ГОСТ 1932-93

ОбозначениеГОСТ 1932-93
НаименованиеТопливо твердое. Методы определения фосфора
СтатусДействует
Дата введения01.01.2001
Дата отмены-
Заменен на-
Код ОКС75.160.10
Текст ГОСТа


ГОСТ 1932-93 (ИСО 622-81)

Группа А19

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ТОПЛИВО ТВЕРДОЕ

Методы определения фосфора

Solid fuel. Methods for determinations of phosphorus

ОКСТУ 0309, 0709; ОКС 73.040

Дата введения 2001-01-01



Предисловие

1 РАЗРАБОТАН Техническим комитетом "Кокс Украины"

ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол N 3 от 17 февраля 1993 г.)

За принятие проголосовали:

Наименование государства

Наименование национального органа по стандартизации

Республика Азербайджан

Азгосстандарт

Республика Армения

Армгосстандарт

Республика Беларусь

Госстандарт Беларуси

Республика Грузия

Грузстандарт

Республика Казахстан

Госстандарт Республики Казахстан

Республика Молдова

Молдовастандарт

Российская Федерация

Госстандарт России

Республика Узбекистан

Узгосстандарт

Туркменистан

Главгосслужба "Туркменстандартлары"

Украина

Госстандарт Украины

3 Приложение А к настоящему стандарту представляет собой полный аутентичный текст международного стандарта ИСО 622-81 "Топливо твердое. Определение содержания фосфора. Фотометрический метод с применением восстановленного молибдофосфата"

4 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 10 августа 2000 г. N 204-ст межгосударственный стандарт ГОСТ 1932-93 (ИСО 622-81) введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2001 г.

5 ВЗАМЕН ГОСТ 1932-82

ВНЕСЕНА поправка, опубликованная в ИУС N 7, 2001 год

Поправка внесена изготовителем базы данных

ИНФОРМАЦИОННЫЕ ДАННЫЕ

ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на которые дана ссылка

Номер пункта, подпункта

ГОСТ 1770-74

3.2; 4.2

ГОСТ 3118-77

2.2; 3.2

ГОСТ 3652-69

2.2

ГОСТ 3765-78

2.2; 3.2; 4.2

ГОСТ 3769-78

4.2

ГОСТ 3772-74

2.2

ГОСТ 4198-75

2.2; 3.2; 4.2

ГОСТ 4204-77

3.2; 4.2

ГОСТ 4328-77

2.2; 4.2

ГОСТ 4461-77

2.2; 3.2; 4.2

ГОСТ 4919.1-77

2.2

ГОСТ 5841-74

4.2

ГОСТ 6613-86

Разд.2 приложения А

ГОСТ 6709-72

2.2; 3.2; 4.2

ГОСТ 8682-93

Разд.2, 5 приложения А

ГОСТ 9147-80

2.2; 4.2

ГОСТ 10484-78

2.2; 3.2

ГОСТ 10742-71

1.1; разд.2, 6 приложения А

ГОСТ 11022-95

1.1; разд.2, 5 приложения А

ГОСТ 18300-87

2.2; 4.2

ГОСТ 23083-78

1.1; разд.2, 6 приложения А

ГОСТ 24363-80

4.2

ГОСТ 25336-82

2.2; 4.2

ГОСТ 25794.1-83

2.2

ГОСТ 29227-91

4.2

ГОСТ 29251-91

4.2

Настоящий стандарт распространяется на каменные угли, кокс и полукокс и устанавливает объемный, гравиметрический и фотоколориметрический методы определения фосфора в золе, полученной после их сжигания в диапазоне массовой доли фосфора 0,01-0,10%, а также фотометрический метод, основанный на восстановлении молибдофосфата по международному стандарту ИСО 622-81 (приложение А).

Требования данного стандарта являются обязательными.

При возникновении разногласий определение фосфора проводят фотоколориметрическим методом Б.

1 Метод отбора проб

1.1 Отбор и подготовку проб для лабораторных испытаний угля проводят по ГОСТ 10742, кокса - по ГОСТ 23083.

1.2 Пробу угля и кокса озоляют по ГОСТ 11022. Полученную золу измельчают в агатовой ступке до крупности не более 0,06 мм.

2 Объемный и гравиметрический методы

2.1 Сущность методов

Методы основаны на удалении кремнезема из золы угля или кокса выпариванием или осаждением и последующем осаждении фосфора при помощи молибденового реактива в виде фосфоромолибденовокислого аммония.

2.2 Аппаратура, реактивы и растворы

Электрошкаф сушильный лабораторный, обеспечивающий устойчивую равномерную температуру нагрева 200 °С.

Весы с погрешностью взвешивания не более 0,0002 г.

Баня песчаная и водяная.

Тигель платиновый с крышкой вместимостью 30-50 см.

Воронка ВФ-1-32(40)-ПОР 40 ТХС по ГОСТ 25336.

Ступка агатовая или из углеродистого вольфрама.

Чашка выпарительная 4 по ГОСТ 9147.

Фильтры средней плотности и плотные.

Колбы Кн-2-250-ТХС, Кн-2-500-ТХС по ГОСТ 25336.

Стакан Н-1-400ТС по ГОСТ 25336.

Аммиак, раствор массовой концентрации 0,1 г/см, готовят по ГОСТ 25794.1.

Калий азотнокислый, раствор массовой концентрации 0,01 г/см.

Кислота фтороводородная по ГОСТ 10484, раствор массовой концентрации 0,4 г/см, готовят по ГОСТ 25794.1.

Кислота азотная по ГОСТ 4461, раствор молярной концентрации (HNO)=0,1 моль/дм, готовят по ГОСТ 25794.1.

Кислота хлороводородная по ГОСТ 3118.

Аммоний азотнокислый по ГОСТ 22867, раствор массовой концентрации 0,03 г/см.

Кислота лимонная по ГОСТ 3652.

Молибденовый реактив, готовят следующим образом: в 1360 см воды комнатной температуры растворяют 54,0 г азотнокислого аммония, 52,6 г лимонной кислоты, 68,0 г молибденовокислого аммония и добавляют раствор азотной кислоты (253 см азотной кислоты растворяют в 310 см воды). Для получения прозрачного раствора прибавляют несколько капель насыщенного раствора гидрофосфата аммония, затем раствор подогревают и поддерживают в кипящем состоянии в течение 10 мин.

По истечении этого времени раствор оставляют на 12 ч до получения прозрачного раствора. Прозрачный раствор хранят в бутыли из темного стекла.

Полученный реактив стабильный и может храниться около 5 мес.

Аммоний молибденовокислый по ГОСТ 3765.

Аммония гидрофосфат по ГОСТ 3772.

Феноловый красный.

Бромтимоловый синий.

Известь натронная.

Натрия гидроксид по ГОСТ 4328, раствор молярной концентрации (NaOH)=0,1 моль/дм, готовят по ГОСТ 25794.1.

Комбинированный индикатор, растворы:

раствор А: навеску 0,1 г фенолового красного растирают в ступке с 10 см раствора гидроксида натрия (NaOH)=0,1 моль/дм, переносят, смывая водой, в мерную колбу вместимостью 250 см, разбавляют водой до объема примерно 240 см и добавляют раствор гидроксида натрия (NaOH)=0,1 моль/дм в таком количестве, чтобы получить изменение окраски раствора. Устанавливают рН раствора до 7,5 раствором азотной кислоты (HNO)=0,1 моль/дм и доливают водой до метки;

раствор Б: 0,1 г бромтимолового синего растирают в ступке с 10 см раствора гидроксида натрия (NaOH)=0,1 моль/дм и далее поступают так же, как при подготовке раствора А.

Комбинированный индикатор готовят смешиванием 40 см раствора А и 25 см раствора Б. Индикатор употребляют в количестве 0,5 см на 100 см титруемого раствора.

Фенолфталеин (индикатор), спиртовой раствор массовой доли 0,2% в растворе этилового спирта массовой доли 70%, приготовленный по ГОСТ 4919.1.

Спирт этиловый по ГОСТ 18300, растворы массовой доли 70% и 95%.

Калий дигидрофосфат по ГОСТ 4198, основной раствор, готовят следующим образом: 4,396 г дигидрофосфата калия, предварительно высушенного до постоянной массы в течение 1 ч при температуре 110 °С, помещают в мерную колбу вместимостью 1000 см, растворяют в воде, доводят до метки водой и перемешивают.

1 см этого раствора содержит 0,001 г фосфора.

Все применяемые реактивы должны иметь степень чистоты не ниже ч.д.а. Для приготовления растворов и проведения определения используют дистиллир

ованную воду по ГОСТ 6709.

2.3 Проведение испытания

2.3.1 В зависимости от предполагаемой массовой доли фосфора отбирают две навески массой 0,5 г каждая при массовой доле фосфора в золе свыше 0,5% и 1 г - при массовой доле фосфора до 0,5%.

Взвешивание проводят с погрешностью не более 0,0002 г.

2.3.2 Из навески золы угля или кокса удаляют кремнезем методом выпаривания или осаждения.

