ГОСТ Р 54250-2010

ОбозначениеГОСТ Р 54250-2010
НаименованиеКокс. Определение реакционной способности кокса (CRI) и прочности кокса после реакции (CRS)
СтатусДействует
Дата введения07.01.2012
Дата отмены-
Заменен на-
Код ОКС75.160.10
Текст ГОСТа


ГОСТ Р 54250-2010
(ИСО 18894:2006)


НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Кокс

ОПРЕДЕЛЕНИЕ РЕАКЦИОННОЙ СПОСОБНОСТИ КОКСА (CRI) И ПРОЧНОСТИ КОКСА ПОСЛЕ РЕАКЦИИ (CSR)

Coke. Determination of соке reactivity index (CRI) and coke strength after reaction (CSR)

ОКС 75.160.10

Дата введения 2012-07-01

Предисловие

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Восточный научно-исследовательский углехимический институт" (ФГУП "ВУХИН") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 395 "Кокс и продукты коксохимии"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 23 декабря 2010 г. N 1051-ст

4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 18894:2006* "Кокс. Определение индекса реакционной способности (CRI) и прочности кокса после реакции (CSR)" [ISO 18894:2006 "Соке - Determination of coie reactivity index (CRI) and coke strength after reaction (CSR)", MOD]. При этом дополнительные слова (фразы, приложение Е), включенные в текст стандарта для учета потребностей национальной экономики, выделены курсивом. При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации и межгосударственные стандарты

________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - .

5 ВВЕДЕН ВПЕРВЫЕ

6 ИЗДАНИЕ (октябрь 2019 г.) с Поправкой (ИУС 3-2013)

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ "О стандартизации в Российской Федерации". Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе "Национальные стандарты", а официальный текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт устанавливает требования к оборудованию и методы определения реакционной способности кокса с размером кусков 20 мм и более в газообразной двуокиси углерода при повышенных температурах и прочность кокса после реакции с двуокисью углерода при обработке его во вращающемся цилиндрическом барабане (далее - барабане).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 8929 Кокс каменноугольный. Метод определения прочности

ГОСТ 23083 Кокс каменноугольный, пековый и термоантрацит. Методы отбора и подготовки проб для испытаний

________________

В настоящее время стандарты ИCO на отбор проб не введены на территории Российской Федерации, поэтому вместо них использована ссылка на настоящий межгосударственный стандарт, который распространяется на тот же объект и аспект стандартизации.

ГОСТ 27588 (ИСО 579-81) Кокс каменноугольный. Метод определения общей влаги (ИСО 579-81, MOD)

ГОСТ Р 8.585 Государственная система обеспечения единства измерений. Термопары. Номинальные статические характеристики преобразования

ГОСТ Р 51568 (ИСО 3310-1-90) Сита лабораторные из металлической проволочной сетки. Технические условия (ISO 3310-1:2000, Test seves - Technical requirements and testing - Part 1: Test sieves of metal wire cloth, MOD)

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 показатель истирания (abrasion value): Потеря коксом устойчивости к истиранию после реакции с двуокисью углерода при испытании реакционной способности, выраженная как процентное содержание кокса, прошедшего через сито с размером отверстий 0,5 мм после испытания на прочность во вращающемся барабане при соблюдении условий, установленных настоящим стандартом.

Примечание - См. приложение Г.

3.2 показатель реакционной способности кокса, CRI (coke reactivity index CRI): Выраженная в процентах потеря массы кокса после реакции с двуокисью углерода с образованием окиси углерода в условиях, установленных настоящим стандартом

3.3 порция (test portion): Представительная часть пробы, непосредственно подвергаемая испытанию.

3.4 прочность кокса после реакции с двуокисью углерода, CSR (coke strength after reaction CSR): Прочность кокса после реакции с двуокисью углерода при испытании реакционной способности CRI, измеренная как процентное содержание остатка на сите с размером отверстий 10,0 или 9,5 мм после испытания на прочность во вращающемся барабане при соблюдении условий, установленных настоящим стандартом.

4 Сущность метода

Подготовленную для испытаний порцию кокса (часть сухой пробы ), с размером частиц от 19,0 до 22,4 мм нагревают в камере реактора до 1100°С в атмосфере азота. Для проведения испытания атмосферу азота заменяют на двуокись углерода ровно на 2 ч. После испытания реакционную камеру остужают приблизительно до 50°С в атмосфере азота. Показатель реакционной способности (CRI) определяют как разность масс порции кокса до и после реакции с двуокисью углерода, выраженную в процентах от массы порции до реакции.

Оставшийся (непрореагировавший) кокс обрабатывают в барабане специальной конструкции, делающим 600 оборотов за 30 мин. Показатель прочности кокса после реакции (CSR) определяют путем рассева и взвешивания кокса, оставшегося на сите с размером отверстий 10,0 или 9,5 мм.

Пример установки для испытаний приведен на рисунке 1.

Примечание - Размер частиц кокса после реакции с двуокисью углерода составляет около 20 мм и менее 5 мм, но не около 10 мм. При вращении кокса в барабане обычно происходит истирание частиц размером около 20 мм по краям, но не дробление на куски. Экспериментально установлено, что для рассева прореагировавшего кокса могут быть использованы сита с размером отверстий 10,0 или 9,5 мм, так как расхождения значений прочности при использовании сит с обоими размерами отверстий находится в пределах точности настоящего стандарта.

1 - плоттер для записи температуры; 2 - выход газа в вытяжную трубу; 3 - вход газа; 4 - термопара; 5 - реакционная камера; 6 - слой порции кокса; 7 - слой керамических шариков; 8 - печь с электрическим обогревом; 9 - расходомеры; 10 - регулирующие клапаны; 11 - вращающийся барабан

Рисунок 1 - Пример устройства испытательного аппарата

5 Реактивы

5.1 Азот повышенной чистоты с объемной долей азота не менее 99,9%, сухой, с суммой массовых долей кислорода и двуокиси углерода (+ ) не более 100 мг/кг. Допускается вместо азота применение аргона той же степени чистоты.

5.2 Двуокись углерода высшего сорта с объемной долей двуокиси углерода не менее 99,5% и массовой долей кислорода не более 100 мг/кг.

(Поправка*)

________________

* См. ярлык "Примечания", здесь и далее по тексту.

6 Аппаратура

6.1 Печь с электрическим обогревом (см. приложения А и Б), в которой можно разместить реакционную камеру с испытуемой порцией кокса, обеспечивающая равномерную температуру (1100±3)°С в центре испытуемой порции. Зона равномерной температуры должна быть не менее чем в три раза длиннее, чем высота образца.

Желательно, чтобы нагрев печи регулировался независимо в трех зонах для достижения равномерности обогрева в реакторе.

6.2 Реакционная камера (см. приложения А и Б), изготовленная из термостойкой стали или никелевого сплава с размерами, позволяющими разместить ее внутри выбранной электрической печи.

