ГОСТ 33343-2015

ОбозначениеГОСТ 33343-2015
НаименованиеТоплива авиационные турбинные. Определение нафталиновых углеводородов методом ультрафиолетовой спектрофотометрии
СтатусДействует
Дата введения01.01.2017
Дата отмены-
Заменен на-
Код ОКС75.160.20
Текст ГОСТа

ГОСТ 33343-2015



МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ТОПЛИВА АВИАЦИОННЫЕ ТУРБИННЫЕ

Определение нафталиновых углеводородов методом ультрафиолетовой спектрофотометрии

Aviation turbine fuels. Determination of naphthalene hydrocarbons by ultraviolet spectrophotometry method

МКС 75.160.20

Дата введения 2017-01-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Межгосударственным техническим комитетом по стандартизации МТК 31 "Нефтяные топлива и смазочные материалы", Открытым акционерным обществом "Всероссийский научно-исследовательский институт по переработке нефти" (ОАО "ВНИИ НП") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 18 июня 2015 г. N 47)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Казахстан

KZ

Госстандарт Республики Казахстан

Киргизия

KG

Кыргызстандарт

Молдова

MD

Молдова-Стандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 31 августа 2015 г. N 1256-ст межгосударственный стандарт ГОСТ 33343-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2017 г.

5 Настоящий стандарт идентичен стандарту ASTM D 1840-07 (2013)* "Стандартный метод определения нафталиновых углеводородов в авиационных турбинных топливах ультрафиолетовой спектрофотометрией" ("Standard test method for naphthalene hydrocarbons in aviation turbine fuels by ultraviolet spectrophotometry", IDT).

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - .

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов ASTM соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Сентябрь 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

1.1 Настоящий стандарт устанавливает определение общей концентрации нафталина, аценафтена и алкилированных производных этих углеводородов в авиационных турбинных топливах методом ультрафиолетовой спектрофотометрии. Настоящий метод используют для анализа топлива, содержащего не более 5% об. указанных компонентов и имеющего температуру конца кипения ниже 315°С (600°F); однако для установления прецизионности в программе межлабораторных исследований для метода А испытания проводили в диапазоне концентраций от 0,03% об. до 4,25% об., для метода В - в диапазоне концентраций от 0,08% об. до 5,6% об.

Настоящий метод позволяет определить максимальное количество нафталинов, присутствующих в топливах.

1.2 Значения, установленные в единицах СИ, следует считать стандартными. В настоящий стандарт не включены другие единицы измерений.

1.3 В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его использованием. Пользователь настоящего стандарта несет ответственность за установление соответствующих правил по технике безопасности и охране здоровья, а также определяет целесообразность применения законодательных ограничений перед его использованием.

Особые меры предосторожности приведены в 8.1 и 8.2.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных - последнее издание (включая все изменения).

2.1 Стандарты ASTM

_______________

Уточнить ссылки на стандарты ASTM можно на сайте ASTM: www.astm.org или в службе поддержки клиентов ASTM: service@astm.org. В информационном томе ежегодного сборника стандартов (Annual Book of ASTM Standards) следует обращаться к сводке стандартов ежегодного сборника стандартов на странице сайта.

ASTM Е 131 Terminology relating to molecular spectroscopy (Терминология, относящаяся к молекулярной спектроскопии)

ASTM Е 169 Practices for general techniques of ultraviolet-visible quantitative analysis (Практические руководства по техническим приемам количественного анализа для ультрафиолетовой и видимой областей спектра)

ASTM Е 275 Practice for describing and measuring performance of ultraviolet and visible spectrophotometers (Практическое руководство по описанию и определению рабочих характеристик спектрофотометров для ультрафиолетовой и видимой областей спектра)

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями.

3.1 Общие термины

3.1.1 Термины и определения по абсорбционной спектроскопии - по ASTM Е 131, а также следующие:

3.1.2 энергия излучения (radiant energy): Энергия, излучаемая в виде электромагнитных волн.

3.1.3 мощность излучения Р (radiant power): Скорость распространения энергии в потоке энергии излучения.

3.2 Термины, характерные для настоящего стандарта

3.2.1 оптическая плотность А (absorbance): Свойство молекул вещества, характеризующее его способность поглощать энергию излучения [см. формулу (1)].

, (1)

где - коэффициент пропускания по 3.2.5.

3.2.1.1 Пояснение

Наблюдаемый коэффициент пропускания по спектрофотометру можно скорректировать путем компенсации потерь от отражения, потерь от поглощения растворителем или эффектов рефракции.

3.2.2 поглощающая способность a (absorptivity): Характерное свойство вещества поглощать излучение на единицу концентрации образца и длины оптического пути кюветы, выражаемое формулой

, (2)

где - оптическая плотность по 3.2.1;

- длина оптического пути кюветы для образца, см;

- количество поглощающего вещества, содержащегося в единице объема растворителя, г/дм.

3.2.2.1 Пояснение

Количественные анализы в ультрафиолетовой области основаны на законе поглощения, известном как закон Бера, согласно которому спектральная оптическая плотность гомогенного образца, содержащего абсорбирующее вещество, прямо пропорциональна концентрации абсорбирующего вещества при одной длине волны, и ее вычисляют по формуле

, (3)

где - поглощающая способность по 3.2.2;

- длина оптического пути кюветы для образца, см;

- концентрация абсорбирующего вещества, содержащегося в единице объема растворителя, г/дм.

3.2.3 концентрация с (concentration), г/дм: Количество нафталиновых углеводородов в изооктане.

3.2.4 длина оптического пути кюветы для образца b (sample cell path length), см: Расстояние, измеренное в направлении распространения пучка энергии излучения между поверхностью испытуемого образца, на который падает энергия излучения, и поверхностью образца, с которой эта энергия излучается.

3.2.4.1 Пояснение

В длину оптического пути не включают толщину кюветы, в которой находится образец.