При удалении кремнезема методом выпаривания навеску золы помещают в платиновый тигель, добавляют 10 см азотной кислоты и 5 см раствора фтороводородной кислоты. Содержимое тигля выпаривают до получения сухого остатка, подогревая его на песчаной бане при температуре 100 °С, избегая кипения. Затем снова добавляют 10 см азотной кислоты и 5 см раствора фтороводородной кислоты и выпаривание повторяют. Во время выпаривания тигель должен быть прикрыт крышкой во избежание разбрызгивания и пересушивания осадка.

К сухому остатку добавляют 15 см азотной кислоты и выпаривают содержимое тигля до объема 7 см. При неполном растворении сухого остатка выпаривание повторяют дважды.

Содержимое тигля переносят в коническую колбу вместимостью 250 см, смывая дистиллированной водой таким образом, чтобы количество раствора не превышало 80 см. Колбу прикрывают часовым стеклом и кипятят в течение 15 мин.

Содержимое колбы фильтруют через плотный фильтр в химический стакан вместимостью 400 см. Фильтр промывают дистиллированной водой до тех пор, пока при добавлении одной капли раствора гидроксида натрия и двух капель комбинированного индикатора к 10 см последнего фильтрата не появится неисчезающая лиловая окраска. Конечный объем фильтрата не должен превышать 250 см. Полученный раствор выпаривают до объема около 50 см.

При удалении кремнезема методом осаждения навеску золы помещают в фарфоровую чашку вместимостью 150 см, добавляют 40 см хлороводородной кислоты и 20 см азотной кислоты. Содержимое чашки осторожно выпаривают до получения сухого остатка, нагревая на водяной бане в течение 12 ч при температуре около 80 °С. К сухому остатку вновь добавляют 20 см азотной кислоты и вторично выпаривают досуха. К остатку добавляют 10 см азотной кислоты и 50 см дистиллированной воды. Отфильтровывают от выделившегося кремнезема через фильтр средней плотности в химический стакан вместимостью 400 см.

Остаток несколько раз промывают горячей водой, а фильтрат выпаривают до объема

около 50 см.

2.3.3 К фильтрату, полученному после удаления кремнезема, добавляют по каплям раствор аммиака до начала осаждения гидроксидов железа и алюминия. Полученный осадок растворяют несколькими каплями азотной кислоты и добавляют еще 4 см этой кислоты. Раствор нагревают, не доводя до кипения, добавляют 80 см молибденового реактива и выдерживают при этой температуре от 3 до 5 мин. После образования осадка содержимое стакана выдерживают примерно в течение 2 ч при комнатной температуре.

2.3.4 При определении фосфора объемным методом осадок фильтруют через плотный фильтр и промывают раствором азотнокислого калия массовой концентрации 0,01 г/см до нейтральной реакции: до получения неисчезающей лиловой окраски в последних 10 см фильтрата при добавлении к нему одной капли раствора гидроксида натрия и двух капель комбинированного индикатора или розовой окраски при добавлении раствора фенолфталеина.

Учитывая растворимость промываемого осадка, необходимо использовать минимальное количество раствора и следить, чтобы осадок на фильтре был постоянно влажным.

Фильтр с осадком переносят в коническую колбу вместимостью 500 см и растворяют осадок в растворе гидроксида натрия, добавляя раствор до требуемого, а затем с избытком. Содержимое колбы разбавляют 100 см свежепрокипяченной охлажденной воды, колбу закрывают пробкой, снабженной термометром и трубкой, наполненной свежей натронной известью, и подогревают до температуры 40 °С, постоянно перемешивая. Затем раствор охлаждают до комнатной температуры и титруют избыток раствора гидроксида натрия раствором азотной кислоты в присутствии комбинированного индикатора до перехода лиловой окраски в желтую или в присутствии раствора фенолфталеина до исчезновения розовой окраски.

Одновременно таким же способом проводят контрольный опыт, используя применяемые для определения реактивы без навески топлива. Количество раствора гидроксида натрия, израсходованное при проведении определения, принимают за поправку.

2.3.5 При определении фосфора гравиметрическим методом содержимое стакана после осаждения по 2.3.3 оставляют на время не менее 2,5 ч, периодически помешивая для укрупнения осадка.

Осадок отфильтровывают через предварительно высушенную при температуре 180-200 °С и взвешенную фильтрующую воронку, промывают четыре раза 15 см азотной кислоты плотностью, определенной ареометром, 1,2 г/см, два раза 15 см раствора азотнокислого аммония, два раза 5 см воды, два раза 3 см раствора этилового спирта массовой доли 95%. Воронку с осадком сушат не менее 30 мин при температуре 180-200 °С до постоянной массы, охлаждают в эксикаторе, заполненном свежим силикагелем или концентрированной серной кислотой, и взвешивают. Проводят контрольный опыт, как указано выше, только вместо навески золы применяют 2 см основного раствора дигидрофосфата калия.

2.4 Обработка результатов

2.4.1 Массовую долю фосфора в золе , %, определенную объемным методом, вычисляют по формуле

, (1)

где - объем раствора гидроксида натрия (NaOH)=0,1 моль/дм, израсходованного для определения, см;

- объем раствора азотной кислоты (HNO)=0,1 моль/дм, израсходованного для титрования избытка гидроксида натрия, см;

- объем раствора гидроксида натрия (NaOH)=0,1 моль/дм, израсходованного для проведения контрольного опыта, см;

- масса фосфора, соответствующая 1 см раствора гидроксида натрия (NaOH)=0,1 моль/дм, г;

- масса наве

ски золы, г.

2.4.2 Массовую долю фосфора в золе , %, определенную гравиметрическим методом, вычисляют по формуле

, (2)

где - масса навески золы, г;

- масса фосфомолибдата аммония, г;

- масса фосфомолибдата аммония, определенная при контрольном опыте, г;

- вычисленная масса фосфора, содержащегося в объеме использованного основного раствора фосфата калия, г;

- коэффициент пересчета массы фосфомолибдата аммония на фосфор ()

.

2.4.3 Массовую долю фосфора в сухом угле или коксе , %, вычисляют по формуле

, (3)

где - массовая доля фосфора в золе, полученной из проверяемой пробы, %;

- массовая доля золы в сухой проверяемой пробе, %.

Полученный результат округляют до 0,001%.

2.4.4 Массовую долю фосфора определяют параллельно в двух навесках. За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений в пределах допускаемых расхождений.

Расхождение между результатами двух параллельных определений, проведенных в одной лаборатории, при доверительной вероятности 0,95 не должно превышать 10% среднего арифметического этих результатов. Расхождение между результатами, полученными в двух разных лабораториях, при доверительной вероятности 0,95 не должно превышать 15% среднего арифметического этих результатов.

Если полученные результаты будут иметь расхождения более допускаемых, проводят третье определение и за окончательный результат испытания принимают среднее арифметическое результатов двух наиболее близких определений.

Если результат третьего определения находится в пределах допускаемых расхождений, то за окончательный результат принимают среднее арифметическое результатов трех определений.

3 Фотоколориметрический метод А

3.1 Сущность метода

Метод основан на удалении кремнезема из золы с последующим восстановлением 2-водным хлоридом олова (II) желтой комплексной аммониевой соли молибденовофосфорной кислоты и определении оптической плотности полученного синего комплексного фосфорномолибденового раствора.

3.2 Аппаратура, реактивы и растворы

Фотоколориметр.

Электрошкаф сушильный лабораторный, обеспечивающий устойчивую равномерную температуру нагрева 200 °С.

Весы лабораторные с погрешностью взвешивания 0,0002 г.

Баня песчаная.

Тигель платиновый с крышкой вместимостью около 30 см.

Ступка агатовая или из вольфрамового сплава.

Колбы 2-100-2, 2-1000-2 по ГОСТ 1770.

Фильтр плотный.

Кислота азотная по ГОСТ 4461.

Кислота фтороводородная по ГОСТ 10484, раствор массовой концентрации 0,4 г/см.

Кислота серная по ГОСТ 4204, растворы массовой концентрации 0,1 и 0,2 г/см.

Кислота хлороводородная по ГОСТ 3118, раствор массовой концентрации 0,2 г/см.

Аммоний молибденовокислый по ГОСТ 3765, раствор массовой концентрации 0,05 г/см в растворе серной кислоты с массовой долей 10%.

Натрий пиросернокислый, раствор массовой концентрации 0,04 г/см.

Олово (II) хлорид 2-водное, стандартный раствор, готовят следующим образом: растворяют 40 г 2-водного хлорида олова (II) в 20 см хлороводородной кислоты, а затем разбавляют 100 см воды. Раствор следует хранить в сосуде из темного стекла.

Олово (II) хлорид, рабочий раствор, готовят следующим образом: 2,5 см стандартного раствора растворяют в 100 см дистиллированной воды. Раствор готовят в день определения.

Калия дигидрофосфат по ГОСТ 4198, основной раствор, готовят следующим образом: 4,3936 г предварительно высушенного в течение 1 ч при температуре 110 °С фосфата калия растворяют в воде в мерной колбе, вместимостью 1000 см, доводят водой до метки и перемешивают.

1 см этого раствора соответствует 0,0001 г фосфора.

Калия дигидрофосфат, стандартный рабочий раствор, готовят следующим образом: 10 см основного раствора дигидрофосфата калия разбавляют водой в мерной колбе вместимостью 100 см. 1 см этого раствора соответствует 0,0001 г фосфора.

Все применяемые реактивы должны иметь степень чистоты ч.д.а.