Испытуемая порция кокса помещается на перфорированную пластину внутри реакционной камеры. Под этой перфорированной пластиной находится вторая перфорированная пластина, на которой в качестве подогревателя газа помещен слой керамических шариков, который рассеивает и подогревает азот и двуокись углерода, которые вводятся в камеру и продуваются сквозь слой кокса в ходе испытания. Обе перфорированные пластины закреплены между двумя комплектами кронштейнов. Газ поступает через впускные патрубки на дне и выходит через выпускные патрубки, расположенные наверху реакционной камеры.

Реакционная камера должна быть размещена в электропечи таким образом, чтобы образец кокса находился строго в центре зоны равномерной температуры нагрева печи.

6.3 Расходомеры постоянного перепада давления, расходомеры с переменной площадью проходного сечения или, предпочтительно, массовые расходомеры, используемые для постоянного контроля за потоком азота и двуокиси углерода во время испытания. Точность расхода газа как азота, так и двуокиси углерода должна составлять ±5%.

Давления газов, проходящих через расходомеры, должны поддерживаться в соответствии с инструкцией изготовителя на калибровку.

Примечание - Колебания расхода газа могут вызвать изменчивость результатов испытаний.

6.4 Термопара, платинородий - платина тип S (платина - платинородий с 10% родия по массе), в соответствии с требованиями ГОСТ Р 8.585 используемая для измерения и регулирования температуры порции кокса, которая должна задаваться согласно условиям испытания. Термопара помещается в защитный чехол из термостойкой стали, никелевого сплава или керамический. Защитный чехол должен быть газонепроницаемым и предотвращать загрязнение термопары газообразными продуктами, ведущее к неточности измерений. Защитный чехол крепится к центру крышки так, чтобы конец термопары находился строго в центре слоя кокса по диаметру.

6.5 Сита с квадратными отверстиями по ГОСТ Р 51568 с размером отверстий 9,5 или 10,0 мм, 19,0 и 22,4 мм. Если выполняется испытание на истирание (см. приложение Г), то требуются также сита с размером отверстий 0,5 мм.

6.6 Весы с точностью до 0,1 г.

6.7 Вращающийся барабан (см. приложение В) со счетчиком оборотов и реле времени.

7 Подготовка пробы для испытаний

Отбор проб кокса по ГОСТ 23083. При необходимости пробу сокращают без измельчения до требуемой массы.

Измельчают приблизительно 50 кг пробы кокса с типичным ситовым составом на щековой или валковой дробилке. Размер щели дробилки подбирают таким образом, чтобы выход фракции от 19,0 до 22,4 мм составил от 10% до 30%. Для подбора размера щели используют часть кокса, оставшуюся после сокращения общей пробы.

Масса пробы, необходимой для испытаний, зависит от следующих факторов:

а) минимальная масса пробы, необходимая для испытания, определяется минимальной массой фракции с размером кусков от 19,0 мм до 22,4 мм, которая должна составлять 1000 г;

б) масса пробы крупного кокса должна быть достаточной, чтобы обеспечить его представительность. Поэтому часть пробы, массой менее 50 кг, может использоваться только в случае гарантии ее представительности, что отражается в отчете об испытаниях.

Рекомендуется использовать пробу кокса крупностью более 25 мм после испытания прочности в барабане по ГОСТ 8929. Эта проба является представительной, поскольку отобрана от валовой пробы пропорционально ситовому составу кокса и достаточно велика для того, чтобы получить нужное для испытаний количество фракции от 19,0 до 22,4 мм.

Пробу кокса после дробления просеивают на ситах с размером отверстий 22,4 и 19,0 мм. Кокс, оставшийся на сите 22,4 мм, возвращают на дробление, повторяя эту операцию до тех пор, пока остаток на сите составит не более 3% массы пробы, подвергнутой измельчению. Отбрасывают фракции менее 19,0 мм и более 22,4 мм.

Полученную фракцию кокса от 19,0 до 22,4 мм высушивают до влажности менее 1%, в соответствии с ГОСТ 27588. Снова просеивают измельченную и просеянную пробу на ситах 22,4 и 19 мм и удаляют мелочь. Измельченную и просеянную пробу делят на образцы массы около 1000 г.

В качестве варианта проба (фракция от 19,0 до 22,4 мм) может быть разделена на образцы массой около 1000 г перед сушкой и просеиванием.

Полученные образцы делят на порции массой около 200 г каждая. Для каждого испытания готовят порцию массой (200 г ± 2) г, которую взвешивают с точностью до 0,1 г. Окончательная масса регулируется путем замены более легких и более тяжелых кусков кокса в порции.

Примечание - Регистрация количества кусков в каждой порции может помочь при сопоставлении результатов серии испытаний.

8 Проведение испытания

8.1 Количество испытаний

Проводят не менее двух испытаний.

8.2 Определение CRI (индекса реакционной способности кокса)

ПРЕДУПРЕЖДЕНИЕ! Отходящий из реактора газ при подаче двуокиси углерода насыщен окисью углерода СО и поэтому опасен. Он должен сжигаться или отводиться в вентиляционную трубу. Необходимо предусмотреть меры предосторожности, касающиеся горячей поверхности реакционной камеры, нагревающейся до 1100.

Предварительно нагревают печь до температуры, которая позволит помещенной в нее реакционной камере с пробой достичь (1100±3)°С в течение от 30 до 40 мин. Перед помещением реакционной камеры в электрическую печь в нее загружают взвешенную пробу кокса таким образом, чтобы термопара была вертикально расположена, и перемещают термопару (внутри чехла) по высоте, закрепляя таким образом, чтобы ее спай находился по высоте в середине слоя загруженного кокса (на половине высоты испытуемой пробы над перфорированной пластиной). Перед загрузкой в печь реакционную камеру продувают током азота со скоростью (10±0,5) дм/мин в течение 5 мин.

Не прекращая тока азота, помещают реакционную камеру в печь так, чтобы центр коксовой загрузки располагался в центре зоны равномерного нагрева, и доводят температуру образца до (1100±3) °С в течение от 30 до 40 мин.

При подогреве реакционной камеры с пробой до 1100°С регулирование температуры с точностью ±3°С в минуту не требуется. Регулирование температуры требуется только во время испытания.

После достижения температуры (1100±3)°С выдерживают реакционную камеру при этой температуре 10 мин в токе азота и затем переключают газовую систему на подачу двуокиси углерода с расходом (5±0,25) дм/мин. После переключения газовой системы на двуокись углерода температура падает (эндотермическая реакция). Тепловая мощность печи должна быть такой, чтобы первоначальная температура (1100±3)°С восстанавливалась в течение 10 мин.

Примечание - Перепад температуры может быть минимизирован путем повышения температуры в печи до переключения на двуокись углерода. Для неизвестных образцов кокса величина этого повышения может быть предварительно установлена экспериментально.