3.2.5 коэффициент пропускания Т (transmittance): Свойство молекул вещества, определяющее его способность передавать поток излучения, вычисляемое по формуле

, (4)

где - поток излучения, проходящего через образец;

- поток излучения, падающего на образец.

4 Сущность метода

Суммарную концентрацию нафталиновых углеводородов в топливах для реактивных двигателей определяют измерением поглощения раствора топлива известной концентрации при длине волны 285 нм.

5 Назначение и применение

Настоящий метод определения нафталиновых углеводородов является одним из методов, применяемых для оценки характеристик сгорания топлива для реактивных двигателей с диапазоном выкипания керосина. Концентрацию нафталиновых углеводородов определяют в связи с тем, что указанные углеводороды при сгорании склонны к сравнительно большему сажеобразованию, дымлению и тепловому излучению, чем моноциклические ароматические соединения.

6 Мешающие компоненты

6.1 На результат определения нафталинов влияют компоненты, приводящие к мнимому увеличению концентрации. К таким компонентам относятся фенантрены, дибензотиофены, дифенилы, бензотиофены и антрацены. Ограничение по температуре конца кипения 315°С позволит уменьшить помехи от компонентов, за исключением бензотиофенов и дифенилов. Ошибка в измерении концентрации нафталинов при наличии 1% таких компонентов приведена в таблице 1.

Таблица 1 - Соединения, влияющие на результат определения нафталинов

Компонент

Ошибка, вносимая в определение нафталинов при наличии 1% компонента, влияющего на результат определения

Фенантрены

2

Дибензотиофены

2

Дифенилы

1

Бензотиофены

0,6

Антрацены

0,1

6.2 Насыщенные углеводороды, олефины, тиофены и алкил- и циклоалкилпроизводные бензола не влияют на результат определения.

7 Аппаратура

7.1 Спектрофотометр, снабженный устройством для измерения оптической плотности растворов в области спектра с длиной волны от 240 до 300 нм, с шириной спектральной щели не более 1 нм. Результаты измерения длин волн в области 253,65 нм, измеряемой по эмиссионной линии (линии испускания) ртути или по спектру поглощения, или по стеклу на основе оксида гольмия в области спектра поглощения 287,5 нм, или по раствору оксида гольмия в области 287,1 нм, должны быть повторимы с точностью не более 0,1 нм. При оптической плотности 0,4 в спектральной области от 240 до 300 нм результаты измерения оптической плотности должны быть повторимы с точностью до ±0,5%. При оптической плотности в диапазоне от 0,2 до 0,8 точность фотометрического определения не должна отличаться более чем на ±0,5% от значения, установленного метрологической лабораторией.

7.1.1 Пояснение

Многие изготовители производят вторичные эталоны, прослеживаемые к первичным эталонам NIST, для проверки точности определения длины волны и фотометрической точности спектрофотометров. Эти материалы можно использовать для проверки рабочих характеристик спектрофотометра при условии их периодической калибровки в соответствии с рекомендациями изготовителя.

7.2 При первичном определении и последующих определениях должно быть подтверждение, что прибор и аппаратура работают исправно, обеспечивая результаты испытаний, эквивалентные указанным в 7.1.

Примечание 1 - Рекомендуемые методы испытаний спектрофотометров, используемых в настоящем методе, приведены в ASTM Е 275. Наряду с материалами, указанными в 7.1, для проверки фотометрической точности можно использовать раствор дихромата калия в хлорной кислоте (серии NIST SRM 935, как указано в ASTM Е 275), для проверки точности определения длины волны - раствор 20 мг/дм нафталина высокой чистоты (>99%) в спектрально чистом изооктане. Последний имеет незначительный максимум при 285,7 нм. Раствор нафталина не применяют для проверки фотометрической точности.

7.3 Две кюветы из прозрачного кварцевого стекла с длиной оптического пути (1,000±0,005) см.

7.4 Пипетки класса А.

7.5 Бумага для протирки оптических стекол.

7.6 Весы, обеспечивающие тарирование или взвешивание 100 г до ближайшей 0,0001 г. Весы должны иметь точность ±0,0002 г при нагрузке 100 г.

8 Растворители

8.1 Изооктан (2,2,4-триметилпентан) спектрально чистый (для спектроскопии).

Предупреждение - Изооктан чрезвычайно огнеопасен, пары его вредны при вдыхании.

Примечание 2 - В продаже имеется спектрально чистый изооктан. Для приготовления раствора для спектроскопии в качестве базового материала используют технический изооктан, который очищают пропусканием 4-5 дм изооктана через колонки диаметром 50,8-76,2 нм, длиной от 0,6 до 0,9 м с активным силикагелем (74 мкм). Отбирают часть растворителя, пропускание которого больше 90% по сравнению с дистиллированной водой по всему спектральному диапазону от 240 до 300 нм. Хранят изооктан в закрытом виде в особо чистых склянках с притертой стеклянной пробкой. Для приготовления новой партии растворителя применяют свежую порцию силикагеля. Силикагель можно реактивировать путем пропускания через колонку 500 см ацетона, осушения под вакуумом и последующего нагревания в тонком слое в термостате при температуре 400°С до восстановления белого цвета. Активированный силикагель хранят в закрытых контейнерах.

8.2 Растворитель для очистки кювет - ацетон или этиловый спирт с остатком после испарения не более 10 мг/кг. (Предупреждение - Ацетон и этиловый спирт чрезвычайно огнеопасны и могут быть опасны при вдыхании).

Примечание 3 - Остаток 10 мг/кг является максимально допустимым содержанием примесей для реактива ч.д.а. по спецификации Американского Общества (ACS). Растворитель, чистота которого соответствует требованиям ACS, может быть использован без проведения дополнительных испытаний.

9 Калибровка и стандартизация

Вместо непосредственной калибровки спектрофотометра по известным нафталинам среднюю поглощающую способность нафталинов от до при длине волны 285 нм можно принять равным 33,7 дм/(г·см). Данные, используемые для вычисления этого усредненного значения, приведены в таблице 2.