Для приготовления растворов и проведения определения следует применять дистиллированную воду по

ГОСТ 6709.

3.3 Проведение испытания

3.3.1 В зависимости от предполагаемой массовой доли фосфора отбирают две навески массой 0,05 г каждая при массовой доле фосфора в золе свыше 0,5% и 0,1 г - при массовой доле фосфора до 0,5%.

Взвешивание проводят с погрешностью не более 0,0002 г.

3.3.2 Для приготовления раствора пробы навеску золы помещают в платиновый тигель, добавляют 2 см азотной кислоты и 1 см раствора фтороводородной кислоты. Тигель закрывают крышкой, помещают на песчаную баню и выпаривают его содержимое до получения сухого остатка при температуре около 100 °С, избегая кипения. Вновь добавляют 2 см азотной кислоты и 1 см раствора фтороводородной кислоты и повторяют выпаривание. Затем добавляют 5 см азотной кислоты и вновь выпаривают. Во время выпаривания тигель должен быть закрыт крышкой. Выпаривание проводят до прекращения выделения паров. Не следует пересушивать содержимое.

К сухому остатку добавляют 5 см раствора серной кислоты массовой концентрации 0,2 г/см, смывая ею стенки тигля, и оставляют до растворения примерно на 5 мин. Затем добавляют в тигель 15 см воды и фильтруют его содержимое через плотный фильтр в колбу вместимостью 100 см, промывая малыми порциями воды. К фильтрату добавляют 2 см раствора пиросернокислого натрия, раствор кипятят до исчезновения запаха диоксида серы. Затем раствор охлаждают, переносят в мерную колбу вместимостью 100 см и доводят водой до м

етки.

3.3.3 Построение градуировочного графика

Для этого в мерные колбы, вместимостью 100 см каждая, последовательно отбирают 1,0; 2,0; 3,0; 4,0; 5,0; 6,0; 7,0; 8,0; 9,0; 10,0 см стандартного рабочего раствора дигидрофосфата калия, что соответствует 0,0001; 0,0002; 0,0003; 0,0004; 0,0005; 0,0006; 0,0007; 0,0008; 0,0009; 0,001 г фосфора, разбавляют водой до метки и перемешивают.

В другие десять мерных колб вместимостью 100 см каждая отбирают по 20 см подготовленных стандартных растворов, придерживаясь очередности и тщательно перемешивая, добавляют 10 см раствора серной кислоты массовой концентрации 0,2 г/см, 35 см воды, 10 см раствора молибденовокислого аммония и 2 см рабочего раствора 2-водного хлорида олова (II). Содержимое колб доводят водой до метки, перемешивают. Измерение необходимо проводить через 15-20 мин после окрашивания раствора. Одновременно таким же способом готовят раствор сравнения (раствор контрольного опыта), составленный из примененных для определения реактивов, не содержащих стандартного раствора. Определение оптической плотности проводят на фотоколориметре с красным светофильтром (700 нм) в кюветах с толщиной поглощающего слоя 20 мм.

В качестве фона применяют раствор сравнения.

По полученным десяти результатам оптической плотности строят градуировочный график, отмечая на оси абсцисс с делением 0,0001 г массовую долю фосфора в граммах, а на оси ординат - соответствующие им значения оптической плотности. Для определения каждой точки градуировочного графика рассчитывают среднюю величину оптической плотности из трех параллельных определений.

Градуировочный график следует составлять один раз в 5 мес, а также при изменении реактивов или прибо

ров.

3.3.4 В мерную колбу вместимостью 100 см вводят пипеткой 20 см раствора испытуемой пробы. При испытании угля или кокса с большой массовой долей фосфора отбирают такое количество раствора пробы, чтобы он содержал не более чем 0,0002 г фосфора. Затем определение проводят, как указано в 3.3.3.

Определение оптической плотности испытуемой пробы проводят аналогично построению градуировочного графика. Массовую долю фосфора в проверяемой пробе отсчитывают по градуировочному графику.

3.4 Обработка результатов

3.4.1 Массовую долю фосфора в золе , %, вычисляют по формуле

, (4)

где - количество стандартного раствора фосфата калия, см;

- массовая доля фосфора, отсчитанная по градуировочному графику, г;

- объем раствора пробы, использованный для колориметрического определения (обычно 20 см, за исключением проб с большой массовой долей фосфора), см;

- масса навески золы,

г.

3.4.2 Массовую долю фосфора в сухой испытуемой пробе , %, вычисляют по формуле

, (5)

где - массовая доля фосфора в золе, полученной из проверяемой пробы, %;

- массовая доля золы в сухой испытуемой пробе, %.

Полученный результат округляют до 0,001%.

3.4.3 Массовую долю фосфора определяют параллельно в двух навесках. За окончательный результат испытания принимают среднее арифметическое двух параллельных определений в пределах допускаемых расхождений.

Расхождение между результатами двух параллельных определений, проведенных в одной лаборатории, при доверительной вероятности 0,95 не должно превышать 10% среднего арифметического этих результатов. Расхождение между результатами, полученными в двух разных лабораториях, при доверительной вероятности 0,95 не должно превышать 15% среднего арифметического этих результатов.

Если полученные результаты будут иметь расхождения более допускаемых, проводят третье определение и за окончательный результат испытания принимают среднее арифметическое значение двух наиболее близких определений.

Если результат определения находится в пределах допускаемых расхождений, за окончательный результат принимают среднее арифметическое результатов трех определений.

4 Фотоколориметрический метод Б

4.1 Сущность метода

Метод основан на озолении навески угля и кокса, обработке золы смесью серной и азотной кислот, отделении кремнезема фильтрованием и определении в фильтрате массовой доли фосфора путем измерения оптической плотности полученного синего молибденовофосфорного раствора.

4.2 Аппаратура, реактивы и растворы

Печь муфельная с терморегулятором, обеспечивающая нагрев до 1000 °С. Печь должна иметь отверстия в задней стенке для обеспечения свободной циркуляции воздуха и для установки термопары.

Весы с погрешностью взвешивания не более 0,0002 г.

Шкаф сушильный с электрическим обогревом, с отверстиями для естественной вентиляции, с устойчивой температурой нагрева до 110 °С.

Термопара с гальванометром для измерения температуры до 1000 °С.

Фотоколориметр.

Плитка электрическая или горелка газовая.

Баня водяная.

Фильтр плотный.

Лодочки фарфоровые ЛЗ 3 по ГОСТ 9147.

Стакан В-1-100 ТХС по ГОСТ 25336.

Колбы 1-50-2, 1-100-2, 1-500-2, 1-1000-2 по ГОСТ 1770.

Пипетки 2-1-1, 2-1-2, 2-1-5, 2-1-10, 2-1-25 по ГОСТ 29227.

Бюретки 1-2-10-0,05, 1-2-25-0,1 по ГОСТ 29251.

Цилиндры 1-10, 1-100 по ГОСТ 1770.

Кислота серная по ГОСТ 4204, х.ч., раствор молярной концентрации эквивалента (1/2HSO)=6 моль/дм. Концентрацию раствора проверяют титрованием раствором гидроксида натрия в присутствии индикатора метилового оранжевого.

Метиловый оранжевый.

Кислота азотная по ГОСТ 4461, х.ч.

Смесь азотной и серной кислот в соотношении 1:2.

Аммоний молибденовокислый по ГОСТ 3765, х.ч., раствор массовой концентрации 0,01 г/см, приготовленный из перекристаллизованной соли. Перекристаллизацию проводят следующим образом: берут 200 г молибденовокислого аммония и растворяют его при 70-80 °С в 300 см дистиллированной воды. Нерастворившийся осадок отфильтровывают через плотный фильтр. К фильтрату добавляют 1/3 (по объему) этилового спирта. Выпавший мелкокристаллический осадок чистого молибденовокислого аммония отфильтровывают и промывают на фильтре спиртом, после чего его высушивают на воздухе. Срок хранения раствора не более 20 дней.

Гидразин сернокислый по ГОСТ 5841, ч.д.а. или ч., раствор массовой концентрации 0,001 г/см.

Натрия гидроксид по ГОСТ 4328 или калия гидроксид по ГОСТ 24363, раствор молярной концентрации 5 моль/дм.

Фенолфталеин, спиртовой раствор массовой концентрации 0,005 г/см.

Калия дигидрофосфат по ГОСТ 4198, стандартный рабочий раствор, готовят следующим образом: взвешивают, с погрешностью не более 0,0002 г 0,1756 г перекристаллизованного и высушенного фосфата калия, растворяют навеску в дистиллированной воде, доводят объем до 1 дм и перемешивают. 1 см стандартного раствора соответствует 0,00004 г фосфора.

Аммоний сернокислый по ГОСТ 3769, раствор массовой концентрации 0,1 г/см.

Спирт этиловый по ГОСТ 18300.

Вода дистиллированная по ГОСТ 6709.

4.3 Подготовка к исп

ытанию

4.3.1 Берут навеску массой около 1 г угля или около 0,5 г кокса, взвешенную с погрешностью не более 0,0002 г. Навеску разравнивают по дну лодочки равномерным слоем толщиной 0,1-0,15 г на 1 см площади при массе навески 1 г.

При массовой доле фосфора в коксе менее 0,005% берут навеску массой около 1 г.