После продувки кокса двуокисью углерода в течение 120 мин газовый поток на 5 мин переключают на подачу азота с расходом (10±0,5) дм/мин для очистки реакционной камеры от остатков двуокиси углерода. Извлекают реакционную камеру из печи и охлаждают на воздухе до температуры ниже 50°С, не прекращая подачу азота в камеру. После охлаждения извлекают испытанную порцию из реакционной камеры, взвешивают прореагировавший кокс с точностью до 0,1 г и рассчитывают показатель реакционной способности (CRI) в соответствии с 9.1.

(Поправка)

8.3 Определение прочности кокса после реакции

Переносят весь прореагировавший кокс в барабан, закрывают и проверяют герметичность крышки барабана. Включают барабан на 30 мин при скорости вращения (20±0,1) мин. Барабан должен остановиться после 600 оборотов.

Извлекают весь кокс из барабана. Просеивают на сите 10,0 или 9,5 мм и взвешивают оставшийся на сите кокс с точностью до 0,1 г. Рассчитывают показатель прочности кокса после реакции (CSR) в соответствии с 9.2.

9 Обработка результатов

9.1 Показатель реакционной способности кокса

Показатель реакционной способности кокса , % по массе, определяют по формуле

, (1)

где - масса пробы до реакции, г;

- масса пробы после реакции, г.

9.2 Прочность кокса после реакции

Прочность кокса после реакции , % по массе, определяют по формуле

, (2)

где - масса фракции более 10,0 мм или 9,5 мм после вращения в барабане, г;

- масса пробы после реакции, г.

10 Точность метода

10.1 Обеспечение правильности

Для получения стабильно воспроизводимых результатов испытаний систематически проводят проверку оборудования и средств измерений.

а) Подготовка проб для испытаний:

1) сита;

2) весы.

б) Испытание на реакционную способность:

1) реакционная камера;

2) расход газа;

3) термопара;

4) таймер.

в) Испытания прочности кокса:

1) состояние вращающегося барабана;

2) скорость вращения;

3) счетчик оборотов;

4) сита;

5) весы.

Для проверки рекомендуется использовать калиброванное оборудование и периодически готовить и использовать внутренний эталонный материал для периодической проверки повторяемости и воспроизводимости результатов испытаний (см. приложения Д и Е).

10.2 Предел повторяемости

10.2.1 Общее положение

Результаты дубликатных измерений, выполненных в условиях повторяемости, то есть в одной и той же лаборатории, одним оператором, на одной и той же аппаратуре в течение короткого промежутка времени на представительных порциях, взятых из одной и той же анализируемой пробы, не должны отличаться на значения более, чем указанные в таблицах 1 и 2

10.2.2 Показатель реакционной способности кокса

Для парного результата значение предела определяет необходимость проведения дополнительных испытаний, как показано в таблице 1 и в помещенных ниже комментариях.

Таблица 1 - Критерии многократных определений реакционной способности ()

Предел

До 10 включ.

-

-

-

Свыше

10

до

20

включ.

2,0

2,5

2,7

Свыше

20

до

30

включ.

2,5

3,2

3,5

Свыше

30

до

40

включ.

3,0

4,0

4,5

Свыше

40

до

60

включ.

3,5

5,0

5,5

Свыше

60

-

-

-

а) Два результата испытаний:

- если предел менее или равен , усредняют два результата;

- если предел более и предел менее или равен , проводят третье испытан;

- если предел более , проводят еще два испытания;

б) Три результата испытаний:

- если менее или равно , усредняют три результата;

- если более , выполняют четвертое испытание.

в) Четыре результата испытаний:

- если менее или равно , усреднить четыре результата.

- если более , отбраковывают и и усредняют оставшиеся два результа.

Среднее значение результата определения округляют до первого десятичного знака.

10.2.3 Прочность кокса после реакции

Для парных результатов значение предела определяет необходимость проведения дополнительных испытаний, как показано в таблице 2 и комментариями к перечислениям а)-с).

Таблица 2 - Критерии многократных определений прочности кокса после реакции ()

Предел

Свыше

80

-

-

-

Свыше

70

до

80

включ.

2,0

2,5

2,7

Свыше

60

до

70

включ.

2,5

3,2

3,5

Свыше

50

до

60

включ.

3,0

4,0

4,5

Свыше

30

до

50

включ.

3,5

5,0

5,5

30 и менее

-

-

-

(Поправка)

а) Два результата испытаний:

- если предел менее или равен , усредняют два результата;

- если предел более и предел менее или равен , проводят третье испытание;

- если предел более , проводят еще два испытания.

б) Три результата испытаний:

- если менее или равен , усреднить три результата;

- если более , выполнить четвертое испытание.

в) Четыре результата испытаний:

- если менее или равен , усреднить четыре результата;

- если более , отбраковать и и усреднить оставшиеся два результата.

Среднее значение результата определения округляют до первого десятичного знака.

11 Оформление результатов испытаний

Отчет о результатах испытаний должен включать следующую информацию:

а) ссылка на настоящий стандарт;

б) идентификация испытуемой пробы;

в) размер отверстий сита, используемого для определения (10,0 или 9,5 мм);

г) результаты определений;

д) масса пробы, если она меньше, чем 50 кг;

е) дата проведения испытания.

Приложение А
(обязательное)


Аппарат для измерения реакционной способности типа А с одинарной стенкой

А.1 Печь с электрическим обогревом

Печь с электрическим обогревом должна вмещать внутри себя блок с реакционной камерой и иметь проектную мощность, способную поддерживать температуру образца кокса в центре загрузки на уровне (1100±3)°С в течение всего испытания. Зона равномерной температуры должна как минимум в три раза превышать высоту слоя образца.

А.2 Реакционная камера

Реакционная камера должна быть выполнена из термостойкой стали или никелевого сплава и иметь размеры:

- минимальная длина - 230 мм;

- внешний диаметр от 84 до 90 мм;

- внутренний диаметр - (78±1) мм.

Пример реакционной камеры типа А представлен на рисунке А.1.

Испытуемая порция кокса размещается на перфорированной пластине внутри реакционной камеры. Под этой пластиной находится вторая перфорированная пластина, на которой в качестве подогревателя газа размещен слой керамических шариков (диаметром приблизительно 10 мм), которые одновременно рассеивают и подогревают подаваемые в камеру азот и двуокись углерода, продуваемые сквозь слой кокса в ходе испытания. Высота подогревателя около 80 мм. Для предотвращения утечки газа между крышкой и корпусом реакционной камеры устанавливают прокладку. Газ поступает через впускные патрубки на дне и выходит через выпускной патрубок, расположенный наверху реакционной камеры.

Реакционную камеру устанавливают таким образом, чтобы находящийся в ней образец кокса находился в центре зоны регулируемой температуры печи.

Термопара находится в чехле из термостойкой стали или сплава никеля или в керамической защитной трубке. Чехол служит в качестве центрирующей направляющей и обычно крепится к центру крышки для облегчения правильной установки спая термопары. Конец термопары устанавливается в центре реакционной камеры на высоте, соответствующей половине высоты слоя образца кокса над перфорированной пластиной. Изменение плотности испытуемого образца кокса может привести к изменению высоты слоя кокса в реакционной трубке, поэтому необходимо регулировать положение наконечника термопары.

