 - верхняя прижимная сетка; 5 - воздухонепроницаемый колпак; 6 - электропароувлажнитель; 7 - воздушный насос; 8 - резиновые уплотнители; 9 - подставки под основание; 10 - паровоздушная смесь; 11 - отработанная паровоздушная смесь

Рисунок А.1 - Схема экспериментальной установки для принудительного увлажнения образцов водяным паром

Приложение Б
(рекомендуемое)


Форма протокола измерений теплофизических характеристик материалов при оценке срока эффективной эксплуатации

Таблица Б.1

УДК 669.001.4:006.354

ОКС 91.100.60

Ключевые слова: минераловатные изоляционные материалы и изделия, теплопроводность, термическое сопротивление, влажность по массе, замораживание, оттаивание, срок эффективной эксплуатации

Электронный текст документа

и сверен по:

, 2019

Другие госты в подкатегории

    ГОСТ 10060-87

    ГОСТ 10060.1-95

    ГОСТ 10060.2-95

    ГОСТ 10060.0-95

    ГОСТ 10140-71

    ГОСТ 10140-2003

    ГОСТ 10178-62

    ГОСТ 10178-76

    ГОСТ 10179-62

    ГОСТ 10060.3-95

    ГОСТ 10179-74

    ГОСТ 10140-80

    ГОСТ 10181.0-81

    ГОСТ 10174-90

    ГОСТ 10178-85

    ГОСТ 10296-79

    ГОСТ 10181.4-81

    ГОСТ 10499-67

    ГОСТ 10499-95

    ГОСТ 10832-64

    ГОСТ 10923-64

    ГОСТ 10832-91

    ГОСТ 10999-64

    ГОСТ 10181.1-81

    ГОСТ 10923-93

    ГОСТ 11052-74

    ГОСТ 1148-41

    ГОСТ 11830-66

    ГОСТ 12394-66

    ГОСТ 125-2018

    ГОСТ 12730.0-2020

    ГОСТ 12730.0-78

    ГОСТ 125-79

    ГОСТ 12730.2-2020

    ГОСТ 12730.3-2020

    ГОСТ 12730.2-78

    ГОСТ 12730.1-2020

    ГОСТ 10181.3-81

    ГОСТ 12730.3-78

    ГОСТ 12730.1-78

    ГОСТ 12803-76

    ГОСТ 12730.4-2020

    ГОСТ 12852.1-77

    ГОСТ 11310-90

    ГОСТ 12852.0-77

    ГОСТ 12852.2-77

    ГОСТ 12852.4-77

    ГОСТ 12852.3-77

    ГОСТ 12852.6-77

    ГОСТ 12852.5-77

    ГОСТ 12865-67

    ГОСТ 13015-2003

    ГОСТ 13450-68

    ГОСТ 10060.4-95

    ГОСТ 13578-2019

    ГОСТ 13580-2021

    ГОСТ 13015-2012

    ГОСТ 13996-84

    ГОСТ 12730.4-78

    ГОСТ 14256-78

    ГОСТ 13087-2018

    ГОСТ 14356-69

    ГОСТ 14295-75

    ГОСТ 14357-69

    ГОСТ 14791-69

    ГОСТ 15588-70

    ГОСТ 1581-2019

    ГОСТ 1581-91

    ГОСТ 15825-80

    ГОСТ 15836-70

    ГОСТ 15836-79

    ГОСТ 1581-96

    ГОСТ 14791-79

    ГОСТ 16136-2003

    ГОСТ 13087-81

    ГОСТ 16136-70

    ГОСТ 16233-77

    ГОСТ 16233-70

    ГОСТ 13996-93

    ГОСТ 16381-77

    ГОСТ 16136-80

    ГОСТ 16557-78

    ГОСТ 15879-70