4.4 Проведение испытания

4.4.1 Для построения градуировочного графика в девять мерных колб вместимостью 100 см каждая вводят соответственно 1,0; 2,0; 3,0; 5,0; 7,0; 10,0; 12,0; 15,0 и 20,0 см стандартного рабочего раствора дигидрофосфата калия, доводят водой до метки и перемешивают. Массовая доля фосфора в полученных растворах соответственно составит: 0,004; 0,008; 0,012; 0,020; 0,028; 0,040; 0,048; 0,060 и 0,080%. Массовая доля фосфора в стандартных растворах условно относится к 1 г угля или кокса.

Из мерных колб отбирают пипеткой по 10 см стандартного раствора и переносят в мерные колбы вместимостью 50 см. В каждую из колб добавляют 6 см раствора серной кислоты молярной концентрации эквивалента 6 моль/дм для создания соответственной кислотности. Затем добавляют из бюретки 5 см раствора молибденовокислого аммония и разбавляют содержимое колб водой до 35 см, тщательно перемешивают, добавляют 5 см раствора сернокислого гидразина и вновь перемешивают. Колбы с растворами помещают на баню с кипящей водой, следя за тем, чтобы уровень воды в бане был выше уровня раствора в колбах. По истечении 6 мин колбы вынимают, охлаждают до комнатной температуры, доливают водой до метки и тщательно перемешивают.

Оптическую плотность на фотоколориметре с красным светофильтром (700 нм) в кюветах с толщиной поглощающего слоя 10-30 мм. В качестве фона применяют раствор сравнения (раствор контрольного опыта), приготовленный из дистиллированной воды с добавлением к ней всех реактивов, за исключением дигидрофосфата калия.

По полученным девяти результатам оптической плотности строят градуировочный график, отмечая на оси абсцисс массовую долю фосфора в процентах, а на оси ординат - соответствующие им значения оптической плотности.

Для определения каждой точки градуировочного графика рассчитывают среднюю величину оптической плотности из трех параллельных определений.

Градуировочный график следует составлять один раз в 5 мес, а также в случае изменения реактивов или прибо

ров.

4.4.2 Для приготовления раствора пробы лодочку с озоленным осадком угля или кокса охлаждают и золу переносят в химический стакан вместимостью 100 см, тщательно смывают остатки золы 10 см смеси азотной и серной кислот. Раствор подогревают, не допуская слишком бурной реакции. Нагревание продолжают до посветления раствора и появления белых паров серного ангидрида.

Стакан осторожно охлаждают, постепенно приливают 7-10 см раствора сернокислого аммония и вновь нагревают. После появления густых белых паров снимают с горелки и охлаждают. Затем осторожно приливают около 20 см дистиллированной воды и кипятят в течение 3-5 мин.

К охлажденному до комнатной температуры раствору осторожно добавляют 20 см горячей дистиллированной воды и фильтруют через плотный фильтр для отделения кремнезема. Фильтр с осадком промывают 3-4 раза дистиллированной водой. Фильтрат вместе с промывными водами собирают в мерную колбу вместимостью 100 см, охлаждают до комнатной температуры, доводят водой до метки и тщательно перемешивают.

Из мерной колбы отбирают пипеткой 10 см испытуемого раствора и переносят в другую мерную колбу вместимостью 50 см, добавляют одну каплю раствора фенолфталеина и нейтрализуют раствором гидроксида натрия или калия до появления устойчивой окраски. Раствор в колбе охлаждают до комнатной температуры.

К раствору в мерной колбе постепенно добавляют раствор серной кислоты молярной концентрации эквивалента 6 моль/дм до обесцвечивания раствора и после этого прибавляют еще 6 см этой же кислоты. Затем из бюретки приливают 5 см раствора молибденовокислого аммония, разбавляют водой до 35 см, тщательно перемешивая, добавляют 5 см раствора сернокислого гидразина и вновь перемешивают. Колбу с раствором помещают на баню в кипящую воду таким образом, чтобы уровень воды был выше, чем уровень раствора в колбе. По истечении 6 мин колбу вынимают, охлаждают до комнатной температуры, доводят водой до метки и тщательно перемешивают.

Определение оптической плотности испытуемой пробы проводят аналогично построению градуировочного графика, используя в качестве раствора сравнения раствор контрольного опыта, приготовленный таким же способом, как испытуемый, но без навески топлива. Раствор сравнения (фон) не должен иметь голубого оттенка.

Примечание - Если после добавления в испытуемый раствор молибденовокислого аммония образуется настолько интенсивная окраска, что найденное значение оптической плотности и соответствующая ему процентная массовая доля фосфора превышают значение градуировочного графика, поступают следующим образом: отбирают 5 см исходного раствора, который остался в мерной колбе вместимостью 100 см и переносят в мерную колбу вместимостью 50 см, добавляют 5 см дистиллированной воды и продолжают определение, как указано выше.

В этом случае найденную по градуировочному графику массовую долю фосфора следует увели

чить вдвое.

4.5 Обработка результатов

4.5.1 Массовую долю фосфора в угле и коксе находят по градуировочному графику по оптической плотности с учетом контрольной пробы.

При навеске кокса массой 0,5 г полученные результаты удваивают.

4.5.2 Массовую долю фосфора определяют параллельно в двух навесках. За окончательный результат испытания принимают среднее арифметическое результатов двух параллельных определений в пределах допускаемых расхождений.

Расхождение между результатами двух параллельных определений, проведенных в одной лаборатории, при доверительной вероятности 0,95 не должно превышать 10% среднего арифметического этих результатов. Расхождение между результатами, полученными в двух разных лабораториях, при доверительной вероятности 0,95 не должно превышать 15% среднего арифметического этих результатов.

Если полученные результаты будут иметь расхождения более допускаемых, проводят третье определение и за окончательный результат испытаний принимают среднее арифметическое результатов двух наиболее близких определений.

Если результат третьего определения находится в пределах допускаемых расхождений, за окончательный результат принимают среднее арифметическое результатов трех определений.

ПРИЛОЖЕНИЕ А
(справочное)

Топливо твердое. Определение содержания фосфора. Фотометрический метод с применением восстановленного молибдофосфата (ИСО 622-81)

1 Назначение и область применения

Настоящий стандарт устанавливает фотометрический метод определения общего содержания фосфора в каменных углях, лигнитах и коксе, основанный на восстановлении молибдофосфата. Приведено два метода переведения фосфора в раствор: путем экстракции из золы угля и кокса смесью кислот или путем многократного окисления угля и кокса кислотой с целью удаления углеродистых веществ.

2 Ссылки

ГОСТ 6613-86 Сетки проволочные тканые с квадратными ячейками

ГОСТ 8682-93 (ИСО 383-76) Посуда и аппаратура лабораторная стеклянная. Шлифы конусные взаимозаменяемые

ГОСТ 10742-71 Угли бурые, каменные, антрацит, горючие сланцы и угольные брикеты. Методы отбора и подготовки проб для лабораторных испытаний

ГОСТ 11022-95 (ИСО 1171-81) Топливо твердое минеральное. Методы определения зольности

ГОСТ 23083-78 Кокс каменноугольный, пековый и термоантрацит. Методы отбора и подготовки проб для испытаний

3 Основы метода

3.1 Экстракция

Метод 1. Удаление углеродистого материала озолением пробы в муфельной печи при определенных условиях и экстрагирование фосфора обработкой фтороводородной и серной кислотами.

Метод 2. Удаление углеродистого материала при многократном окислении азотной кислотой в присутствии серной кислоты.

3.2 Определение

К кислотному раствору добавляют молибдат аммония и раствор аскорбиновой кислоты. Измеряют светопоглощение полученного голубого раствора соответствующим оптическим прибором.

4 Реактивы

При анализе применяют только реактивы квалификации ч.д.а., а также дистиллированную воду или воду эквивалентной чистоты.

4.1 Фтороводородная кислота, раствор приблизительно 400 г/дм.

Предостережение: Водный раствор фтороводородной кислоты - высококоррозийная жидкость, разъедающая стекло. Ее пары действуют раздражающе и токсичны. Вызывают сильные и болезненные ожоги кожи и глаз, которые появляются не сразу и излечиваются очень медленно.

Раствор должен храниться и вытяжном шкафу.

При контакте или подозрении на контакт пораженное место обмыть водой и обратиться к врачу.

Прежде чем начинать работу, необходимо хорошо ознакомиться с инструкцией.

4.2 Серная кислота, раствор приблизительно 490 г/дм.

4.3 Серная кислота, 1,84 г/см, массовой доли HSO приблизительно 98%.

4.4 Азотная кислота, 1,42 г/см, массовой доли HNO приблизительно 70%.

4.5 Молибдат аммония, раствор 60 г/дм.

4.6 Аскорбиновая кислота, раствор 50 г/дм. Свежий раствор готовится ежедневно.

4.7 Тартрат антимонила-калия (SbOKCHO), раствор 1,36 г/дм.

4.8 Раствор реагента

Смешивают 25 см раствора серной кислоты (4.2), 10 см раствора молибдата аммония (4.5), 10 см раствора аскорбиновой кислоты (4.6) и 5 см раствора тартрата антимонила-калия (SbOKCHO) (4.7).

Непосредственно перед употреблением готовят свежий раствор

.