1 - печь;

2 - вход газов и ; 3 - вывод термопары; 4 - выход газа; 5 - нагревательный элемент; 6 - термопара; 7 - образец кокса (высота 100 мм); 8 - распределитель и подогреватель газа; 9 - корпус реакционной камеры; 10 - шарики AlO.

Рисунок А.1 - Пример реакционной камеры типа А с одинарной стенкой и схема испытательной установки

Приложение Б
(обязательное)


Аппарат для измерения реакционной способности типа В с двойной стенкой

Б.1 Печь с электрическим обогревом

Печь с электрическим обогревом должна вмещать внутри себя реакционную камеру и иметь проектную мощность, способную поддерживать температуру образца кокса, замеренную в центре загрузки, на уровне (1100±3)°С в течение испытания. Зона равномерной температуры должна как минимум в три раза превышать высоту слоя образца.

Б.2 Реакционная камера

Реакционная камера должна быть изготовлена из термостойкой стали или никелевого сплава со следующими размерами:

- длина зависит от длины печи;

- внутренний диаметр внутренней трубки (78±1) мм.

Пример реакционной камеры типа В представлен на рисунке Б.1.

Испытуемый кокс помещают на перфорированную пластину внутри реакционной камеры. Под этой пластиной находится вторая перфорированная пластина, на которой в качестве подогревателя газа размещен слой керамических шариков , которые рассеивают и подогревают подаваемые в реакционную камеру азот и двуокись углерода, продуваемые сквозь слой кокса в ходе испытания. Высота подогревателя около 80 мм. Для предотвращения утечек газа вставляют уплотнение между крышкой и корпусом реакционной трубки.

Газ поступает через впускной патрубок в боковой верхней части реакционной камеры, проходит вниз между двумя стенками цилиндра, направляется в центр реакционной камеры, затем вверх через образец кокса, и выходит сверху. Реакционную камеру устанавливают таким образом, чтобы образец кокса в трубке располагался в центре зоны регулируемой температурной печи. Конец термопары устанавливают в центре реакционной трубки на высоте, соответствующей половине высоты слоя образца кокса над перфорированной пластиной.

Размеры перфорированной пластины: диаметр отверстия - 2,5 мм; расстояние между отверстиями - 4 мм; количество отверстий - 241; общая площадь отверстий - 11,8 см; толщина пластины - 4 мм

1 - печь (10 кВт); 2 - реакционная камера; 3 - нагревательный элемент; 4 - термопара; 5 - проба кокса; 6 - слой керамических шариков (высота 80 мм); 7 - перфорированная пластина; 8 - входной патрубок газа; 9 - выходной патрубок газа

Рисунок Б.1 - Пример реакционной камеры типа В с двойной стенкой и схема испытательной установки

Приложение В
(обязательное)

Барабан для испытания кокса на прочность после реакции

В.1 Барабан снабжен приводом для вращения, счетчиком оборотов и реле времени. Привод должен быть рассчитан точно на 600 оборотов за 30 мин при (20±0,1) мин. Остановка барабана происходит строго после 600 оборотов.

В.2 Размеры барабана:

- длина внутренней цилиндрической камеры - (700 мм ±1) мм;

- внутренний диаметр - (130 мм ±1) мм;

- толщина стенок цилиндрической камеры - 5 мм;

- минимальная толщина торцевых крышек - 6 мм.

На внутренней поверхности цилиндра и на торцевых крышках не должно быть каких-либо инородных элементов (например, головок болта).

На рисунке В.1 представлен барабан для испытания прочности кокса.

1 - барабан; 2 - предохранительная фрикционная муфта; 3 - электродвигатель; 4 - удлиненная муфта; 5 - счетчик оборотов

Рисунок В.1 - Барабан для испытания прочности кокса

Приложение Г
(справочное)


Определение показателя истираемости

Г.1 Определение

Показатель истираемости характеризует устойчивость кокса к механическому разрушению и выражается количеством фракции размером менее 0,5 мм (мелочи), полученной после обработки в барабане прореагировавшего кокса.

Г.2 Проведение испытания

Кокс, после испытания в барабане прошедший через сито с размером отверстий 10 или 9,5 мм, вторично просеивают через сито 0,5 мм и взвешивают.

Показатель истираемости рассчитывают по формуле Г.1.

Г.3 Обработка результатов

Показатель истираемости , % по массе, вычисляют по формуле

, (Г.1)

где - масса фракции менее 0,5 мм после обработки в барабане, г;

- масса образца после реакции, г.

Приложение Д
(справочное)


Значение предела воспроизводимости

Д.1 Проверка сходимости данных и особенно значения предела воспроизводимости - очень длительный и дорогостоящий процесс. Проверка данных проводилась в процессе трех специальных испытаний. В серии испытаний 22 участниками проводились испытания подготовленных образцов кокса крупностью от 19,0 до 22,4 мм. Поэтому данные, указанные в настоящем приложении, не содержат ошибок, связанных с рассевом. Из трех анализируемых проб приемлемые результаты были получены только для двух проб кокса с более 55 (согласованные значения 64,3 и 63,3). Однако дополнительно представленные данные для кокса с менее 55 (согласованное значение - 35,3) являются только приблизительными.

Примечание - Критерии для определения воспроизводимости на основе анализа, проводимого в одной лаборатории, не учитывались, так как количество испытуемых проб, на которых проводились измерения в ходе специального испытания, описанного выше, было недостаточным. Поэтому было решено представить в справочном приложении только значение предела воспроизводимости.

Д.2 Средние значения результатов двукратных измерений, произведенных в каждой из двух лабораторий на представительных порциях, взятых из одной и той же испытуемой пробы, полностью и по правилам подготовленной, не должны отличаться от значений, указанных в таблице Д.1.

Таблица Д.1 - Значение предела воспроизводимости

значение

предел

значение

предел

Более 33

5

Менее 55

8

Менее 33

3,5

Более 55

4,5

Только приблизительные значения.

Среди других критериев (например, температурный режим, расход газа, качество подготовки проб) рассев является определяющим. На результаты рассева сильно влияют характеристики встряхивателя для сит. Поэтому в случаях, когда необходимо сравнить результаты двух или более лабораторий в коммерческих или технологических целях, они должны использовать идентичные условия рассева, чтобы получить сравнимые результаты при испытаниях одной и той же выборки.

Приложение Е
(рекомендуемое)


Проверка повторяемости метода по пековому коксу

Е.1 Для оценки пригодности применяемой аппаратуры, правильности ее монтажа и правильности выполнения процедур испытания целесообразно применять пековый кокс. При исключении из пробы губчатой части пековый кокс достаточно однороден по структуре, что в значительной мере уменьшает погрешности, связанные с отбором и подготовкой проб. Пековый кокс имеет малую зольность, что исключает влияние количества и состава золы на результат испытания. Поскольку пековый кокс изготавливают по одной и той же технологии и из сырья, близкого по составу, независимо от производителя, он обладает примерно одинаковой реакционной способностью. Это делает пековый кокс хорошим материалом для настройки и последующей проверки методики.