    ГОСТ 16475-81

    ГОСТ 10180-2012

    ГОСТ 17057-89

    ГОСТ 15588-2014

    ГОСТ 17177-87

    ГОСТ 17624-2021

    ГОСТ 10832-2009

    ГОСТ 10181-2000

    ГОСТ 1779-83

    ГОСТ 12730.5-84

    ГОСТ 18109-72

    ГОСТ 17608-91

    ГОСТ 18124-75

    ГОСТ 10060-2012

    ГОСТ 18124-95

    ГОСТ 18623-82

    ГОСТ 10181-2014

    ГОСТ 10180-90

    ГОСТ 12730.5-2018

    ГОСТ 18659-81

    ГОСТ 13996-2019

    ГОСТ 17623-87

    ГОСТ 18105-2018

    ГОСТ 19570-2018

    ГОСТ 20429-84

    ГОСТ 20430-84

    ГОСТ 19222-2019

    ГОСТ 20916-2021

    ГОСТ 20916-87

    ГОСТ 21880-2011

    ГОСТ 16297-80

    ГОСТ 21880-2022

    ГОСТ 12784-78

    ГОСТ 21880-94

    ГОСТ 21880-86

    ГОСТ 22237-85

    ГОСТ 22023-76

    ГОСТ 22266-76

    ГОСТ 17624-2012

    ГОСТ 2245-43

    ГОСТ 18956-73

    ГОСТ 22266-94

    ГОСТ 18866-93

    ГОСТ 18124-2012

    ГОСТ 22690.0-77

    ГОСТ 22690.1-77

    ГОСТ 22690.2-77

    ГОСТ 22266-2013

    ГОСТ 22690.3-77

    ГОСТ 22690.4-77

    ГОСТ 22783-2022

    ГОСТ 22688-2018

    ГОСТ 17608-2017

    ГОСТ 22950-78

    ГОСТ 23208-2003

    ГОСТ 22950-95

    ГОСТ 23208-2022

    ГОСТ 20910-2019

    ГОСТ 23208-83

    ГОСТ 23307-78

    ГОСТ 22856-89

    ГОСТ 23342-78

    ГОСТ 23464-79

    ГОСТ 17624-87

    ГОСТ 22783-77

    ГОСТ 12801-98

    ГОСТ 23250-78

    ГОСТ 20910-90

    ГОСТ 23233-78

    ГОСТ 19222-84

    ГОСТ 23499-79

    ГОСТ 18105-86

    ГОСТ 23835-79

    ГОСТ 23668-79

    ГОСТ 12801-84

    ГОСТ 24316-2022

    ГОСТ 22263-76

    ГОСТ 23735-2014

    ГОСТ 23342-2012

    ГОСТ 24467-80

    ГОСТ 23735-79

    ГОСТ 23558-94

    ГОСТ 24545-2021

    ГОСТ 24640-91

    ГОСТ 24099-80

    ГОСТ 23732-79

    ГОСТ 24748-2003

    ГОСТ 20054-2016

    ГОСТ 23789-2018

    ГОСТ 24986-81

    ГОСТ 23789-79

    ГОСТ 25094-82

    ГОСТ 24099-2013

    ГОСТ 22688-77

    ГОСТ 24748-81

    ГОСТ 25137-82

    ГОСТ 24816-2014

    ГОСТ 23422-87

    ГОСТ 18105-2010

    ГОСТ 24816-81

    ГОСТ 25214-82

    ГОСТ 25192-82

    ГОСТ 2551-64

    ГОСТ 2551-75

    ГОСТ 25591-83

    ГОСТ 25192-2012

    ГОСТ 25328-82

    ГОСТ 25597-83

    ГОСТ 23732-2011

    ГОСТ 25607-94

    ГОСТ 25246-82

    ГОСТ 25226-96

    ГОСТ 22690-88

    ГОСТ 24316-80

    ГОСТ 25781-2018

    ГОСТ 25820-2021

    ГОСТ 25818-91

    ГОСТ 25877-83

    ГОСТ 24544-2020

    ГОСТ 25880-83

    ГОСТ 25094-2015

    ГОСТ 25592-91

    ГОСТ 25485-2019

    ГОСТ 25820-2000