4.9 Фосфор, стандартный раствор, содержащий 0,100 г/дм фосфора

Взвешивают 0,4392 г дигидроортофосфата KPРО (высушенного при температуре 110 °С в течение часа) с точностью 0,0001 г и растворяют в воде. Раствор количественно переносят в мерную колбу емкостью 1000 см, доводят водой до метки и перемешивают.

1 см этого стандартного раствора содержит 0,100 мг фосфора.

4.10 Стандартный раствор фосфора, содержащий 1 мг/дм фосфора.

10 см стандартного раствора фосфора (4.9) помещают в мерную колбу на 1000 см, доводят водой до метки и перемешивают.

Непосредственно перед употреблением готовят свежий раствор.

1 см этого стандартного раствора содержит 1 мкг фосфора.

5 Аппаратура

Обычная лабораторная аппаратура.

5.1 Муфельная печь по ГОСТ 11022.

5.2 Чашка из кварца, фарфора или платины по ГОСТ 11022.

5.3 Изолирующая пластинка из кварца толщиной 6 мм, легко входящая в муфельную печь (5.1).

5.4 Тигель платиновый емкостью 25-30 см с крышкой (см. 7.1).

5.5 Водяная баня (см. 7.1).

5.6 Аппарат для разложения (см. 7.2 и рисунок), изготовленный из боросиликатного стекла, состоящий из следующих частей:

5.6.1 Колба Къельдаля вместимостью 300 см со стеклянным шлифом 24/29 по ГОСТ 8682.

5.6.2 Трубка для отвода паров с внешним диаметром около 28 мм, снабженная капельной воронкой емкостью 15 см и стеклянным шлифом 24/29 по ГОСТ 8682.

Трубка может быть цельной или может состоять из отдельных частей, соединенных переходниками.

5.6.3 Устройство для отсасывания паров, состоящее из стеклянной трубки диаметром 40 мм, запаянной с одного конца и оборудованной на другом конце приспособлением для присоединения к водяному насосу. Трубка снабжена дренажным краном и несколькими отверстиями со шлифами для присоединения трубок для отвода паров.

5.7 Спектрофотометр или колориметр фотоэлектрический концентрационный требуемой чувствительности.

6 Подготовка пробы

Проба угля или кокса должна быть аналитической, отобранной и приготовленной по ГОСТ 10742 или ГОСТ 23083 и измельченной до прохождения через сито 212 мкм.

Непосредственно перед анализом проба должна быть тщательно перемешана, предпочтительно механическим способом.

7 Проведение анализа

7.1 Метод сухого окисления

7.1.1 Зольность (%) угля или кокса определяют по ГОСТ 11022. Золу измельчают в агатовой ступке до прохождения через сито 63 мкм.

7.1.2 Около 0,05 г золы, полученной в процессе определения зольности по 7.1.1, взвешивают в платиновом тигле (5.4) с точностью до 0,1 мг.

7.1.3 Приливают 2,0 см раствора серной кислоты (4.2) и около 2,0 см раствора фтороводородной кислоты (4.1). Тигель накрывают крышкой и разлагают содержимое на водяной бане около 30 мин в хорошо вентилируемом вытяжном шкафу. Крышку снимают и обмывают, собирая промывные воды в тигель. Раствор выпаривают на водяной бане до удаления большей части фтороводородной кислоты и воды.

7.1.4 Тигель помещают на водяную баню (5.5) и выпаривают до тех пор, пока в течение нескольких минут не будут выделяться только плотные белые пары серной кислоты. Дают остыть, приливают 0,5 см раствора серной кислоты (4.2), нагревают несколько минут и охлаждают.

Примечание - Важно, чтобы на любой стадии содержимое тигля не выпаривалось полностью досуха.

7.1.5 В тигель приливают около 20 см воды и растворяют на водяной бане 30 мин. Содержимое должно раствориться полностью. Дают остыть, переносят в мерную колбу на 100 см и разбавляют водой до метки (раствор А).

Примечание - Если в пробе высокое содержание мышьяка (выше 0,2%), то он может влиять на результат анализа. Поэтому перед определением фосфора мышьяк должен быть восстановлен с помощью пиросульфита натрия в течение 1 ч при температуре приблизительно 100 °С.

7.1.6 "Холостой" раствор готовят точно так же, как описано выше, но без золы угля или кокса.

7.2 Метод мокрого окисления

7.2.1 Около 1 г пробы угля или кокса взвешивают с точностью до 1 мг.

7.2.2 Навеску (7.2.1) помещают в чистую, сухую колбу Къельдаля (5.6.1). Собирают аппарат (5.6), как показано на рисунке 1, в хорошо вентилируемом вытяжном шкафу. Через капельную воронку приливают 7 см серной кислоты (4.3) и 3,5 см азотной кислоты (4.4), вращая колбу, чтобы смыть частицы пробы со стенок.


Рисунок 1 - Аппарат для мокрого окисления пробы

7.2.3 После завершения начальной реакции колбу осторожно нагревают, чтобы реакция протекала спокойно, без вспенивания. Нагревание продолжают до начала выделения паров серной кислоты. В капельную воронку наливают 0,2-0,4 см азотной кислоты (4.4) и прибавляют ее по каплям в колбу.

Примечание - Если при добавлении смеси кислот содержимое колбы сильно вспенивается, то горло колбы обматывают влажной тканью и подогревают колбу с перерывами до прекращения вспенивания.

7.2.4 Содержимое колбы нагревают 2-3 мин до прекращения выделения плотных коричневых паров. Еще раз добавляют азотную кислоту и нагревают, периодически вращая колбу, чтобы смыть со стенок приставшие частицы пробы. Добавление кислоты и нагревание повторяют до тех пор, пока все видимые частицы пробы не окислятся и раствор не станет слегка зеленовато-желтого цвета. Разложение может продолжаться 1,5-2 ч, а в исключительных случаях, для некоторых проб кокса, даже более.

Примечание - После первых 15 мин нагревания пробы угля реакционная смесь представляет собой смолистую массу. Постепенно ее цвет изменяется от черного до темного красновато-коричневого, затем янтарного и, наконец, слегка зеленовато-желтого. Если после 45 мин нагревания жидкость останется по-прежнему черной, то или:

а) слишком низкая температура и азотная кислота не вступает в реакцию с пробой. В этом случае температуру повышают, чтобы отогнать избыток азотной кислоты, и далее продолжают нормальное окисление, как описано выше, или

б) слишком высокая температура и азотная кислота отгоняется, не вступая в реакцию. В этом случае смесь охлаждают, добавляют еще азотной кислоты и нагревают, как описано выше.

7.2.5 Колбу нагревают сильнее, до появления белых паров серной кислоты и дают им выделяться 5 мин. Затем колбу охлаждают примерно до комнатной температуры, удаляют капельную воронку и трубку для отвода паров и к содержимому колбы добавляют несколько стеклянных бусин.

Примечание - Если снова появляется янтарная или темно-красная окраска, добавляют еще 0,2-0,4 см азотной кислоты, нагревают до появления белых паров и дают им выделяться 5 мин.

7.2.6 Осторожно приливают 10 см воды, нагревают до появления белых паров и дают им спокойно выделяться 10 мин. Колбу охлаждают до прекращения выделения белых паров, приливают 0,2 см азотной кислоты, снова нагревают и выдерживают в течение 10 мин.

7.2.7 Чтобы быть уверенным в полноте окисления, колбу охлаждают до комнатной температуры и повторяют операции, описанные в 7.2.5.

7.2.8 Колбу охлаждают до комнатной температуры, приливают 10 см воды, нагревают до выделения белых паров и выдерживают 20 мин. Приливают еще 10 см воды, нагревают до выделения белых паров, выдерживают еще 10 мин и охлаждают.

7.2.9 В колбу доливают еще 20 см воды и растворяют содержимое на водяной бане в течение 30 мин. Содержимое должно раствориться полностью. Фильтруют через плотный фильтр, дают остыть, фильтрат переносят в мерную колбу вместимостью 100 см и доводят водой до метки (раствор Б) (см. примечание к 7.1.5).

7.2.10 Холостой раствор готовят так же, как описано выше, но без пробы угля или кокса.

7.3 Определение

В мерные колбы емкостью 50 см отбирают по 10 см раствора А или Б (см. 7.1.5 или 7.2.9) (взятая аликвота может изменяться в зависимости от содержания фосфора в пробе), 10 см холостого раствора (см. 7.1.6 или 7.2.10) и 10 см стандартного раствора (4.10). Для холостого раствора, приготовленного из раствора реагента, необходима четвертая колба, объемом 50 см.

Примечание - Градуировочный график линеен для аликвот, содержащих до 30 мкг фосфора. Для углей и кокса с высоким содержанием фосфора могут потребоваться меньшие аликвоты.

7.3.2* К каждому раствору в колбе прибавляют из пипетки по 5 см раствора реагента (4.8), перемешивая содержимое вращением во время приливания, доводят объем раствора в колбе дистиллированной водой до метки, тщательно перемешивают и выдерживают в течение 20 мин.

_______________

* Нумерация соответствует оригиналу. - .

7.3.3 Спектрофотометром (5.7) в кювете с толщиной поглощающего слоя 40 мм при длине волны 710 нм или колориметром фотоэлектрическим концентрационным с соответствующим светофильтром измеряют светопоглощение растворов по отношению к воде.