Е.2 Получают или отбирают количество пекового кокса из расчета получения материала на 20-30 испытаний. На каждое испытание должно быть подготовлено не менее 1 кг пробы в соответствии с разделом 7.

Е.3 В порцию для испытаний отбирают вручную 200-210 г кусков пекового кокса, однородных по внешнему виду, без губчатых участков. Количество кусков следует зафиксировать на срок, пока полученный материал не будет израсходован.

Е.4 Выполнение испытаний и расчеты проводятся в соответствии с настоящим стандартом.

Е.5 Повторяемость.

При испытании пекового кокса с величиной показателя составляет от 30% до 40% устанавливается абсолютное значение предела повторяемости результатов (допускаемое расхождение двух параллельных измерений в условиях повторяемости при доверительной вероятности 0,95), равное для 2,8%, для - 5,4%.*

_______________

* Текст документа соответствует оригиналу. - .

Если эти показатели достигнуты, можно считать, что аппаратура пригодна для испытаний, а квалификация оператора удовлетворительна.

УДК 662.749.2.001.4:006.354

ОКС 75.160.10

Ключевые слова: каменноугольный кокс, метод определения, размер кусков, прочность кокса, реакция с двуокисью углерода, показатель истираемости

Электронный текст документа

и сверен по:

, 2019

Другие госты в подкатегории

    ГОСТ 1012-2013

    ГОСТ 10196-62

    ГОСТ 1038-75

    ГОСТ 10433-75

    ГОСТ 10585-2013

    ГОСТ 10585-99

    ГОСТ 10089-89

    ГОСТ 10220-82

    ГОСТ 11022-95

    ГОСТ 10200-83

    ГОСТ 10585-75

    ГОСТ 10373-75

    ГОСТ 10650-72

    ГОСТ 10835-78

    ГОСТ 11303-2013

    ГОСТ 11014-2001

    ГОСТ 11303-75

    ГОСТ 10227-2013

    ГОСТ 10227-86

    ГОСТ 11305-83

    ГОСТ 11130-75

    ГОСТ 10200-2017

    ГОСТ 11065-90

    ГОСТ 11304-75

    ГОСТ 11304-2013

    ГОСТ 11802-88

    ГОСТ 11804-76

    ГОСТ 11130-2013

    ГОСТ 12308-89

    ГОСТ 11239-76

    ГОСТ 11311-76

    ГОСТ 10650-2013

    ГОСТ 11306-83

    ГОСТ 11306-2013

    ГОСТ 13673-76

    ГОСТ 11305-2013

    ГОСТ 13674-78

    ГОСТ 13674-2013

    ГОСТ 147-2013

    ГОСТ 13672-76

    ГОСТ 14298-79

    ГОСТ 12308-2013

    ГОСТ 11623-89

    ГОСТ 14921-2018

    ГОСТ 13673-2013

    ГОСТ 1567-83

    ГОСТ 14921-78

    ГОСТ 14834-2014

    ГОСТ 1667-68

    ГОСТ 12433-83

    ГОСТ 1720-76

    ГОСТ 1012-72

    ГОСТ 16106-2019

    ГОСТ 17644-83

    ГОСТ 10679-76

    ГОСТ 11126-2019

    ГОСТ 12525-85

    ГОСТ 11382-76

    ГОСТ 15489.2-2018

    ГОСТ 18132-72

    ГОСТ 17749-72

    ГОСТ 17751-79

    ГОСТ 13210-72

    ГОСТ 13455-91

    ГОСТ 18597-73

    ГОСТ 19723-74

    ГОСТ 1709-75

    ГОСТ 11126-88

    ГОСТ 20448-90

    ГОСТ 19006-73

    ГОСТ 20924-75

    ГОСТ 2084-77

    ГОСТ 21290-75

    ГОСТ 17750-72

    ГОСТ 18598-73

    ГОСТ 21291-75

    ГОСТ 1928-2019

    ГОСТ 21289-75

    ГОСТ 1928-79

    ГОСТ 21103-75

    ГОСТ 1567-97

    ГОСТ 22254-92

    ГОСТ 22387.5-77

    ГОСТ 14920-79

    ГОСТ 22387.4-77

    ГОСТ 23083-78

    ГОСТ 10478-93

    ГОСТ 22054-76

    ГОСТ 23781-87

    ГОСТ 20448-2018

    ГОСТ 22055-76

    ГОСТ 21708-96

    ГОСТ 24160-80

    ГОСТ 2059-95

    ГОСТ 24764-81

    ГОСТ 24160-2014

    ГОСТ 24701-2013

    ГОСТ 25927-83

    ГОСТ 25927-95

    ГОСТ 24701-81

    ГОСТ 25950-83

    ГОСТ 2408.4-98

    ГОСТ 21443-75

    ГОСТ 27044-86

    ГОСТ 26370-84

    ГОСТ 26801-86

    ГОСТ 2408.1-95

    ГОСТ 2160-92

    ГОСТ 24676-2017

    ГОСТ 25828-83

    ГОСТ 22986-78

    ГОСТ 27154-86

    ГОСТ 27588-2020

    ГОСТ 25784-83

    ГОСТ 27589-2020

    ГОСТ 27578-2018

    ГОСТ 22667-82

    ГОСТ 27588-91

    ГОСТ 2669-81

    ГОСТ 27577-87

    ГОСТ 17323-71

    ГОСТ 27768-88

    ГОСТ 27894.0-88

    ГОСТ 27589-91

    ГОСТ 27894.2-88

    ГОСТ 25543-2013

    ГОСТ 2408.3-95

    ГОСТ 27314-91

    ГОСТ 2093-82

    ГОСТ 28245-89

    ГОСТ 27894.6-88

    ГОСТ 27894.9-88

    ГОСТ 28577.0-90

    ГОСТ 27894.1-88

    ГОСТ 28577.1-90

    ГОСТ 28577.2-90

    ГОСТ 28577.3-90

    ГОСТ 10538-87

    ГОСТ 27894.8-88

    ГОСТ 27894.11-88

    ГОСТ 22985-90

    ГОСТ 28781-90

    ГОСТ 28935-91

    ГОСТ 28946-2020

    ГОСТ 28357-89