Таблица 2 - Данные, полученные по результатам исследовательской работы API 44

Соединение

Серийный номер API

Поглощающая способность, дм/(г·см)

Нафталин

605

28,5

1-Метилнафталин

539

32,0

2-Метилнафталин

572

22,9

1,2-Диметилнафталин

215

37,3

1,3-Диметилнафталин

216

36,4

1,4-Диметилнафталин

217

43,5

1,5-Диметилнафталин

218

54,0

1,6-Диметилнафталин

219

36,4

1,7-Диметилнафталин

220

36,0

1,8-Диметилнафталин

221

46,0

2,3-Диметилнафталин

222

22,0

2,6-Диметилнафталин

226

21,3

2,7-Диметилнафталин

224

23,5

1-Изопропилнафталин

203

31,7

10 Метод А - последовательное разбавление

Примечание 4 - Пользователь при необходимости может использовать альтернативный метод В.

10.1 С рекомендуемыми методами можно ознакомиться в ASTM Е 169. Следует внимательно изучить правила очистки и обращения с кюветами и стеклянной посудой, регулировку прибора и метод измерения оптической плотности.

10.2 Готовят три раствора образца путем разбавления.

10.2.1 Первое разбавление

Если образец более летучий, чем изооктан, то в чистую, сухую мерную колбу вместимостью 25 см с притертой стеклянной пробкой добавляют от 10 до 15 см спектрально чистого изооктана. Затем взвешивают в колбе приблизительно 1 г образца, доводят до метки спектрально чистым изооктаном и тщательно перемешивают. Если образец менее летучий, чем изооктан, то взвешивают в колбе приблизительно 1 г образца, доводят до метки спектрально чистым изооктаном и тщательно перемешивают.

10.2.2 Второе разбавление

Вводят пипеткой 5,00 см раствора первого разбавления в мерную колбу вместимостью 50 см с притертой стеклянной пробкой, доводят до метки спектрально чистым изооктаном и тщательно перемешивают.

10.2.3 Третье разбавление

Вводят пипеткой 5,00 см раствора второго разбавления в мерную колбу вместимостью 50 см и разбавляют по 10.2.2.

10.3 Определение поправки для кюветы

Измеряют и записывают значение поглощения кюветы для образца, заполненной спектрально чистым изооктаном, по сравнению с кюветой для растворителя, заполненной спектрально чистым изооктаном.

10.4 Измерение оптической плотности

Помещают порцию раствора третьего разбавления в кювету спектрофотометра. Сразу закрывают кювету для предотвращения переноса ароматических углеводородов из кюветы с образцом в кювету с растворителем. Убеждаются в чистоте окошек кювет. Измеряют оптическую плотность по ASTM Е 169. Записывают поглощение образца по сравнению со спектрально чистым изооктаном на длине волны 285 нм.

Примечание 5 - Для получения максимальной воспроизводимости результатов регулируют разбавление образца таким образом, чтобы показания оптической плотности находились в диапазоне от 0,2 до 0,8. Для выполнения этого может потребоваться альтернативное третье разбавление, отличное от приведенного в 10.2.3, например разбавление 10 см второго разбавления растворителем до 25 см.

11 Метод В - альтернативное разбавление до 100 см

11.1 Пояснение

Процедура единичного разбавления была включена в качестве альтернативной процедуры для сокращения времени испытания, использованной стеклянной посуды, процедур очистки и ошибок разбавления.

11.2 Рекомендуемые методы приведены в ASTM Е 169. Тщательно изучают правила очистки и обращения с кюветами и стеклянной посудой, регулировку прибора и метод измерения оптической плотности.

11.3 Подготовка образца

Помещают соответствующую массу образца в чистую, сухую, тарированную мерную колбу вместимостью 100 см. Записывают массу с точностью до 0,0001 г. Доводят до метки спектрально чистым изооктаном, закрывают колбу пробкой и тщательно перемешивают.

11.3.1 В таблице 3 приведены массы образца в зависимости от концентрации нафталина (нафталинов) с оптической плотностью в диапазоне от 0,2 до 0,8 (см. примечание 7). Образец массой 60 мг подходит для типовых топлив для реактивных двигателей с концентрацией нафталинов в диапазоне от 0,8% об. до 3,0% об.

Примечание 6 - Для добавления соответствующего объема образца можно использовать микропипетку. Если плотность топлива не известна, при подготовке образца используют плотность приблизительно 0,8.

Таблица 3 - Приблизительные масса и объем образца для определения концентрации нафталинов (% об.) в образце при единичном разбавлении для получения значения оптической плотности от 0,2 до 0,8 (при использовании плотности примерно 0,8)

Объем образца, см

Масса образца, мг

Концентрация нафталинов при ожидаемой оптической плотности 0,2% об.

Концентрация нафталинов при ожидаемой оптической плотности 0,8% об.

0,050

40

1,2

4,8

0,075

60

0,8

3,2

0,100

80

0,6

2,4

0,150

120

0,4

1,6

0,200

160

0,3

1,2

0,300

240

0,2

0,8

11.4 Определение поправки для кюветы

Процедура определения поправки для кюветы приведена в 10.3.

11.5 Измерение оптической плотности

Процедура измерения оптической плотности приведена в 10.4.

12 Вычисления

12.1 Вычисляют концентрацию нафталинов , % масс., по формуле

, (5)

где - скорректированное значение оптической плотности (наблюдаемое значение оптической плотности минус поправка на кювету) испытуемого раствора для метода А по разделу 10 с использованием последовательных разбавлений;

- эквивалентный объем растворителя при единичном разбавлении в одну ступень. Для первого разбавления =0,025; для второго разбавления =0,25; для третьего разбавления =2,5; для альтернативного третьего разбавления =0,625; для метода В (см. раздел 11) при использовании разбавления до 100 см, =0,10;

33,7 - среднеарифметическое значение поглощающей способности нафталинов от до , дм/(г·см);

- масса использованного образца, г.