    ГОСТ 25592-2019

    ГОСТ 25094-94

    ГОСТ 26193-84

    ГОСТ 26281-84

    ГОСТ 25820-83

    ГОСТ 22690-2015

    ГОСТ 26627-85

    ГОСТ 25898-83

    ГОСТ 26589-85

    ГОСТ 25898-2020

    ГОСТ 26633-85

    ГОСТ 25820-2014

    ГОСТ 2678-65

    ГОСТ 26644-85

    ГОСТ 2678-87

    ГОСТ 25881-83

    ГОСТ 26798.0-85

    ГОСТ 26798.1-85

    ГОСТ 26798.2-85

    ГОСТ 24452-80

    ГОСТ 26871-86

    ГОСТ 2694-67

    ГОСТ 26417-85

    ГОСТ 2697-64

    ГОСТ 2694-78

    ГОСТ 24545-81

    ГОСТ 17177-94

    ГОСТ 2697-83

    ГОСТ 25485-89

    ГОСТ 24544-81

    ГОСТ 26798.2-96

    ГОСТ 24983-81

    ГОСТ 27798-2019

    ГОСТ 25945-98

    ГОСТ 26633-2015

    ГОСТ 26633-2012

    ГОСТ 26798.1-96

    ГОСТ 28013-89

    ГОСТ 2889-67

    ГОСТ 2889-80

    ГОСТ 26134-84

    ГОСТ 29167-2021

    ГОСТ 25818-2017

    ГОСТ 27006-2019

    ГОСТ 30301-95

    ГОСТ 27180-2001

    ГОСТ 30340-95

    ГОСТ 27006-86

    ГОСТ 28570-2019

    ГОСТ 28570-90

    ГОСТ 30444-97

    ГОСТ 30491-97

    ГОСТ 24332-88

    ГОСТ 26134-2016

    ГОСТ 28013-98

    ГОСТ 25898-2012

    ГОСТ 30108-94

    ГОСТ 27180-86

    ГОСТ 27005-86

    ГОСТ 27005-2014

    ГОСТ 30693-2000

    ГОСТ 30778-2001

    ГОСТ 30547-97

    ГОСТ 310.1-76

    ГОСТ 310.3-76

    ГОСТ 30740-2000

    ГОСТ 310.2-76

    ГОСТ 30459-2003

    ГОСТ 310.6-2020

    ГОСТ 30643-2020

    ГОСТ 310.4-81

    ГОСТ 310.6-85

    ГОСТ 31108-2020

    ГОСТ 31189-2003

    ГОСТ 30744-2001

    ГОСТ 31311-2022

    ГОСТ 31189-2015

    ГОСТ 26633-91

    ГОСТ 31309-2005

    ГОСТ 30459-96

    ГОСТ 27180-2019

    ГОСТ 30459-2008

    ГОСТ 31360-2007

    ГОСТ 31356-2007

    ГОСТ 26589-94

    ГОСТ 310.5-88

    ГОСТ 31357-2007

    ГОСТ 31377-2008

    ГОСТ 31386-2008

    ГОСТ 31387-2008

    ГОСТ 31424-2010

    ГОСТ 31359-2007

    ГОСТ 31898-1-2011

    ГОСТ 31108-2003

    ГОСТ 31426-2010

    ГОСТ 31899-1-2011

    ГОСТ 31362-2007

    ГОСТ 31913-2011

    ГОСТ 23499-2009

    ГОСТ 30340-2012

    ГОСТ 31436-2011

    ГОСТ 31430-2011

    ГОСТ 31897-2011

    ГОСТ 32021-2012

    ГОСТ 31108-2016

    ГОСТ 31899-2-2011

    ГОСТ 31915-2011

    ГОСТ 30629-99

    ГОСТ 30515-97

    ГОСТ 31376-2008

    ГОСТ 21216-2014

    ГОСТ 31358-2007

    ГОСТ 29167-91

    ГОСТ 32301-2011

    ГОСТ 32311-2012

    ГОСТ 32315.1-2012

    ГОСТ 32018-2012

    ГОСТ 32316.1-2012

    ГОСТ 30290-94

    ГОСТ 31914-2012

    ГОСТ 30256-94