    ГОСТ 29026-91

    ГОСТ 28946-91

    ГОСТ 22985-2017

    ГОСТ 27894.10-88

    ГОСТ 28572-90

    ГОСТ 30404-94

    ГОСТ 29064-91

    ГОСТ 305-82

    ГОСТ 27894.5-88

    ГОСТ 305-2013

    ГОСТ 29087-91

    ГОСТ 27578-87

    ГОСТ 27894.7-88

    ГОСТ 31872-2019

    ГОСТ 147-95

    ГОСТ 27894.3-88

    ГОСТ 28656-2019

    ГОСТ 28812-90

    ГОСТ 31871-2012

    ГОСТ 1932-93

    ГОСТ 3168-93

    ГОСТ 29040-91

    ГОСТ 31872-2012

    ГОСТ 3122-67

    ГОСТ 32353-2013

    ГОСТ 27894.4-88

    ГОСТ 32338-2013

    ГОСТ 28828-90

    ГОСТ 29040-2018

    ГОСТ 32346-2013

    ГОСТ 3213-91

    ГОСТ 32348-2013

    ГОСТ 32347-2013

    ГОСТ 32464-2013

    ГОСТ 32248-2013

    ГОСТ 32510-2013

    ГОСТ 32345-2013

    ГОСТ 32340-2013

    ГОСТ 28743-93

    ГОСТ 32465-2013

    ГОСТ 32977-2022

    ГОСТ 32975.2-2014

    ГОСТ 32462-2013

    ГОСТ 32975.3-2014

    ГОСТ 32511-2013

    ГОСТ 32978-2014

    ГОСТ 32349-2013

    ГОСТ 32513-2013

    ГОСТ 32976-2014

    ГОСТ 32339-2013

    ГОСТ 32988-2014

    ГОСТ 32990-2014

    ГОСТ 32989.3-2014

    ГОСТ 32987-2014

    ГОСТ 32979-2014

    ГОСТ 32508-2013

    ГОСТ 32350-2013

    ГОСТ 32514-2013

    ГОСТ 32401-2013

    ГОСТ 27379-87

    ГОСТ 32989.1-2014

    ГОСТ 32977-2014

    ГОСТ 32989.2-2014

    ГОСТ 33104-2014

    ГОСТ 32985-2014

    ГОСТ 28656-90

    ГОСТ 32595-2013

    ГОСТ 33112-2014

    ГОСТ 33018-2014

    ГОСТ 33156-2014

    ГОСТ 33132-2014

    ГОСТ 33103.7-2017

    ГОСТ 33131-2014

    ГОСТ 32984-2014

    ГОСТ 33103.4-2017

    ГОСТ 33162-2014

    ГОСТ 33158-2014

    ГОСТ 33103.3-2017

    ГОСТ 33195-2014

    ГОСТ 33103.5-2017

    ГОСТ 33113-2014

    ГОСТ 33077-2014

    ГОСТ 33196-2014

    ГОСТ 33192-2014

    ГОСТ 33197-2014

    ГОСТ 33288-2015

    ГОСТ 33298-2015

    ГОСТ 33255-2015

    ГОСТ 33256-2015

    ГОСТ 33304-2015

    ГОСТ 33297-2015

    ГОСТ 33193-2014

    ГОСТ 33157-2014

    ГОСТ 27313-2015

    ГОСТ 33296-2015

    ГОСТ 33253-2015

    ГОСТ 3340-88

    ГОСТ 33130-2014

    ГОСТ 33365-2015

    ГОСТ 33012-2014

    ГОСТ 33300-2015

    ГОСТ 33360-2015

    ГОСТ 32507-2013

    ГОСТ 33198-2014

    ГОСТ 33508-2015

    ГОСТ 33103.6-2017

    ГОСТ 33343-2015

    ГОСТ 33511-2015

    ГОСТ 33510-2015

    ГОСТ 33512.3-2015

    ГОСТ 33359-2015

    ГОСТ 33564-2015

    ГОСТ 33576-2015

    ГОСТ 33578-2015

    ГОСТ 33502-2015

    ГОСТ 33513-2015

    ГОСТ 33577-2015

    ГОСТ 3338-2015

    ГОСТ 33507-2015

    ГОСТ 33509-2015

    ГОСТ 33194-2014

    ГОСТ 3338-68

    ГОСТ 27313-95

    ГОСТ 33461-2015

    ГОСТ 33617-2015

    ГОСТ 33580-2015

    ГОСТ 33585-2015

    ГОСТ 33103.2-2017

    ГОСТ 33588-2015

    ГОСТ 33621-2015

    ГОСТ 33624-2015

    ГОСТ 33625-2015

    ГОСТ 33515-2015

    ГОСТ 33654-2022

    ГОСТ 33252-2015

    ГОСТ 33582-2015

    ГОСТ 33501-2015

    ГОСТ 33614-2015

    ГОСТ 33516-2015

    ГОСТ 33583-2015

    ГОСТ 33872-2016

    ГОСТ 33622-2015

    ГОСТ 33618-2015

    ГОСТ 33586-2015

    ГОСТ 33903-2016

    ГОСТ 33584-2015

    ГОСТ 33755-2016

    ГОСТ 33299-2015

    ГОСТ 33589-2015

    ГОСТ 34089-2017

    ГОСТ 33908-2016

    ГОСТ 33587-2015

    ГОСТ 34090.1-2017

    ГОСТ 33654-2015

    ГОСТ 34090.2-2017

    ГОСТ 33909-2016

    ГОСТ 33901-2016

    ГОСТ 33627-2015

    ГОСТ 33906-2016

    ГОСТ 33913-2016

    ГОСТ 33912-2016

    ГОСТ 34429-2018

    ГОСТ 34858-2022

    ГОСТ 34195-2017

    ГОСТ 34194-2017

    ГОСТ 34239-2017

    ГОСТ 34240-2017

    ГОСТ 4095-75

    ГОСТ 4338-74

    ГОСТ 4339-74

    ГОСТ 33899-2016

    ГОСТ 4790-80

    ГОСТ 34241-2017

    ГОСТ 4.105-2014

    ГОСТ 4806-79

    ГОСТ 33907-2016

    ГОСТ 5066-2018

    ГОСТ 5.1261-72

    ГОСТ 34238-2017

    ГОСТ 4668-75

    ГОСТ 5066-91

    ГОСТ 4338-91

    ГОСТ 5396-77

    ГОСТ 5445-2020

    ГОСТ 4039-88

    ГОСТ 5953-81

    ГОСТ 5445-79

    ГОСТ 33911-2016

    ГОСТ 5954.2-2020

    ГОСТ 34091-2017

    ГОСТ 34092-2017

    ГОСТ 5954.2-91

    ГОСТ 34210-2017

    ГОСТ 5953-93

    ГОСТ 5954.1-2020

    ГОСТ 6321-92

    ГОСТ 6382-91

    ГОСТ 5954.1-91

    ГОСТ 6667-75