12.2 Вычисляют концентрацию нафталинов, % об., по формуле

Содержание нафталинов = , (6)

где - содержание нафталинов, % масс.;

- относительная плотность топлива (15°С/15°С);

- относительная плотность нафталинов (15°С/15°С), С = 1,00.

13 Протокол испытаний

Концентрацию нафталинов записывают с точностью до 0,01% об.

14 Спектры сравнения

Поглощающие способности индивидуальных нафталиновых углеводородов в области длины волны 285 нм получены из каталога API для ультрафиолетовых спектров, опубликованного по результатам исследовательской работы API 44 (см. таблицу 2).

Примечание 7 - Среднеарифметическое значение поглощающей способности нафталинов составляет 33,7. Достоверность среднеарифметического значения поглощающей способности для выбранных индивидуальных нафталинов может быть оценена по таблице 2.

15 Прецизионность и смещение

15.1 Прецизионность

_______________

Подтверждающие данные для метода А (см. раздел 10) хранятся в штаб-квартире ASTM International и могут быть получены по запросу исследовательского отчета RR:D02-1375.

Подтверждающие данные для метода В (см. раздел 11) хранятся в штаб-квартире ASTM International и могут быть получены по запросу исследовательского отчета RR:D02-1525.

Прецизионность настоящего метода определена статистической обработкой результатов межлабораторных испытаний. Прецизионность для метода А была определена по результатам межлабораторных испытаний образцов с содержанием нафталинов в диапазоне от 0,03% об. до 4,25% об. Прецизионность для метода В была определена по результатам межлабораторных испытаний образцов с содержанием нафталинов в диапазоне от 0,08% об. до 5,6% об.

15.1.1 Повторяемость r

Расхождение результатов последовательных испытаний, полученных одним и тем же оператором на одной и той же аппаратуре при постоянных рабочих условиях на идентичном испытуемом материале в течение длительного времени при нормальном и правильном выполнении метода, может превысить следующие значения только в одном случае из двадцати:

Повторяемость для метода А = 0,0222 (1,00+X); (7)


Повторяемость для метода В = 0,056 X, (8)

где Х - среднеарифметическое значение двух результатов, % об.

15.1.2 Воспроизводимость R

Расхождение результатов двух единичных и независимых испытаний, полученных разными операторами в разных лабораториях на идентичном испытуемом материале в течение длительного времени при нормальном и правильном выполнении метода, может превысить следующие значения только в одном случае из двадцати:

Воспроизводимость для метода А = 0,0299 (1,00+X); (9)


Воспроизводимость для метода В = 0,094 X, (10)

где Х - среднеарифметическое значение двух результатов, % об.

Примечание 8 - Если аппаратура не соответствует требованиям, изложенным в 7.1, прецизионность результатов может быть значительно хуже.

15.2 Смещение для метода, используемого в настоящем стандарте, не определено, так как поглощающая способность зависит от состава нафталинов в образце.

Приложение ДА
(справочное)


Сведения о соответствии ссылочных стандартов ASTM межгосударственным стандартам


Таблица ДА.1

Обозначение ссылочного стандарта ASTM

Степень соответствия

Обозначение и наименование соответствующего межгосударственного стандарта

ASTM Е 131

-

*

ASTM Е 169

-

*

ASTM Е 275

-

*

* Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного стандарта ASTM.

УДК 665.743.3:543.635.62:543.422.3-76:006.354

МКС 75.160.20

Ключевые слова: авиационные турбинные топлива, нафталиновые углеводороды, ультрафиолетовая спектрофотометрия, определение




Электронный текст документа
и сверен по:

, 2019

Другие госты в подкатегории

    ГОСТ 1012-2013

    ГОСТ 10196-62

    ГОСТ 1038-75

    ГОСТ 10433-75

    ГОСТ 10585-2013

    ГОСТ 10585-99

    ГОСТ 10089-89

    ГОСТ 10220-82

    ГОСТ 11022-95

    ГОСТ 10200-83

    ГОСТ 10585-75

    ГОСТ 10373-75

    ГОСТ 10650-72

    ГОСТ 10835-78

    ГОСТ 11303-2013

    ГОСТ 11014-2001

    ГОСТ 11303-75

    ГОСТ 10227-2013

    ГОСТ 10227-86

    ГОСТ 11305-83

    ГОСТ 11130-75

    ГОСТ 10200-2017

    ГОСТ 11065-90

    ГОСТ 11304-75

    ГОСТ 11304-2013

    ГОСТ 11802-88

    ГОСТ 11804-76

    ГОСТ 11130-2013

    ГОСТ 12308-89

    ГОСТ 11239-76

    ГОСТ 11311-76

    ГОСТ 10650-2013

    ГОСТ 11306-83

    ГОСТ 11306-2013

    ГОСТ 13673-76

    ГОСТ 11305-2013

    ГОСТ 13674-78

    ГОСТ 13674-2013

    ГОСТ 147-2013

    ГОСТ 13672-76

    ГОСТ 14298-79

    ГОСТ 12308-2013

    ГОСТ 11623-89

    ГОСТ 14921-2018

    ГОСТ 13673-2013

    ГОСТ 1567-83

    ГОСТ 14921-78

    ГОСТ 14834-2014

    ГОСТ 1667-68

    ГОСТ 12433-83

    ГОСТ 1720-76

    ГОСТ 1012-72

    ГОСТ 16106-2019

    ГОСТ 17644-83

    ГОСТ 10679-76

    ГОСТ 11126-2019

    ГОСТ 12525-85

    ГОСТ 11382-76

    ГОСТ 15489.2-2018

    ГОСТ 18132-72

    ГОСТ 17749-72

    ГОСТ 17751-79

    ГОСТ 13210-72

    ГОСТ 13455-91

    ГОСТ 18597-73

    ГОСТ 19723-74

    ГОСТ 1709-75

    ГОСТ 11126-88

    ГОСТ 20448-90

    ГОСТ 19006-73

    ГОСТ 20924-75

    ГОСТ 2084-77

    ГОСТ 21290-75

    ГОСТ 17750-72

    ГОСТ 18598-73

    ГОСТ 21291-75

    ГОСТ 1928-2019

    ГОСТ 21289-75

    ГОСТ 1928-79

    ГОСТ 21103-75

    ГОСТ 1567-97

    ГОСТ 22254-92

    ГОСТ 22387.5-77

    ГОСТ 14920-79

    ГОСТ 22387.4-77

    ГОСТ 23083-78

    ГОСТ 10478-93

    ГОСТ 22054-76

    ГОСТ 23781-87

    ГОСТ 20448-2018

    ГОСТ 22055-76

    ГОСТ 21708-96

    ГОСТ 24160-80

    ГОСТ 2059-95

    ГОСТ 24764-81

    ГОСТ 24160-2014

    ГОСТ 24701-2013

    ГОСТ 25927-83

    ГОСТ 25927-95

    ГОСТ 24701-81

    ГОСТ 25950-83

    ГОСТ 2408.4-98

    ГОСТ 21443-75

    ГОСТ 27044-86

    ГОСТ 26370-84

    ГОСТ 26801-86

    ГОСТ 2408.1-95

    ГОСТ 2160-92

    ГОСТ 24676-2017

    ГОСТ 25828-83

    ГОСТ 22986-78

    ГОСТ 27154-86

    ГОСТ 27588-2020

    ГОСТ 25784-83

    ГОСТ 27589-2020

    ГОСТ 27578-2018

    ГОСТ 22667-82

    ГОСТ 27588-91

    ГОСТ 2669-81

    ГОСТ 27577-87

    ГОСТ 17323-71

    ГОСТ 27768-88

    ГОСТ 27894.0-88

    ГОСТ 27589-91

    ГОСТ 27894.2-88

    ГОСТ 25543-2013

    ГОСТ 2408.3-95

    ГОСТ 27314-91

    ГОСТ 2093-82

    ГОСТ 28245-89

    ГОСТ 27894.6-88

    ГОСТ 27894.9-88

    ГОСТ 28577.0-90

    ГОСТ 27894.1-88

    ГОСТ 28577.1-90

    ГОСТ 28577.2-90

    ГОСТ 28577.3-90

    ГОСТ 10538-87

    ГОСТ 27894.8-88

    ГОСТ 27894.11-88

    ГОСТ 22985-90

    ГОСТ 28781-90

    ГОСТ 28935-91

    ГОСТ 28946-2020

    ГОСТ 28357-89

    ГОСТ 29026-91

    ГОСТ 28946-91

    ГОСТ 22985-2017

    ГОСТ 27894.10-88

    ГОСТ 28572-90

    ГОСТ 30404-94

    ГОСТ 29064-91

    ГОСТ 305-82

    ГОСТ 27894.5-88

    ГОСТ 305-2013

    ГОСТ 29087-91

    ГОСТ 27578-87

    ГОСТ 27894.7-88

    ГОСТ 31872-2019

    ГОСТ 147-95

    ГОСТ 27894.3-88

    ГОСТ 28656-2019

    ГОСТ 28812-90

    ГОСТ 31871-2012

    ГОСТ 1932-93

    ГОСТ 3168-93

    ГОСТ 29040-91

    ГОСТ 31872-2012

    ГОСТ 3122-67

    ГОСТ 32353-2013

    ГОСТ 27894.4-88

    ГОСТ 32338-2013

    ГОСТ 28828-90

    ГОСТ 29040-2018

    ГОСТ 32346-2013

    ГОСТ 3213-91

    ГОСТ 32348-2013

    ГОСТ 32347-2013

    ГОСТ 32464-2013

    ГОСТ 32248-2013

    ГОСТ 32510-2013

    ГОСТ 32345-2013

    ГОСТ 32340-2013

    ГОСТ 28743-93

    ГОСТ 32465-2013

    ГОСТ 32977-2022

    ГОСТ 32975.2-2014

    ГОСТ 32462-2013

    ГОСТ 32975.3-2014

    ГОСТ 32511-2013

    ГОСТ 32978-2014