8 Результаты

8.1 Метод вычисления и формулы

Массовую долю фосфора , %, в анализируемой пробе вычисляют по формулам:

а) Метод сухого окисления (см. 7.1)

,

где - зольность анализируемой пробы, %;

- масса взятой золы, г;

- объем раствора пробы, взятого для образования окраски, см;

- светопоглощение раствора пробы;

- светопоглощение "холостого" раствора;

- светопоглощение стандартного раствора фосфора (4.10);

- светопоглощение раствора реагента.

б) Метод мокрого окисления (см. 7.2)

,

где - масса анализируемой пробы, г;

, , , , , имеют те же самые значения, что и выше, в п."а".

Результаты (предпочтительно, среднее параллельных определений) выражают с точностью до 0,001%.

9 Точность метода

9.1 Сходимость

Результаты параллельных определений, выполненных в различное время в одной и той же лаборатории, тем же лаборантом, на одной и той же аппаратуре, на двух представительных частях одной и той же пробы (см. раздел 6), не должны отличаться более чем на величины, данные в таблице.

9.2 Воспроизводимость

Средние значения результатов параллельных определений, выполненных в двух различных лабораториях на представительных порциях одной и той же пробы (см. п.6), не должны различаться более чем на величины, данные в таблице.

Массовая доля фосфора в угле или коксе, %

Сходимость

Воспроизводимость

Менее 0,02

0,002 абс.%

0,005 абс.%

Равно или более 0,02

10% среднего значения

25% среднего значения

Электронный текст документа

и сверен по:

М.: ИПК Издательство стандартов, 2001

Редакция документа с учетом
изменений и дополнений подготовлена

Другие госты в подкатегории

    ГОСТ 1012-2013

    ГОСТ 10196-62

    ГОСТ 1038-75

    ГОСТ 10433-75

    ГОСТ 10585-2013

    ГОСТ 10585-99

    ГОСТ 10089-89

    ГОСТ 10220-82

    ГОСТ 11022-95

    ГОСТ 10200-83

    ГОСТ 10585-75

    ГОСТ 10373-75

    ГОСТ 10650-72

    ГОСТ 10835-78

    ГОСТ 11303-2013

    ГОСТ 11014-2001

    ГОСТ 11303-75

    ГОСТ 10227-2013

    ГОСТ 10227-86

    ГОСТ 11305-83

    ГОСТ 11130-75

    ГОСТ 10200-2017

    ГОСТ 11065-90

    ГОСТ 11304-75

    ГОСТ 11304-2013

    ГОСТ 11802-88

    ГОСТ 11804-76

    ГОСТ 11130-2013

    ГОСТ 12308-89

    ГОСТ 11239-76

    ГОСТ 11311-76

    ГОСТ 10650-2013

    ГОСТ 11306-83

    ГОСТ 11306-2013

    ГОСТ 13673-76

    ГОСТ 11305-2013

    ГОСТ 13674-78

    ГОСТ 13674-2013

    ГОСТ 147-2013

    ГОСТ 13672-76

    ГОСТ 14298-79

    ГОСТ 12308-2013

    ГОСТ 11623-89

    ГОСТ 14921-2018

    ГОСТ 13673-2013

    ГОСТ 1567-83

    ГОСТ 14921-78

    ГОСТ 14834-2014

    ГОСТ 1667-68

    ГОСТ 12433-83

    ГОСТ 1720-76

    ГОСТ 1012-72

    ГОСТ 16106-2019

    ГОСТ 17644-83

    ГОСТ 10679-76

    ГОСТ 11126-2019

    ГОСТ 12525-85

    ГОСТ 11382-76

    ГОСТ 15489.2-2018

    ГОСТ 18132-72

    ГОСТ 17749-72

    ГОСТ 17751-79

    ГОСТ 13210-72

    ГОСТ 13455-91

    ГОСТ 18597-73

    ГОСТ 19723-74

    ГОСТ 1709-75

    ГОСТ 11126-88

    ГОСТ 20448-90

    ГОСТ 19006-73

    ГОСТ 20924-75

    ГОСТ 2084-77

    ГОСТ 21290-75

    ГОСТ 17750-72

    ГОСТ 18598-73

    ГОСТ 21291-75

    ГОСТ 1928-2019

    ГОСТ 21289-75

    ГОСТ 1928-79

    ГОСТ 21103-75

    ГОСТ 1567-97

    ГОСТ 22254-92

    ГОСТ 22387.5-77

    ГОСТ 14920-79

    ГОСТ 22387.4-77

    ГОСТ 23083-78

    ГОСТ 10478-93

    ГОСТ 22054-76

    ГОСТ 23781-87

    ГОСТ 20448-2018

    ГОСТ 22055-76

    ГОСТ 21708-96

    ГОСТ 24160-80

    ГОСТ 2059-95

    ГОСТ 24764-81

    ГОСТ 24160-2014

    ГОСТ 24701-2013

    ГОСТ 25927-83

    ГОСТ 25927-95

    ГОСТ 24701-81

    ГОСТ 25950-83

    ГОСТ 2408.4-98

    ГОСТ 21443-75

    ГОСТ 27044-86

    ГОСТ 26370-84

    ГОСТ 26801-86

    ГОСТ 2408.1-95

    ГОСТ 2160-92

    ГОСТ 24676-2017

    ГОСТ 25828-83

    ГОСТ 22986-78

    ГОСТ 27154-86

    ГОСТ 27588-2020

    ГОСТ 25784-83

    ГОСТ 27589-2020

    ГОСТ 27578-2018

    ГОСТ 22667-82

    ГОСТ 27588-91

    ГОСТ 2669-81

    ГОСТ 27577-87

    ГОСТ 17323-71

    ГОСТ 27768-88

    ГОСТ 27894.0-88

    ГОСТ 27589-91

    ГОСТ 27894.2-88

    ГОСТ 25543-2013

    ГОСТ 2408.3-95

    ГОСТ 27314-91

    ГОСТ 2093-82

    ГОСТ 28245-89

    ГОСТ 27894.6-88

    ГОСТ 27894.9-88

    ГОСТ 28577.0-90

    ГОСТ 27894.1-88

    ГОСТ 28577.1-90

    ГОСТ 28577.2-90

    ГОСТ 28577.3-90

    ГОСТ 10538-87

    ГОСТ 27894.8-88

    ГОСТ 27894.11-88

    ГОСТ 22985-90

    ГОСТ 28781-90

    ГОСТ 28935-91

    ГОСТ 28946-2020

    ГОСТ 28357-89

    ГОСТ 29026-91

    ГОСТ 28946-91

    ГОСТ 22985-2017

    ГОСТ 27894.10-88

    ГОСТ 28572-90

    ГОСТ 30404-94

    ГОСТ 29064-91

    ГОСТ 305-82

    ГОСТ 27894.5-88

    ГОСТ 305-2013

    ГОСТ 29087-91

    ГОСТ 27578-87

    ГОСТ 27894.7-88

    ГОСТ 31872-2019

    ГОСТ 147-95

    ГОСТ 27894.3-88

    ГОСТ 28656-2019

    ГОСТ 28812-90

    ГОСТ 31871-2012

    ГОСТ 3168-93

    ГОСТ 29040-91

    ГОСТ 31872-2012

    ГОСТ 3122-67

    ГОСТ 32353-2013

    ГОСТ 27894.4-88

    ГОСТ 32338-2013

    ГОСТ 28828-90

    ГОСТ 29040-2018

    ГОСТ 32346-2013

    ГОСТ 3213-91

    ГОСТ 32348-2013

    ГОСТ 32347-2013

    ГОСТ 32464-2013

    ГОСТ 32248-2013

    ГОСТ 32510-2013

    ГОСТ 32345-2013

    ГОСТ 32340-2013

    ГОСТ 28743-93

    ГОСТ 32465-2013

    ГОСТ 32977-2022

    ГОСТ 32975.2-2014

    ГОСТ 32462-2013

    ГОСТ 32975.3-2014

    ГОСТ 32511-2013

    ГОСТ 32978-2014

    ГОСТ 32349-2013

    ГОСТ 32513-2013

    ГОСТ 32976-2014

    ГОСТ 32339-2013

    ГОСТ 32988-2014

    ГОСТ 32990-2014

    ГОСТ 32989.3-2014

    ГОСТ 32987-2014

    ГОСТ 32979-2014

    ГОСТ 32508-2013

    ГОСТ 32350-2013

    ГОСТ 32514-2013

    ГОСТ 32401-2013

    ГОСТ 27379-87

    ГОСТ 32989.1-2014

    ГОСТ 32977-2014

    ГОСТ 32989.2-2014

    ГОСТ 33104-2014

    ГОСТ 32985-2014

    ГОСТ 28656-90

    ГОСТ 32595-2013

    ГОСТ 33112-2014

    ГОСТ 33018-2014

    ГОСТ 33156-2014

    ГОСТ 33132-2014

    ГОСТ 33103.7-2017

    ГОСТ 33131-2014

    ГОСТ 32984-2014

    ГОСТ 33103.4-2017

    ГОСТ 33162-2014

    ГОСТ 33158-2014

    ГОСТ 33103.3-2017

    ГОСТ 33195-2014

    ГОСТ 33103.5-2017

    ГОСТ 33113-2014

    ГОСТ 33077-2014

    ГОСТ 33196-2014

    ГОСТ 33192-2014

    ГОСТ 33197-2014

    ГОСТ 33288-2015

    ГОСТ 33298-2015

    ГОСТ 33255-2015

    ГОСТ 33256-2015

    ГОСТ 33304-2015

    ГОСТ 33297-2015

    ГОСТ 33193-2014

    ГОСТ 33157-2014

    ГОСТ 27313-2015

    ГОСТ 33296-2015

    ГОСТ 33253-2015

    ГОСТ 3340-88

    ГОСТ 33130-2014

    ГОСТ 33365-2015

    ГОСТ 33012-2014

    ГОСТ 33300-2015

    ГОСТ 33360-2015

    ГОСТ 32507-2013

    ГОСТ 33198-2014

    ГОСТ 33508-2015

    ГОСТ 33103.6-2017

    ГОСТ 33343-2015

    ГОСТ 33511-2015

    ГОСТ 33510-2015

    ГОСТ 33512.3-2015

    ГОСТ 33359-2015

    ГОСТ 33564-2015

    ГОСТ 33576-2015

    ГОСТ 33578-2015

    ГОСТ 33502-2015

    ГОСТ 33513-2015

    ГОСТ 33577-2015

    ГОСТ 3338-2015

    ГОСТ 33507-2015

    ГОСТ 33509-2015

    ГОСТ 33194-2014

    ГОСТ 3338-68

    ГОСТ 27313-95

    ГОСТ 33461-2015

    ГОСТ 33617-2015

    ГОСТ 33580-2015

    ГОСТ 33585-2015

    ГОСТ 33103.2-2017

    ГОСТ 33588-2015

    ГОСТ 33621-2015

    ГОСТ 33624-2015

    ГОСТ 33625-2015

    ГОСТ 33515-2015

    ГОСТ 33654-2022

    ГОСТ 33252-2015

    ГОСТ 33582-2015

    ГОСТ 33501-2015

    ГОСТ 33614-2015

    ГОСТ 33516-2015

    ГОСТ 33583-2015

    ГОСТ 33872-2016

    ГОСТ 33622-2015

    ГОСТ 33618-2015

    ГОСТ 33586-2015

    ГОСТ 33903-2016

    ГОСТ 33584-2015

    ГОСТ 33755-2016

    ГОСТ 33299-2015

    ГОСТ 33589-2015

    ГОСТ 34089-2017

    ГОСТ 33908-2016

    ГОСТ 33587-2015

    ГОСТ 34090.1-2017

    ГОСТ 33654-2015

    ГОСТ 34090.2-2017

    ГОСТ 33909-2016

    ГОСТ 33901-2016

    ГОСТ 33627-2015

    ГОСТ 33906-2016

    ГОСТ 33913-2016

    ГОСТ 33912-2016

    ГОСТ 34429-2018

    ГОСТ 34858-2022

    ГОСТ 34195-2017

    ГОСТ 34194-2017

    ГОСТ 34239-2017

    ГОСТ 34240-2017

    ГОСТ 4095-75

    ГОСТ 4338-74

    ГОСТ 4339-74

    ГОСТ 33899-2016

    ГОСТ 4790-80

    ГОСТ 34241-2017

    ГОСТ 4.105-2014

    ГОСТ 4806-79

    ГОСТ 33907-2016

    ГОСТ 5066-2018

    ГОСТ 5.1261-72

    ГОСТ 34238-2017

    ГОСТ 4668-75

    ГОСТ 5066-91

    ГОСТ 4338-91

    ГОСТ 5396-77

    ГОСТ 5445-2020

    ГОСТ 4039-88

    ГОСТ 5953-81

    ГОСТ 5445-79

    ГОСТ 33911-2016

    ГОСТ 5954.2-2020

    ГОСТ 34091-2017

    ГОСТ 34092-2017

    ГОСТ 5954.2-91

    ГОСТ 34210-2017

    ГОСТ 5953-93

    ГОСТ 5954.1-2020

    ГОСТ 6321-92

    ГОСТ 6382-91

    ГОСТ 5954.1-91

    ГОСТ 6667-75

    ГОСТ 5953-2020

    ГОСТ 6263-2020

    ГОСТ 7423-55

    ГОСТ 511-82

    ГОСТ 6382-2001

    ГОСТ 33902-2016

    ГОСТ 7847-2020

    ГОСТ 7846-73

    ГОСТ 7978-74

    ГОСТ 8606-2015

    ГОСТ 6263-80

    ГОСТ 8606-72

    ГОСТ 33898-2016

    ГОСТ 8448-2019

    ГОСТ 8489-85

    ГОСТ 33626-2015

    ГОСТ 8935-2020

    ГОСТ 8929-2020

    ГОСТ 511-2015

    ГОСТ 9326-90

    ГОСТ 34236-2017

    ГОСТ 9434-75

    ГОСТ 8935-77

    ГОСТ 8929-75

    ГОСТ 8448-78

    ГОСТ 8.649-2015

    ГОСТ 7847-73

    ГОСТ 9144-79

    ГОСТ 9880-2019

    ГОСТ 6073-75

    ГОСТ 9950-2020

    ГОСТ 9963-84