    ГОСТ 5953-2020

    ГОСТ 6263-2020

    ГОСТ 7423-55

    ГОСТ 511-82

    ГОСТ 6382-2001

    ГОСТ 33902-2016

    ГОСТ 7847-2020

    ГОСТ 7846-73

    ГОСТ 7978-74

    ГОСТ 8606-2015

    ГОСТ 6263-80

    ГОСТ 8606-72

    ГОСТ 33898-2016

    ГОСТ 8448-2019

    ГОСТ 8489-85

    ГОСТ 33626-2015

    ГОСТ 8935-2020

    ГОСТ 8929-2020

    ГОСТ 511-2015

    ГОСТ 9326-90

    ГОСТ 34236-2017

    ГОСТ 9434-75

    ГОСТ 8935-77

    ГОСТ 8929-75

    ГОСТ 8448-78

    ГОСТ 8.649-2015

    ГОСТ 7847-73

    ГОСТ 9144-79

    ГОСТ 9880-2019

    ГОСТ 6073-75

    ГОСТ 9950-2020

    ГОСТ 9963-84

    ГОСТ 9951-73

    ГОСТ 9880-76

    ГОСТ 9950-83

    ГОСТ 9.023-74

    ГОСТ 8226-82

    ГОСТ 9521-2017

    ГОСТ 8606-93

    ГОСТ EN 116-2013

    ГОСТ 8226-2015

    ГОСТ ИСО 1013-95

    ГОСТ 5439-76

    ГОСТ EN 13016-1-2013

    ГОСТ 9949-76

    ГОСТ EN 15376-2014

    ГОСТ ISO 13758-2013

    ГОСТ 33563-2015

    ГОСТ EN 15484-2014

    ГОСТ EN 15195-2014

    ГОСТ EN 12177-2013

    ГОСТ ISO 13736-2009

    ГОСТ ISO 3013-2016

    ГОСТ ISO 13757-2013

    ГОСТ ISO 4257-2013

    ГОСТ ISO 20884-2012

    ГОСТ ISO 20884-2016

    ГОСТ ISO 20846-2016

    ГОСТ 4790-2017

    ГОСТ ISO 20846-2012

    ГОСТ 4790-93

    ГОСТ ISO 3734-2016

    ГОСТ ISO 6297-2015

    ГОСТ ISO 8216-3-2013

    ГОСТ ISO 4256-2013

    ГОСТ ISO 12156-1-2012

    ГОСТ ISO 6245-2016

    ГОСТ EN 14078-2016

    ГОСТ Р 50837.2-95

    ГОСТ EN 13132-2012

    ГОСТ ISO 8819-2013

    ГОСТ ISO 6251-2013

    ГОСТ ISO 5165-2014

    ГОСТ ISO 7536-2015

    ГОСТ ISO 5275-2017

    ГОСТ EN 1601-2017

    ГОСТ Р 50921-96

    ГОСТ Р 50902-96

    ГОСТ Р 50902-2011

    ГОСТ Р 50837.7-95

    ГОСТ Р 50837.4-95

    ГОСТ 9326-2002

    ГОСТ Р 50837.1-95

    ГОСТ Р 51062-97

    ГОСТ Р 51062-2011

    ГОСТ Р 50837.8-95

    ГОСТ Р 51313-99

    ГОСТ Р 50994-96

    ГОСТ Р 50837.5-95

    ГОСТ Р 51105-97

    ГОСТ Р 51661.1-2000

    ГОСТ Р 51661.2-2000

    ГОСТ Р 51587-2000

    ГОСТ EN 237-2013

    ГОСТ Р 51661.3-2000

    ГОСТ Р 51213-98

    ГОСТ Р 51586-2000

    ГОСТ Р 50837.6-95

    ГОСТ Р 51661.4-2000

    ГОСТ ISO 8973-2013

    ГОСТ Р 50837.3-95

    ГОСТ Р 50921-2005

    ГОСТ 33108-2014

    ГОСТ EN 1601-2012

    ГОСТ Р 51588-2000

    ГОСТ Р 51925-2002

    ГОСТ Р 51925-2011

    ГОСТ 33106-2014

    ГОСТ Р 52050-2003

    ГОСТ Р 52067-2003

    ГОСТ ISO 3993-2013

    ГОСТ Р 51104-97

    ГОСТ Р 51971-2002

    ГОСТ Р 51105-2020

    ГОСТ Р 52201-2004

    ГОСТ Р 52332-2022

    ГОСТ Р 51930-2002

    ГОСТ Р 52332-2005

    ГОСТ Р 51972-2002

    ГОСТ Р 52087-2003

    ГОСТ Р 52068-2003

    ГОСТ ISO 9162-2013

    ГОСТ Р 52256-2004

    ГОСТ Р 52709-2019

    ГОСТ Р 52755-2007

    ГОСТ Р 51942-2002

    ГОСТ Р 51941-2002

    ГОСТ Р 51866-2002

    ГОСТ Р 52911-2020

    ГОСТ Р 51661.5-2000

    ГОСТ Р 52050-2020

    ГОСТ Р 52917-2008

    ГОСТ Р 52257-2004

    ГОСТ Р 53355-2018

    ГОСТ Р 53356-2009

    ГОСТ Р 53200-2008

    ГОСТ Р 53706-2009

    ГОСТ Р 52911-2008

    ГОСТ Р 52340-2005

    ГОСТ Р 52087-2018

    ГОСТ Р 52709-2007

    ГОСТ Р 53357-2013

    ГОСТ Р 53357-2009

    ГОСТ Р 51942-2019

    ГОСТ Р 53199-2008

    ГОСТ Р 52660-2006

    ГОСТ Р 52714-2018

    ГОСТ Р 54184-2010

    ГОСТ Р 53355-2009

    ГОСТ Р 53718-2009

    ГОСТ Р 54188-2010

    ГОСТ Р 54185-2010

    ГОСТ Р 53715-2009

    ГОСТ Р 54189-2010

    ГОСТ Р 54192-2010

    ГОСТ Р 54190-2010

    ГОСТ Р 52240-2004

    ГОСТ Р 53717-2009

    ГОСТ Р 54211-2010

    ГОСТ Р 52954-2008

    ГОСТ Р 54186-2010

    ГОСТ Р 54212-2010

    ГОСТ Р 54214-2015

    ГОСТ Р 54191-2010

    ГОСТ Р 54219-2010

    ГОСТ Р 52050-2006

    ГОСТ Р 54214-2010

    ГОСТ Р 54223-2010

    ГОСТ Р 54187-2010

    ГОСТ Р 54224-2010

    ГОСТ Р 54215-2010

    ГОСТ Р 54230-2010

    ГОСТ Р 53605-2009

    ГОСТ Р 53714-2009

    ГОСТ Р 54225-2010

    ГОСТ Р 54218-2010

    ГОСТ Р 54217-2010

    ГОСТ Р 54232-2010

    ГОСТ Р 54237-2022

    ГОСТ Р 54233-2010

    ГОСТ Р 54226-2010

    ГОСТ Р 54235-2010

    ГОСТ Р 54216-2010

    ГОСТ Р 54238-2010

    ГОСТ Р 53716-2009

    ГОСТ Р 54231-2010