    ГОСТ 32349-2013

    ГОСТ 32513-2013

    ГОСТ 32976-2014

    ГОСТ 32339-2013

    ГОСТ 32988-2014

    ГОСТ 32990-2014

    ГОСТ 32989.3-2014

    ГОСТ 32987-2014

    ГОСТ 32979-2014

    ГОСТ 32508-2013

    ГОСТ 32350-2013

    ГОСТ 32514-2013

    ГОСТ 32401-2013

    ГОСТ 27379-87

    ГОСТ 32989.1-2014

    ГОСТ 32977-2014

    ГОСТ 32989.2-2014

    ГОСТ 33104-2014

    ГОСТ 32985-2014

    ГОСТ 28656-90

    ГОСТ 32595-2013

    ГОСТ 33112-2014

    ГОСТ 33018-2014

    ГОСТ 33156-2014

    ГОСТ 33132-2014

    ГОСТ 33103.7-2017

    ГОСТ 33131-2014

    ГОСТ 32984-2014

    ГОСТ 33103.4-2017

    ГОСТ 33162-2014

    ГОСТ 33158-2014

    ГОСТ 33103.3-2017

    ГОСТ 33195-2014

    ГОСТ 33103.5-2017

    ГОСТ 33113-2014

    ГОСТ 33077-2014

    ГОСТ 33196-2014

    ГОСТ 33192-2014

    ГОСТ 33197-2014

    ГОСТ 33288-2015

    ГОСТ 33298-2015

    ГОСТ 33255-2015

    ГОСТ 33256-2015

    ГОСТ 33304-2015

    ГОСТ 33297-2015

    ГОСТ 33193-2014

    ГОСТ 33157-2014

    ГОСТ 27313-2015

    ГОСТ 33296-2015

    ГОСТ 33253-2015

    ГОСТ 3340-88

    ГОСТ 33130-2014

    ГОСТ 33365-2015

    ГОСТ 33012-2014

    ГОСТ 33300-2015

    ГОСТ 33360-2015

    ГОСТ 32507-2013

    ГОСТ 33198-2014

    ГОСТ 33508-2015

    ГОСТ 33103.6-2017

    ГОСТ 33511-2015

    ГОСТ 33510-2015

    ГОСТ 33512.3-2015

    ГОСТ 33359-2015

    ГОСТ 33564-2015

    ГОСТ 33576-2015

    ГОСТ 33578-2015

    ГОСТ 33502-2015

    ГОСТ 33513-2015

    ГОСТ 33577-2015

    ГОСТ 3338-2015

    ГОСТ 33507-2015

    ГОСТ 33509-2015

    ГОСТ 33194-2014

    ГОСТ 3338-68

    ГОСТ 27313-95

    ГОСТ 33461-2015

    ГОСТ 33617-2015

    ГОСТ 33580-2015

    ГОСТ 33585-2015

    ГОСТ 33103.2-2017

    ГОСТ 33588-2015

    ГОСТ 33621-2015

    ГОСТ 33624-2015

    ГОСТ 33625-2015

    ГОСТ 33515-2015

    ГОСТ 33654-2022

    ГОСТ 33252-2015

    ГОСТ 33582-2015

    ГОСТ 33501-2015

    ГОСТ 33614-2015

    ГОСТ 33516-2015

    ГОСТ 33583-2015

    ГОСТ 33872-2016

    ГОСТ 33622-2015

    ГОСТ 33618-2015

    ГОСТ 33586-2015

    ГОСТ 33903-2016

    ГОСТ 33584-2015

    ГОСТ 33755-2016

    ГОСТ 33299-2015

    ГОСТ 33589-2015

    ГОСТ 34089-2017

    ГОСТ 33908-2016

    ГОСТ 33587-2015

    ГОСТ 34090.1-2017

    ГОСТ 33654-2015

    ГОСТ 34090.2-2017

    ГОСТ 33909-2016

    ГОСТ 33901-2016

    ГОСТ 33627-2015

    ГОСТ 33906-2016

    ГОСТ 33913-2016

    ГОСТ 33912-2016

    ГОСТ 34429-2018

    ГОСТ 34858-2022

    ГОСТ 34195-2017

    ГОСТ 34194-2017

    ГОСТ 34239-2017

    ГОСТ 34240-2017

    ГОСТ 4095-75

    ГОСТ 4338-74

    ГОСТ 4339-74

    ГОСТ 33899-2016

    ГОСТ 4790-80

    ГОСТ 34241-2017

    ГОСТ 4.105-2014

    ГОСТ 4806-79

    ГОСТ 33907-2016

    ГОСТ 5066-2018

    ГОСТ 5.1261-72

    ГОСТ 34238-2017

    ГОСТ 4668-75

    ГОСТ 5066-91

    ГОСТ 4338-91

    ГОСТ 5396-77

    ГОСТ 5445-2020

    ГОСТ 4039-88

    ГОСТ 5953-81

    ГОСТ 5445-79

    ГОСТ 33911-2016

    ГОСТ 5954.2-2020

    ГОСТ 34091-2017

    ГОСТ 34092-2017

    ГОСТ 5954.2-91

    ГОСТ 34210-2017

    ГОСТ 5953-93

    ГОСТ 5954.1-2020

    ГОСТ 6321-92

    ГОСТ 6382-91

    ГОСТ 5954.1-91

    ГОСТ 6667-75

    ГОСТ 5953-2020

    ГОСТ 6263-2020

    ГОСТ 7423-55

    ГОСТ 511-82

    ГОСТ 6382-2001

    ГОСТ 33902-2016

    ГОСТ 7847-2020

    ГОСТ 7846-73

    ГОСТ 7978-74

    ГОСТ 8606-2015

    ГОСТ 6263-80

    ГОСТ 8606-72

    ГОСТ 33898-2016

    ГОСТ 8448-2019

    ГОСТ 8489-85

    ГОСТ 33626-2015

    ГОСТ 8935-2020

    ГОСТ 8929-2020

    ГОСТ 511-2015

    ГОСТ 9326-90

    ГОСТ 34236-2017

    ГОСТ 9434-75

    ГОСТ 8935-77

    ГОСТ 8929-75

    ГОСТ 8448-78

    ГОСТ 8.649-2015

    ГОСТ 7847-73

    ГОСТ 9144-79

    ГОСТ 9880-2019

    ГОСТ 6073-75

    ГОСТ 9950-2020

    ГОСТ 9963-84

    ГОСТ 9951-73

    ГОСТ 9880-76

    ГОСТ 9950-83