    ГОСТ 32303-2011

    ГОСТ 30515-2013

    ГОСТ 31358-2019

    ГОСТ 32313-2020

    ГОСТ 32302-2011

    ГОСТ 32317-2012

    ГОСТ 2678-94

    ГОСТ 32026-2012

    ГОСТ 32806-2014

    ГОСТ 32496-2013

    ГОСТ 32495-2013

    ГОСТ 32497-2013

    ГОСТ 33174-2014

    ГОСТ 32805-2014

    ГОСТ 30629-2011

    ГОСТ 33126-2014

    ГОСТ 33742-2016

    ГОСТ 32319-2012

    ГОСТ 33083-2014

    ГОСТ 33793-2021

    ГОСТ 33792-2021

    ГОСТ 33699-2015

    ГОСТ 33928-2016

    ГОСТ 32312-2011

    ГОСТ 34532-2019

    ГОСТ 34669-2020

    ГОСТ 3476-2019

    ГОСТ 32588-2013

    ГОСТ 3476-74

    ГОСТ 34850-2022

    ГОСТ 34804-2021

    ГОСТ 3580-67

    ГОСТ 32614-2012

    ГОСТ 379-69

    ГОСТ 378-76

    ГОСТ 378-60

    ГОСТ 379-79

    ГОСТ 32803-2014

    ГОСТ 32318-2012

    ГОСТ 379-2015

    ГОСТ 3344-83

    ГОСТ 33949-2016

    ГОСТ 32313-2011

    ГОСТ 32493-2013

    ГОСТ 34275-2017

    ГОСТ 379-95

    ГОСТ 34719-2021

    ГОСТ 4.206-83

    ГОСТ 4.202-79

    ГОСТ 4.204-79

    ГОСТ 4.210-79

    ГОСТ 4001-66

    ГОСТ 4.219-81

    ГОСТ 4001-84

    ГОСТ 4.228-83

    ГОСТ 4013-2019

    ГОСТ 4.203-79

    ГОСТ 4640-66

    ГОСТ 4.229-83

    ГОСТ 4795-49

    ГОСТ 4795-53

    ГОСТ 4796-49

    ГОСТ 4797-49

    ГОСТ 4001-2013

    ГОСТ 4799-49

    ГОСТ 4798-49

    ГОСТ 4800-49

    ГОСТ 4801-49

    ГОСТ 4640-93

    ГОСТ 4861-65

    ГОСТ 4.201-79

    ГОСТ 4861-74

    ГОСТ 4640-2011

    ГОСТ 530-54

    ГОСТ 4013-82

    ГОСТ 530-71

    ГОСТ 5382-73

    ГОСТ 530-80

    ГОСТ 5578-2019

    ГОСТ 5578-76

    ГОСТ 4.212-80

    ГОСТ 4.211-80

    ГОСТ 5742-2021

    ГОСТ 5742-61

    ГОСТ 4.230-83

    ГОСТ 5742-76

    ГОСТ 6102-78

    ГОСТ 5724-75

    ГОСТ 32310-2020

    ГОСТ 5578-94

    ГОСТ 4.209-79

    ГОСТ 6102-94

    ГОСТ 4.233-86

    ГОСТ 481-80

    ГОСТ 6133-52

    ГОСТ 6266-81

    ГОСТ 6133-84

    ГОСТ 6139-91

    ГОСТ 6139-2020

    ГОСТ 6316-55

    ГОСТ 31911-2011

    ГОСТ 474-90

    ГОСТ 6328-55

    ГОСТ 648-41

    ГОСТ 6427-52

    ГОСТ 6427-75

    ГОСТ 6666-81

    ГОСТ 6788-62

    ГОСТ 6788-74

    ГОСТ 6927-74

    ГОСТ 6928-54

    ГОСТ 7025-67

    ГОСТ 530-95

    ГОСТ 7030-2021

    ГОСТ 6787-2001

    ГОСТ 7032-2021

    ГОСТ 6139-2003

    ГОСТ 33160-2014

    ГОСТ 6133-99

    ГОСТ 7393-71

    ГОСТ 7415-55

    ГОСТ 7392-2002

    ГОСТ 33929-2016

    ГОСТ 6141-91

    ГОСТ 7473-85

    ГОСТ 7392-85

    ГОСТ 7484-69