    ГОСТ Р 54213-2015

    ГОСТ ISO 13909-8-2013

    ГОСТ 33103.1-2014

    ГОСТ Р 54229-2010

    ГОСТ Р 54239-2018

    ГОСТ Р 54213-2010

    ГОСТ Р 54239-2010

    ГОСТ Р 54251-2010

    ГОСТ Р 54244-2010

    ГОСТ Р 54248-2010

    ГОСТ Р 54234-2010

    ГОСТ Р 54283-2010

    ГОСТ Р 54228-2010

    ГОСТ Р 54245-2010

    ГОСТ Р 54262-2010

    ГОСТ Р 54280-2010

    ГОСТ Р 54241-2010

    ГОСТ Р 54269-2010

    ГОСТ Р 52368-2005

    ГОСТ Р 54332-2011

    ГОСТ Р 54221-2010

    ГОСТ Р 54290-2010

    ГОСТ Р 55110-2012

    ГОСТ Р 54274-2010

    ГОСТ Р 55111-2012

    ГОСТ Р 54236-2010

    ГОСТ Р 54240-2010

    ГОСТ Р 54242-2020

    ГОСТ Р 54289-2010

    ГОСТ Р 52714-2007

    ГОСТ Р 55121-2012

    ГОСТ 33103.1-2017

    ГОСТ Р 55118-2012

    ГОСТ Р 55112-2012

    ГОСТ Р 54237-2010

    ГОСТ Р 54285-2010

    ГОСТ Р 55123-2012

    ГОСТ Р 55125-2012

    ГОСТ Р 54282-2010

    ГОСТ Р 55120-2012

    ГОСТ Р 55128-2012

    ГОСТ Р 55115-2012

    ГОСТ Р 55117-2012

    ГОСТ Р 55122-2012

    ГОСТ Р 54261-2010

    ГОСТ Р 55124-2012

    ГОСТ Р 55133-2012

    ГОСТ Р 55113-2012

    ГОСТ Р 54299-2010

    ГОСТ Р 54982-2012

    ГОСТ Р 55475-2013

    ГОСТ Р 54287-2010

    ГОСТ Р 55552-2013

    ГОСТ Р 55551-2013

    ГОСТ Р 55549-2013

    ГОСТ Р 55116-2012

    ГОСТ Р 55131-2012

    ГОСТ Р 55132-2012

    ГОСТ Р 55566-2013

    ГОСТ Р 55660-2013

    ГОСТ Р 55869-2013

    ГОСТ Р 55546-2013

    ГОСТ Р 55661-2013

    ГОСТ Р 55548-2013

    ГОСТ Р 54227-2010

    ГОСТ Р 55874-2013

    ГОСТ Р 55957-2014

    ГОСТ Р 55550-2013

    ГОСТ Р 55956-2014

    ГОСТ Р 55547-2013

    ГОСТ Р 55960-2014

    ГОСТ Р 56147-2014

    ГОСТ Р 55961-2014

    ГОСТ Р 55958-2014

    ГОСТ Р 55959-2014

    ГОСТ Р 55873-2013

    ГОСТ Р 55955-2014

    ГОСТ Р 56868-2016

    ГОСТ Р 56870-2016

    ГОСТ Р 56146-2014

    ГОСТ Р 56871-2016

    ГОСТ Р 55523-2013

    ГОСТ Р 55493-2013

    ГОСТ Р 55879-2013

    ГОСТ Р 56866-2016

    ГОСТ Р 56883-2016

    ГОСТ Р 55126-2012

    ГОСТ Р 56867-2016

    ГОСТ Р 55114-2012

    ГОСТ Р 56882-2016

    ГОСТ Р 56888-2016

    ГОСТ Р 56886-2016

    ГОСТ Р 56889-2016

    ГОСТ Р 56887-2016

    ГОСТ Р 55130-2012

    ГОСТ Р 56890-2016

    ГОСТ Р 56881-2016

    ГОСТ Р 56884-2016

    ГОСТ Р 57040-2016

    ГОСТ Р 57039-2016

    ГОСТ Р 58221-2018

    ГОСТ Р 57658-2017

    ГОСТ Р 57016-2016

    ГОСТ Р 58440-2019

    ГОСТ Р 56885-2016

    ГОСТ Р 59045-2020

    ГОСТ Р 58255-2018

    ГОСТ Р 55553-2013

    ГОСТ Р 58914-2020

    ГОСТ Р 59244-2020

    ГОСТ Р 59245-2020

    ГОСТ Р 57431-2017

    ГОСТ Р 59249-2020

    ГОСТ Р 59250-2020

    ГОСТ Р 59013-2020

    ГОСТ Р 59012-2020

    ГОСТ Р 59253-2020

    ГОСТ Р 59251-2020

    ГОСТ Р 59254-2020

    ГОСТ Р 59256-2020

    ГОСТ Р 59257-2020

    ГОСТ Р 59176-2020

    ГОСТ Р 59261-2020

    ГОСТ Р 59255-2020

    ГОСТ Р 56869-2016

    ГОСТ Р 59592-2021

    ГОСТ Р 59248-2020

    ГОСТ Р 70204-2022

    ГОСТ Р 70205-2022

    ГОСТ Р 59258-2020

    ГОСТ Р 70206-2022

    ГОСТ Р 59161-2020

    ГОСТ Р 70207-2022

    ГОСТ Р 70208-2022

    ГОСТ Р 70211-2022

    ГОСТ Р 70263-2022

    ГОСТ Р 59014-2020

    ГОСТ Р 70209-2022

    ГОСТ Р 70264-2022

    ГОСТ Р 59262-2020

    ГОСТ Р 59015-2020

    ГОСТ Р 58227-2018

    ГОСТ Р 59177-2020

    ГОСТ Р 59264-2020

    ГОСТ Р 55129-2012

    ГОСТ Р ЕН ИСО 20847-2010

    ГОСТ Р ЕН ИСО 7536-2007

    ГОСТ Р 56720-2015

    ГОСТ Р 56718-2015

    ГОСТ Р 55868-2013

    ГОСТ Р 59593-2021

    ГОСТ Р ИСО 13909-1-2010

    ГОСТ Р 59252-2020

    ГОСТ Р 55997-2014

    ГОСТ Р ИСО 12156-1-2006

    ГОСТ Р ИСО 15585-2009

    ГОСТ Р ЕН 15195-2011

    ГОСТ Р ИСО 13909-6-2013

    ГОСТ Р ЕН 12177-2008

    ГОСТ Р ЕН ИСО 12205-2007

    ГОСТ Р ЕН 12916-2008

    ГОСТ Р ИСО 5275-2009

    ГОСТ Р ИСО 13759-2010

    ГОСТ Р ИСО 3734-2009

    ГОСТ Р ЕН ИСО 20846-2006

    ГОСТ Р 54220-2010

    ГОСТ Р ЕН 237-2008

    ГОСТ Р ИСО 13909-5-2013

    ГОСТ Р 55119-2012

    ГОСТ Р ЕН ИСО 3405-2007

    ГОСТ Р 54484-2011

    ГОСТ Р 55127-2012

    ГОСТ Р ИСО 18283-2010

    ГОСТ Р 54275-2010

    ГОСТ Р 56873-2016