    ГОСТ 9.023-74

    ГОСТ 8226-82

    ГОСТ 9521-2017

    ГОСТ 8606-93

    ГОСТ EN 116-2013

    ГОСТ 8226-2015

    ГОСТ ИСО 1013-95

    ГОСТ 5439-76

    ГОСТ EN 13016-1-2013

    ГОСТ 9949-76

    ГОСТ EN 15376-2014

    ГОСТ ISO 13758-2013

    ГОСТ 33563-2015

    ГОСТ EN 15484-2014

    ГОСТ EN 15195-2014

    ГОСТ EN 12177-2013

    ГОСТ ISO 13736-2009

    ГОСТ ISO 3013-2016

    ГОСТ ISO 13757-2013

    ГОСТ ISO 4257-2013

    ГОСТ ISO 20884-2012

    ГОСТ ISO 20884-2016

    ГОСТ ISO 20846-2016

    ГОСТ 4790-2017

    ГОСТ ISO 20846-2012

    ГОСТ 4790-93

    ГОСТ ISO 3734-2016

    ГОСТ ISO 6297-2015

    ГОСТ ISO 8216-3-2013

    ГОСТ ISO 4256-2013

    ГОСТ ISO 12156-1-2012

    ГОСТ ISO 6245-2016

    ГОСТ EN 14078-2016

    ГОСТ Р 50837.2-95

    ГОСТ EN 13132-2012

    ГОСТ ISO 8819-2013

    ГОСТ ISO 6251-2013

    ГОСТ ISO 5165-2014

    ГОСТ ISO 7536-2015

    ГОСТ ISO 5275-2017

    ГОСТ EN 1601-2017

    ГОСТ Р 50921-96

    ГОСТ Р 50902-96

    ГОСТ Р 50902-2011

    ГОСТ Р 50837.7-95

    ГОСТ Р 50837.4-95

    ГОСТ 9326-2002

    ГОСТ Р 50837.1-95

    ГОСТ Р 51062-97

    ГОСТ Р 51062-2011

    ГОСТ Р 50837.8-95

    ГОСТ Р 51313-99

    ГОСТ Р 50994-96

    ГОСТ Р 50837.5-95

    ГОСТ Р 51105-97

    ГОСТ Р 51661.1-2000

    ГОСТ Р 51661.2-2000

    ГОСТ Р 51587-2000

    ГОСТ EN 237-2013

    ГОСТ Р 51661.3-2000

    ГОСТ Р 51213-98

    ГОСТ Р 51586-2000

    ГОСТ Р 50837.6-95

    ГОСТ Р 51661.4-2000

    ГОСТ ISO 8973-2013

    ГОСТ Р 50837.3-95

    ГОСТ Р 50921-2005

    ГОСТ 33108-2014

    ГОСТ EN 1601-2012

    ГОСТ Р 51588-2000

    ГОСТ Р 51925-2002

    ГОСТ Р 51925-2011

    ГОСТ 33106-2014

    ГОСТ Р 52050-2003

    ГОСТ Р 52067-2003

    ГОСТ ISO 3993-2013

    ГОСТ Р 51104-97

    ГОСТ Р 51971-2002

    ГОСТ Р 51105-2020

    ГОСТ Р 52201-2004

    ГОСТ Р 52332-2022

    ГОСТ Р 51930-2002

    ГОСТ Р 52332-2005

    ГОСТ Р 51972-2002

    ГОСТ Р 52087-2003

    ГОСТ Р 52068-2003

    ГОСТ ISO 9162-2013

    ГОСТ Р 52256-2004

    ГОСТ Р 52709-2019

    ГОСТ Р 52755-2007

    ГОСТ Р 51942-2002

    ГОСТ Р 51941-2002

    ГОСТ Р 51866-2002

    ГОСТ Р 52911-2020

    ГОСТ Р 51661.5-2000

    ГОСТ Р 52050-2020

    ГОСТ Р 52917-2008

    ГОСТ Р 52257-2004

    ГОСТ Р 53355-2018

    ГОСТ Р 53356-2009

    ГОСТ Р 53200-2008

    ГОСТ Р 53706-2009

    ГОСТ Р 52911-2008

    ГОСТ Р 52340-2005

    ГОСТ Р 52087-2018

    ГОСТ Р 52709-2007

    ГОСТ Р 53357-2013

    ГОСТ Р 53357-2009

    ГОСТ Р 51942-2019

    ГОСТ Р 53199-2008

    ГОСТ Р 52660-2006

    ГОСТ Р 52714-2018

    ГОСТ Р 54184-2010

    ГОСТ Р 53355-2009

    ГОСТ Р 53718-2009

    ГОСТ Р 54188-2010

    ГОСТ Р 54185-2010

    ГОСТ Р 53715-2009

    ГОСТ Р 54189-2010

    ГОСТ Р 54192-2010

    ГОСТ Р 54190-2010

    ГОСТ Р 52240-2004

    ГОСТ Р 53717-2009

    ГОСТ Р 54211-2010

    ГОСТ Р 52954-2008

    ГОСТ Р 54186-2010

    ГОСТ Р 54212-2010

    ГОСТ Р 54214-2015

    ГОСТ Р 54191-2010

    ГОСТ Р 54219-2010

    ГОСТ Р 52050-2006

    ГОСТ Р 54214-2010

    ГОСТ Р 54223-2010

    ГОСТ Р 54187-2010

    ГОСТ Р 54224-2010

    ГОСТ Р 54215-2010

    ГОСТ Р 54230-2010

    ГОСТ Р 53605-2009

    ГОСТ Р 53714-2009

    ГОСТ Р 54225-2010

    ГОСТ Р 54218-2010

    ГОСТ Р 54217-2010

    ГОСТ Р 54232-2010

    ГОСТ Р 54237-2022

    ГОСТ Р 54233-2010

    ГОСТ Р 54226-2010

    ГОСТ Р 54235-2010

    ГОСТ Р 54216-2010

    ГОСТ Р 54238-2010

    ГОСТ Р 53716-2009

    ГОСТ Р 54231-2010

    ГОСТ Р 54213-2015

    ГОСТ ISO 13909-8-2013

    ГОСТ 33103.1-2014

    ГОСТ Р 54229-2010

    ГОСТ Р 54239-2018

    ГОСТ Р 54213-2010

    ГОСТ Р 54239-2010

    ГОСТ Р 54251-2010

    ГОСТ Р 54244-2010

    ГОСТ Р 54248-2010

    ГОСТ Р 54234-2010

    ГОСТ Р 54283-2010

    ГОСТ Р 54228-2010

    ГОСТ Р 54245-2010