    ГОСТ 6266-89

    ГОСТ 7483-58

    ГОСТ 7484-78

    ГОСТ 7415-86

    ГОСТ 7487-55

    ГОСТ 8268-82

    ГОСТ 7394-85

    ГОСТ 7473-94

    ГОСТ 8423-57

    ГОСТ 8424-72

    ГОСТ 33370-2015

    ГОСТ 8426-57

    ГОСТ 8462-62

    ГОСТ 8423-75

    ГОСТ 8426-75

    ГОСТ 6665-91

    ГОСТ 8736-85

    ГОСТ 8269-87

    ГОСТ 8747-58

    ГОСТ 6266-97

    ГОСТ 7473-2010

    ГОСТ 8928-81

    ГОСТ 9128-76

    ГОСТ 9179-2018

    ГОСТ 8267-93

    ГОСТ 929-59

    ГОСТ 6482-2011

    ГОСТ 7025-91

    ГОСТ 9179-77

    ГОСТ 8736-2014

    ГОСТ 8736-93

    ГОСТ 9480-89

    ГОСТ 9573-72

    ГОСТ 5802-86

    ГОСТ 9573-82

    ГОСТ 9573-2012

    ГОСТ 9573-96

    ГОСТ 965-89

    ГОСТ 969-2019

    ГОСТ 8462-85

    ГОСТ 9479-2011

    ГОСТ 969-91

    ГОСТ 9480-2012

    ГОСТ 9479-98

    ГОСТ 9757-90

    ГОСТ 530-2012

    ГОСТ EN 1109-2011

    ГОСТ EN 1107-2-2011

    ГОСТ 961-89

    ГОСТ 31925-2011

    ГОСТ 9128-84

    ГОСТ EN 1107-1-2011

    ГОСТ 32314-2012

    ГОСТ 31912-2011

    ГОСТ 8747-88

    ГОСТ EN 1110-2011

    ГОСТ EN 12088-2011

    ГОСТ EN 12085-2011

    ГОСТ EN 1296-2012

    ГОСТ 9479-84

    ГОСТ EN 12039-2011

    ГОСТ EN 12730-2011

    ГОСТ EN 13416-2011

    ГОСТ EN 1108-2012

    ГОСТ EN 12431-2011

    ГОСТ EN 12091-2011

    ГОСТ EN 13897-2012

    ГОСТ EN 12430-2011

    ГОСТ EN 13470-2011

    ГОСТ EN 12090-2011

    ГОСТ EN 13074-1-2013

    ГОСТ EN 1602-2011

    ГОСТ 530-2007

    ГОСТ EN 13467-2011

    ГОСТ EN 1848-1-2011

    ГОСТ EN 13471-2011

    ГОСТ EN 1607-2011

    ГОСТ EN 12089-2011

    ГОСТ EN 1850-2-2011

    ГОСТ EN 1850-1-2011

    ГОСТ EN 1608-2011

    ГОСТ EN 1605-2011

    ГОСТ EN 1928-2011

    ГОСТ EN 1849-1-2011

    ГОСТ 7392-2014

    ГОСТ EN 495-5-2012

    ГОСТ EN 12087-2011

    ГОСТ EN 1849-2-2011

    ГОСТ ISO 10077-1-2021

    ГОСТ EN 825-2011

    ГОСТ Р 51032-97

    ГОСТ EN 13703-2013

    ГОСТ EN 823-2011

    ГОСТ EN 14707-2011

    ГОСТ EN 1609-2011

    ГОСТ EN 822-2011

    ГОСТ Р 51829-2022

    ГОСТ Р 52805-2007

    ГОСТ Р 52953-2008

    ГОСТ 31924-2011

    ГОСТ EN 824-2011

    ГОСТ Р 52908-2008

    ГОСТ Р 53227-2008

    ГОСТ Р 53223-2008

    ГОСТ EN 1604-2011

    ГОСТ Р 50332.1-2019

    ГОСТ EN 12086-2011

    ГОСТ Р 53455-2009

    ГОСТ Р 51263-99

    ГОСТ EN 29053-2011

    ГОСТ Р 54304-2011

    ГОСТ Р 54303-2011

    ГОСТ Р 53223-2016

    ГОСТ Р 53338-2009

    ГОСТ Р 51829-2001

    ГОСТ EN 826-2011