    ГОСТ 9951-73

    ГОСТ 9880-76

    ГОСТ 9950-83

    ГОСТ 9.023-74

    ГОСТ 8226-82

    ГОСТ 9521-2017

    ГОСТ 8606-93

    ГОСТ EN 116-2013

    ГОСТ 8226-2015

    ГОСТ ИСО 1013-95

    ГОСТ 5439-76

    ГОСТ EN 13016-1-2013

    ГОСТ 9949-76

    ГОСТ EN 15376-2014

    ГОСТ ISO 13758-2013

    ГОСТ 33563-2015

    ГОСТ EN 15484-2014

    ГОСТ EN 15195-2014

    ГОСТ EN 12177-2013

    ГОСТ ISO 13736-2009

    ГОСТ ISO 3013-2016

    ГОСТ ISO 13757-2013

    ГОСТ ISO 4257-2013

    ГОСТ ISO 20884-2012

    ГОСТ ISO 20884-2016

    ГОСТ ISO 20846-2016

    ГОСТ 4790-2017

    ГОСТ ISO 20846-2012

    ГОСТ 4790-93

    ГОСТ ISO 3734-2016

    ГОСТ ISO 6297-2015

    ГОСТ ISO 8216-3-2013

    ГОСТ ISO 4256-2013

    ГОСТ ISO 12156-1-2012

    ГОСТ ISO 6245-2016

    ГОСТ EN 14078-2016

    ГОСТ Р 50837.2-95

    ГОСТ EN 13132-2012

    ГОСТ ISO 8819-2013

    ГОСТ ISO 6251-2013

    ГОСТ ISO 5165-2014

    ГОСТ ISO 7536-2015

    ГОСТ ISO 5275-2017

    ГОСТ EN 1601-2017

    ГОСТ Р 50921-96

    ГОСТ Р 50902-96

    ГОСТ Р 50902-2011

    ГОСТ Р 50837.7-95

    ГОСТ Р 50837.4-95

    ГОСТ 9326-2002

    ГОСТ Р 50837.1-95

    ГОСТ Р 51062-97

    ГОСТ Р 51062-2011

    ГОСТ Р 50837.8-95

    ГОСТ Р 51313-99

    ГОСТ Р 50994-96

    ГОСТ Р 50837.5-95

    ГОСТ Р 51105-97

    ГОСТ Р 51661.1-2000

    ГОСТ Р 51661.2-2000

    ГОСТ Р 51587-2000

    ГОСТ EN 237-2013

    ГОСТ Р 51661.3-2000

    ГОСТ Р 51213-98

    ГОСТ Р 51586-2000

    ГОСТ Р 50837.6-95

    ГОСТ Р 51661.4-2000

    ГОСТ ISO 8973-2013

    ГОСТ Р 50837.3-95

    ГОСТ Р 50921-2005

    ГОСТ 33108-2014

    ГОСТ EN 1601-2012

    ГОСТ Р 51588-2000

    ГОСТ Р 51925-2002

    ГОСТ Р 51925-2011

    ГОСТ 33106-2014

    ГОСТ Р 52050-2003

    ГОСТ Р 52067-2003

    ГОСТ ISO 3993-2013

    ГОСТ Р 51104-97

    ГОСТ Р 51971-2002

    ГОСТ Р 51105-2020

    ГОСТ Р 52201-2004

    ГОСТ Р 52332-2022

    ГОСТ Р 51930-2002

    ГОСТ Р 52332-2005

    ГОСТ Р 51972-2002

    ГОСТ Р 52087-2003

    ГОСТ Р 52068-2003

    ГОСТ ISO 9162-2013

    ГОСТ Р 52256-2004

    ГОСТ Р 52709-2019

    ГОСТ Р 52755-2007

    ГОСТ Р 51942-2002

    ГОСТ Р 51941-2002

    ГОСТ Р 51866-2002

    ГОСТ Р 52911-2020

    ГОСТ Р 51661.5-2000

    ГОСТ Р 52050-2020

    ГОСТ Р 52917-2008

    ГОСТ Р 52257-2004

    ГОСТ Р 53355-2018

    ГОСТ Р 53356-2009

    ГОСТ Р 53200-2008

    ГОСТ Р 53706-2009

    ГОСТ Р 52911-2008

    ГОСТ Р 52340-2005

    ГОСТ Р 52087-2018

    ГОСТ Р 52709-2007

    ГОСТ Р 53357-2013

    ГОСТ Р 53357-2009

    ГОСТ Р 51942-2019

    ГОСТ Р 53199-2008

    ГОСТ Р 52660-2006

    ГОСТ Р 52714-2018

    ГОСТ Р 54184-2010

    ГОСТ Р 53355-2009

    ГОСТ Р 53718-2009

    ГОСТ Р 54188-2010

    ГОСТ Р 54185-2010

    ГОСТ Р 53715-2009

    ГОСТ Р 54189-2010

    ГОСТ Р 54192-2010

    ГОСТ Р 54190-2010

    ГОСТ Р 52240-2004

    ГОСТ Р 53717-2009

    ГОСТ Р 54211-2010

    ГОСТ Р 52954-2008

    ГОСТ Р 54186-2010

    ГОСТ Р 54212-2010

    ГОСТ Р 54214-2015

    ГОСТ Р 54191-2010

    ГОСТ Р 54219-2010

    ГОСТ Р 52050-2006

    ГОСТ Р 54214-2010

    ГОСТ Р 54223-2010

    ГОСТ Р 54187-2010

    ГОСТ Р 54224-2010

    ГОСТ Р 54215-2010

    ГОСТ Р 54230-2010

    ГОСТ Р 53605-2009

    ГОСТ Р 53714-2009

    ГОСТ Р 54225-2010

    ГОСТ Р 54218-2010

    ГОСТ Р 54217-2010

    ГОСТ Р 54232-2010

    ГОСТ Р 54237-2022

    ГОСТ Р 54233-2010

    ГОСТ Р 54226-2010

    ГОСТ Р 54235-2010

    ГОСТ Р 54216-2010

    ГОСТ Р 54238-2010

    ГОСТ Р 53716-2009

    ГОСТ Р 54231-2010

    ГОСТ Р 54213-2015

    ГОСТ ISO 13909-8-2013

    ГОСТ 33103.1-2014

    ГОСТ Р 54229-2010

    ГОСТ Р 54239-2018

    ГОСТ Р 54213-2010

    ГОСТ Р 54239-2010

    ГОСТ Р 54251-2010

    ГОСТ Р 54244-2010

    ГОСТ Р 54248-2010

    ГОСТ Р 54234-2010

    ГОСТ Р 54283-2010

    ГОСТ Р 54228-2010

    ГОСТ Р 54245-2010

    ГОСТ Р 54262-2010

    ГОСТ Р 54280-2010

    ГОСТ Р 54241-2010

    ГОСТ Р 54269-2010

    ГОСТ Р 52368-2005

    ГОСТ Р 54332-2011

    ГОСТ Р 54221-2010

    ГОСТ Р 54290-2010

    ГОСТ Р 55110-2012

    ГОСТ Р 54274-2010

    ГОСТ Р 55111-2012

    ГОСТ Р 54236-2010

    ГОСТ Р 54240-2010

    ГОСТ Р 54242-2020

    ГОСТ Р 54289-2010

    ГОСТ Р 52714-2007

    ГОСТ Р 54250-2010

    ГОСТ Р 55121-2012

    ГОСТ 33103.1-2017

    ГОСТ Р 55118-2012

    ГОСТ Р 55112-2012

    ГОСТ Р 54237-2010

    ГОСТ Р 54285-2010

    ГОСТ Р 55123-2012

    ГОСТ Р 55125-2012

    ГОСТ Р 54282-2010

    ГОСТ Р 55120-2012

    ГОСТ Р 55128-2012

    ГОСТ Р 55115-2012

    ГОСТ Р 55117-2012

    ГОСТ Р 55122-2012

    ГОСТ Р 54261-2010

    ГОСТ Р 55124-2012

    ГОСТ Р 55133-2012

    ГОСТ Р 55113-2012

    ГОСТ Р 54299-2010

    ГОСТ Р 54982-2012

    ГОСТ Р 55475-2013

    ГОСТ Р 54287-2010

    ГОСТ Р 55552-2013

    ГОСТ Р 55551-2013

    ГОСТ Р 55549-2013

    ГОСТ Р 55116-2012

    ГОСТ Р 55131-2012

    ГОСТ Р 55132-2012

    ГОСТ Р 55566-2013

    ГОСТ Р 55660-2013

    ГОСТ Р 55869-2013

    ГОСТ Р 55546-2013

    ГОСТ Р 55661-2013

    ГОСТ Р 55548-2013

    ГОСТ Р 54227-2010

    ГОСТ Р 55874-2013

    ГОСТ Р 55957-2014

    ГОСТ Р 55550-2013

    ГОСТ Р 55956-2014

    ГОСТ Р 55547-2013

    ГОСТ Р 55960-2014

    ГОСТ Р 56147-2014

    ГОСТ Р 55961-2014

    ГОСТ Р 55958-2014

    ГОСТ Р 55959-2014

    ГОСТ Р 55873-2013

    ГОСТ Р 55955-2014

    ГОСТ Р 56868-2016

    ГОСТ Р 56870-2016

    ГОСТ Р 56146-2014

    ГОСТ Р 56871-2016

    ГОСТ Р 55523-2013

    ГОСТ Р 55493-2013

    ГОСТ Р 55879-2013

    ГОСТ Р 56866-2016

    ГОСТ Р 56883-2016

    ГОСТ Р 55126-2012

    ГОСТ Р 56867-2016

    ГОСТ Р 55114-2012

    ГОСТ Р 56882-2016

    ГОСТ Р 56888-2016

    ГОСТ Р 56886-2016

    ГОСТ Р 56889-2016

    ГОСТ Р 56887-2016

    ГОСТ Р 55130-2012

    ГОСТ Р 56890-2016

    ГОСТ Р 56881-2016

    ГОСТ Р 56884-2016

    ГОСТ Р 57040-2016

    ГОСТ Р 57039-2016

    ГОСТ Р 58221-2018

    ГОСТ Р 57658-2017

    ГОСТ Р 57016-2016

    ГОСТ Р 58440-2019

    ГОСТ Р 56885-2016

    ГОСТ Р 59045-2020

    ГОСТ Р 58255-2018

    ГОСТ Р 55553-2013

    ГОСТ Р 58914-2020

    ГОСТ Р 59244-2020

    ГОСТ Р 59245-2020

    ГОСТ Р 57431-2017

    ГОСТ Р 59249-2020

    ГОСТ Р 59250-2020

    ГОСТ Р 59013-2020

    ГОСТ Р 59012-2020

    ГОСТ Р 59253-2020

    ГОСТ Р 59251-2020

    ГОСТ Р 59254-2020

    ГОСТ Р 59256-2020

    ГОСТ Р 59257-2020

    ГОСТ Р 59176-2020

    ГОСТ Р 59261-2020

    ГОСТ Р 59255-2020

    ГОСТ Р 56869-2016

    ГОСТ Р 59592-2021

    ГОСТ Р 59248-2020

    ГОСТ Р 70204-2022

    ГОСТ Р 70205-2022

    ГОСТ Р 59258-2020

    ГОСТ Р 70206-2022

    ГОСТ Р 59161-2020

    ГОСТ Р 70207-2022

    ГОСТ Р 70208-2022

    ГОСТ Р 70211-2022

    ГОСТ Р 70263-2022

    ГОСТ Р 59014-2020

    ГОСТ Р 70209-2022

    ГОСТ Р 70264-2022

    ГОСТ Р 59262-2020

    ГОСТ Р 59015-2020

    ГОСТ Р 58227-2018

    ГОСТ Р 59177-2020

    ГОСТ Р 59264-2020

    ГОСТ Р 55129-2012

    ГОСТ Р ЕН ИСО 20847-2010

    ГОСТ Р ЕН ИСО 7536-2007

    ГОСТ Р 56720-2015

    ГОСТ Р 56718-2015

    ГОСТ Р 55868-2013

    ГОСТ Р 59593-2021

    ГОСТ Р ИСО 13909-1-2010

    ГОСТ Р 59252-2020

    ГОСТ Р 55997-2014

    ГОСТ Р ИСО 12156-1-2006

    ГОСТ Р ИСО 15585-2009

    ГОСТ Р ЕН 15195-2011

    ГОСТ Р ИСО 13909-6-2013

    ГОСТ Р ЕН 12177-2008

    ГОСТ Р ЕН ИСО 12205-2007

    ГОСТ Р ЕН 12916-2008

    ГОСТ Р ИСО 5275-2009

    ГОСТ Р ИСО 13759-2010

    ГОСТ Р ИСО 3734-2009

    ГОСТ Р ЕН ИСО 20846-2006

    ГОСТ Р 54220-2010

    ГОСТ Р ЕН 237-2008

    ГОСТ Р ИСО 13909-5-2013

    ГОСТ Р 55119-2012

    ГОСТ Р ЕН ИСО 3405-2007

    ГОСТ Р 54484-2011

    ГОСТ Р 55127-2012

    ГОСТ Р ИСО 18283-2010

    ГОСТ Р 54275-2010

    ГОСТ Р 56873-2016