    ГОСТ Р 54262-2010

    ГОСТ Р 54280-2010

    ГОСТ Р 54241-2010

    ГОСТ Р 54269-2010

    ГОСТ Р 52368-2005

    ГОСТ Р 54332-2011

    ГОСТ Р 54221-2010

    ГОСТ Р 54290-2010

    ГОСТ Р 55110-2012

    ГОСТ Р 54274-2010

    ГОСТ Р 55111-2012

    ГОСТ Р 54236-2010

    ГОСТ Р 54240-2010

    ГОСТ Р 54242-2020

    ГОСТ Р 54289-2010

    ГОСТ Р 52714-2007

    ГОСТ Р 54250-2010

    ГОСТ Р 55121-2012

    ГОСТ 33103.1-2017

    ГОСТ Р 55118-2012

    ГОСТ Р 55112-2012

    ГОСТ Р 54237-2010

    ГОСТ Р 54285-2010

    ГОСТ Р 55123-2012

    ГОСТ Р 55125-2012

    ГОСТ Р 54282-2010

    ГОСТ Р 55120-2012

    ГОСТ Р 55128-2012

    ГОСТ Р 55115-2012

    ГОСТ Р 55117-2012

    ГОСТ Р 55122-2012

    ГОСТ Р 54261-2010

    ГОСТ Р 55124-2012

    ГОСТ Р 55133-2012

    ГОСТ Р 55113-2012

    ГОСТ Р 54299-2010

    ГОСТ Р 54982-2012

    ГОСТ Р 55475-2013

    ГОСТ Р 54287-2010

    ГОСТ Р 55552-2013

    ГОСТ Р 55551-2013

    ГОСТ Р 55549-2013

    ГОСТ Р 55116-2012

    ГОСТ Р 55131-2012

    ГОСТ Р 55132-2012

    ГОСТ Р 55566-2013

    ГОСТ Р 55660-2013

    ГОСТ Р 55869-2013

    ГОСТ Р 55546-2013

    ГОСТ Р 55661-2013

    ГОСТ Р 55548-2013

    ГОСТ Р 54227-2010

    ГОСТ Р 55874-2013

    ГОСТ Р 55957-2014

    ГОСТ Р 55550-2013

    ГОСТ Р 55956-2014

    ГОСТ Р 55547-2013

    ГОСТ Р 55960-2014

    ГОСТ Р 56147-2014

    ГОСТ Р 55961-2014

    ГОСТ Р 55958-2014

    ГОСТ Р 55959-2014

    ГОСТ Р 55873-2013

    ГОСТ Р 55955-2014

    ГОСТ Р 56868-2016

    ГОСТ Р 56870-2016

    ГОСТ Р 56146-2014

    ГОСТ Р 56871-2016

    ГОСТ Р 55523-2013

    ГОСТ Р 55493-2013

    ГОСТ Р 55879-2013

    ГОСТ Р 56866-2016

    ГОСТ Р 56883-2016

    ГОСТ Р 55126-2012

    ГОСТ Р 56867-2016

    ГОСТ Р 55114-2012

    ГОСТ Р 56882-2016

    ГОСТ Р 56888-2016

    ГОСТ Р 56886-2016

    ГОСТ Р 56889-2016

    ГОСТ Р 56887-2016

    ГОСТ Р 55130-2012

    ГОСТ Р 56890-2016

    ГОСТ Р 56881-2016

    ГОСТ Р 56884-2016

    ГОСТ Р 57040-2016

    ГОСТ Р 57039-2016

    ГОСТ Р 58221-2018

    ГОСТ Р 57658-2017

    ГОСТ Р 57016-2016

    ГОСТ Р 58440-2019

    ГОСТ Р 56885-2016

    ГОСТ Р 59045-2020

    ГОСТ Р 58255-2018

    ГОСТ Р 55553-2013

    ГОСТ Р 58914-2020

    ГОСТ Р 59244-2020

    ГОСТ Р 59245-2020

    ГОСТ Р 57431-2017

    ГОСТ Р 59249-2020

    ГОСТ Р 59250-2020

    ГОСТ Р 59013-2020

    ГОСТ Р 59012-2020

    ГОСТ Р 59253-2020

    ГОСТ Р 59251-2020

    ГОСТ Р 59254-2020

    ГОСТ Р 59256-2020

    ГОСТ Р 59257-2020

    ГОСТ Р 59176-2020

    ГОСТ Р 59261-2020

    ГОСТ Р 59255-2020

    ГОСТ Р 56869-2016

    ГОСТ Р 59592-2021

    ГОСТ Р 59248-2020

    ГОСТ Р 70204-2022

    ГОСТ Р 70205-2022

    ГОСТ Р 59258-2020

    ГОСТ Р 70206-2022

    ГОСТ Р 59161-2020

    ГОСТ Р 70207-2022

    ГОСТ Р 70208-2022

    ГОСТ Р 70211-2022

    ГОСТ Р 70263-2022

    ГОСТ Р 59014-2020

    ГОСТ Р 70209-2022

    ГОСТ Р 70264-2022

    ГОСТ Р 59262-2020

    ГОСТ Р 59015-2020

    ГОСТ Р 58227-2018

    ГОСТ Р 59177-2020

    ГОСТ Р 59264-2020

    ГОСТ Р 55129-2012

    ГОСТ Р ЕН ИСО 20847-2010

    ГОСТ Р ЕН ИСО 7536-2007

    ГОСТ Р 56720-2015

    ГОСТ Р 56718-2015

    ГОСТ Р 55868-2013

    ГОСТ Р 59593-2021

    ГОСТ Р ИСО 13909-1-2010

    ГОСТ Р 59252-2020

    ГОСТ Р 55997-2014

    ГОСТ Р ИСО 12156-1-2006

    ГОСТ Р ИСО 15585-2009

    ГОСТ Р ЕН 15195-2011

    ГОСТ Р ИСО 13909-6-2013

    ГОСТ Р ЕН 12177-2008

    ГОСТ Р ЕН ИСО 12205-2007

    ГОСТ Р ЕН 12916-2008

    ГОСТ Р ИСО 5275-2009

    ГОСТ Р ИСО 13759-2010

    ГОСТ Р ИСО 3734-2009

    ГОСТ Р ЕН ИСО 20846-2006

    ГОСТ Р 54220-2010

    ГОСТ Р ЕН 237-2008

    ГОСТ Р ИСО 13909-5-2013

    ГОСТ Р 55119-2012

    ГОСТ Р ЕН ИСО 3405-2007

    ГОСТ Р 54484-2011

    ГОСТ Р 55127-2012

    ГОСТ Р ИСО 18283-2010

    ГОСТ Р 54275-2010

    ГОСТ Р 56873-2016