    ГОСТ Р 51795-2019

    ГОСТ Р 55224-2020

    ГОСТ Р 54963-2012

    ГОСТ Р 54194-2010

    ГОСТ Р 55224-2012

    ГОСТ 8735-88

    ГОСТ Р 54854-2011

    ГОСТ 8269.1-97

    ГОСТ Р 53231-2008

    ГОСТ Р 53377-2009

    ГОСТ Р 51263-2012

    ГОСТ Р 55818-2013

    ГОСТ Р 55818-2018

    ГОСТ Р 53378-2009

    ГОСТ Р 56207-2014

    ГОСТ Р 56582-2015

    ГОСТ Р 56583-2015

    ГОСТ Р 56507-2015

    ГОСТ Р 56196-2014

    ГОСТ Р 56584-2015

    ГОСТ Р 56586-2015

    ГОСТ Р 56587-2015

    ГОСТ Р 56387-2018

    ГОСТ Р 56588-2015

    ГОСТ EN 1606-2011

    ГОСТ Р 55936-2018

    ГОСТ Р 55936-2014

    ГОСТ Р 56593-2015

    ГОСТ Р 56704-2022

    ГОСТ Р 56387-2015

    ГОСТ Р 51795-2001

    ГОСТ Р 56704-2015

    ГОСТ Р 54748-2011

    ГОСТ Р 56775-2015

    ГОСТ Р 56686-2015

    ГОСТ Р 56504-2015

    ГОСТ Р 56911-2016

    ГОСТ Р 56688-2015

    ГОСТ Р 57293-2016

    ГОСТ Р 56727-2015

    ГОСТ Р 56703-2015

    ГОСТ Р 56910-2016

    ГОСТ Р 57294-2016

    ГОСТ Р 57336-2016

    ГОСТ Р 57334-2016

    ГОСТ Р 57141-2016

    ГОСТ Р 57335-2016

    ГОСТ Р 57333-2016

    ГОСТ Р 57337-2016

    ГОСТ Р 57338-2016

    ГОСТ Р 57349-2016

    ГОСТ Р 57345-2016

    ГОСТ Р 56828.18-2017

    ГОСТ Р 57348-2016

    ГОСТ 8269.0-97

    ГОСТ Р 57347-2016

    ГОСТ 32794-2014

    ГОСТ Р 57418-2020

    ГОСТ Р 57416-2017

    ГОСТ Р 56732-2015

    ГОСТ Р 57808-2017

    ГОСТ Р 57809-2017

    ГОСТ Р 57810-2017

    ГОСТ Р 57811-2017

    ГОСТ Р 57813-2017

    ГОСТ Р 57812-2017

    ГОСТ Р 57814-2017

    ГОСТ Р 57815-2017

    ГОСТ Р 57816-2017

    ГОСТ Р 57819-2017

    ГОСТ Р 57957-2017

    ГОСТ Р 57833-2017

    ГОСТ Р 57789-2017

    ГОСТ Р 57414-2017

    ГОСТ Р 58026-2017

    ГОСТ Р 58002-2017

    ГОСТ Р 56505-2015

    ГОСТ Р 58153-2018

    ГОСТ Р 57796-2017

    ГОСТ Р 58275-2018

    ГОСТ Р 58271-2018

    ГОСТ Р 58277-2018

    ГОСТ Р 58278-2018

    ГОСТ Р 58279-2018

    ГОСТ Р 58063-2018

    ГОСТ Р 58272-2018

    ГОСТ Р 53376-2009

    ГОСТ Р 57415-2017

    ГОСТ Р 58766-2019

    ГОСТ Р 58767-2019

    ГОСТ Р 58739-2019

    ГОСТ Р 58527-2019

    ГОСТ Р 56178-2014

    ГОСТ Р 57255-2016

    ГОСТ Р 58892-2020

    ГОСТ 9758-86

    ГОСТ Р 58796-2020

    ГОСТ Р 58893-2020

    ГОСТ Р 58276-2018

    ГОСТ Р 58937-2020

    ГОСТ Р 58795-2020

    ГОСТ Р 58894-2020

    ГОСТ Р 59095-2020

    ГОСТ Р 58953-2020

    ГОСТ Р 59097-2020

    ГОСТ Р 58913-2020

    ГОСТ Р 59150-2020

    ГОСТ Р 58896-2020

    ГОСТ Р 59500-2021

    ГОСТ Р 59096-2020

    ГОСТ Р 59122-2020

    ГОСТ Р 58429-2019

    ГОСТ Р 58964-2020

    ГОСТ Р 58257-2018

    ГОСТ Р 59555-2021

    ГОСТ Р 59574-2021

    ГОСТ Р 59561-2021

    ГОСТ Р 59613-2021

    ГОСТ Р 59599-2021

    ГОСТ Р 59634-2021

    ГОСТ Р 56729-2015

    ГОСТ Р 59646-2021

    ГОСТ Р 59658-2021

    ГОСТ Р 58211-2018

    ГОСТ Р 59647-2021

    ГОСТ Р 59714-2021

    ГОСТ Р 59674-2021

    ГОСТ Р 59686-2021

    ГОСТ Р 59659-2021

    ГОСТ Р 59923-2021

    ГОСТ Р 59744-2021

    ГОСТ Р 59715-2022

    ГОСТ Р 59538-2021

    ГОСТ Р 59945-2021

    ГОСТ Р 59940-2021

    ГОСТ Р 59944-2021

    ГОСТ Р 59957-2021

    ГОСТ Р 59946-2021

    ГОСТ Р 70034-2022

    ГОСТ Р 70052-2022

    ГОСТ Р 57417-2017

    ГОСТ Р 70086-2022

    ГОСТ Р 70051-2022

    ГОСТ Р 70075-2022

    ГОСТ Р 70062-2022

    ГОСТ Р 70090-2022

    ГОСТ Р 70222-2022

    ГОСТ Р 70309-2022

    ГОСТ Р 70007-2022

    ГОСТ Р 70307-2022

    ГОСТ Р 58956-2020

    ГОСТ Р 70341-2022

    ГОСТ Р 70344-2022

    ГОСТ Р 70342-2022

    ГОСТ Р 70258-2022

    ГОСТ Р 70343-2022

    ГОСТ Р 58430-2019

    ГОСТ Р 70261-2022

    ГОСТ Р 58405-2019

    ГОСТ Р 59523-2021

    ГОСТ Р 59536-2021

    ГОСТ Р ЕН 1109-2009

    ГОСТ Р ЕН 1110-2008

    ГОСТ Р ЕН 1107-1-2008

    ГОСТ Р ЕН 1296-2011

    ГОСТ Р ЕН 12085-2008

    ГОСТ Р ЕН 13416-2008

    ГОСТ Р ЕН 12088-2010

    ГОСТ Р ЕН 13897-2011

    ГОСТ Р ЕН 12039-2008

    ГОСТ Р ЕН 12091-2010

    ГОСТ Р ЕН 12430-2008

    ГОСТ Р ЕН 12431-2008

    ГОСТ Р ЕН 1602-2008

    ГОСТ Р 58955-2020

    ГОСТ Р ЕН 1607-2008

    ГОСТ Р ЕН 1605-2010

    ГОСТ Р ЕН 1848-1-2008

    ГОСТ Р ЕН 1850-2-2008

    ГОСТ Р ЕН 1850-1-2008

    ГОСТ Р ЕН 1108-2011

    ГОСТ Р ЕН 12090-2008

    ГОСТ Р ЕН 1608-2008

    ГОСТ Р ЕН 1928-2009

    ГОСТ Р ЕН 823-2008

    ГОСТ Р ЕН 1849-1-2009

    ГОСТ Р ИСО 10456-2021

    ГОСТ Р ЕН 12089-2008

    ГОСТ Р ИСО 7345-2021

    ГОСТ Р ЕН 825-2008

    ГОСТ Р ЕН 1609-2008

    ГОСТ Р ЕН 822-2008

    ГОСТ Р ЕН 1603-2014

    ГОСТ Р ЕН 12087-2008

    ГОСТ Р ЕН 824-2008

    ГОСТ Р ЕН 1604-2008

    ГОСТ Р 56590-2016

    ГОСТ Р 56148-2014

    ГОСТ Р ЕН 29053-2008

    ГОСТ Р 59535-2021

    ГОСТ Р ЕН 12086-2008

    ГОСТ Р ЕН 826-2008

    ГОСТ Р 54469-2011

    ГОСТ Р 57546-2017

    ГОСТ Р 56590-2015

    ГОСТ 9758-2012

    ГОСТ Р 54467-2011

    ГОСТ Р ЕН 1606-2010

    ГОСТ 5382-91