ГОСТ 34195-2017

ОбозначениеГОСТ 34195-2017
НаименованиеТоплива дизельные. Определение фильтруемости по текучести при низких температурах (LTFT)
СтатусДействует
Дата введения07.01.2019
Дата отмены-
Заменен на-
Код ОКС75.160.20
Текст ГОСТа


ГОСТ 34195-2017

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ТОПЛИВА ДИЗЕЛЬНЫЕ

Определение фильтруемости по текучести при низких температурах (LTFT)

Diesel fuels. Determination of filterability by low-temperature flow test (LTFT)

МКС 75.160.20

Дата введения 2019-07-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены в ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Открытым акционерным обществом "Всероссийский научно-исследовательский институт по переработке нефти" (ОАО "ВНИИ НП") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5

2 ВНЕСЕН Межгосударственным техническим комитетом по стандартизации МТК 31 "Нефтяные топлива и смазочные материалы"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 ноября 2017 г. N 52-2017)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Киргизия

KG

Кыргызстандарт

Россия

RU

Росстандарт

Узбекистан

UZ

Узстандарт

Украина

UA

Минэкономразвития Украины

4 Приказом Федерального агентства по техническому регулированию и метрологии от 12 декабря 2017 г. N 1897-ст межгосударственный стандарт ГОСТ 34195-2017 введен в действие в качестве национального стандарта Российской Федерации с 1 июля 2019 г.

5 Настоящий стандарт идентичен стандарту ASTM D 4539-16* "Определение фильтруемости дизельных топлив методом низкотемпературного течения (LTFT)" ("Standard test method for filterability of diesel fuels by low-temperature flow test (LTFT)", IDT).

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - .

Стандарт разработан подкомитетом ASTM D02.07 "Flow properties" ("Характеристики текучести") Технического комитета ASTM D02 "Petroleum products, liquid fuels and lubricants" ("Нефтепродукты, жидкие топлива и смазочные материалы").

Наименование настоящего стандарта изменено относительно наименования указанного стандарта ASTM для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных стандартов соответствующие им межгосударственные стандарты, сведения о которых приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Август 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

1.1 Настоящий стандарт устанавливает метод определения фильтруемости при низких температурах дизельных топлив для автомобильной техники.

1.2 Значения, установленные в единицах СИ, считают стандартными. Другие единицы измерений в настоящий стандарт не включены.

1.3 Предупреждение - Многими регулирующими организациями было установлено, что ртуть является опасным веществом, которое может вызвать поражение нервной системы, почек и печени. Ртуть или ее пары могут представлять опасность для здоровья и оказывать коррозионное воздействие на материалы. При обращении с ртутью и ртутьсодержащими продуктами необходимо принять соответствующие меры предосторожности. Подробные данные по применяемому продукту приведены в сертификате безопасности материала (MSDS), а дополнительная информация представлена на сайте ЕРА (Агентство по охране окружающей среды США) http://www.epa.gov/mercury/faq.htm. Пользователи должны учитывать, что продажа ртути и/или ртутьсодержащих продуктов может быть законодательно запрещена в отдельном регионе или стране.

1.4 В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности, связанных с его использованием. Пользователь стандарта несет ответственность за обеспечение соответствующих мер безопасности и охраны здоровья и определяет целесообразность применения законодательных ограничений перед его использованием. Специальные указания по технике безопасности приведены в 1.3, 9.1, 9.2.1, 9.3, 9.5 и приложении A1.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

2.1 Стандарты ASTM:

________________

Уточнить ссылки на стандарты ASTM можно на сайте ASTM www.astm.org или в службе поддержки клиентов ASTM service@astm.org. В информационном томе ежегодного сборника стандартов (Annual Book of ASTM Standards) следует обращаться к сводке стандартов ежегодного сборника стандартов на странице сайта.

ASTM D 97, Test method for pour point of petroleum products (Метод определения температуры текучести нефтепродуктов)

ASTM D 975, Specification for diesel fuel oils (Спецификация на дизельные топлива)

ASTM D 1655, Specification for aviation turbine fuels (Спецификация на авиационные турбинные топлива)

ASTM D 2500, Test method for cloud point of petroleum products (Метод определения температуры помутнения нефтепродуктов)

ASTM D 3117, Test method for wax appearance point of distillate fuels (Withdrawn 2010) (Метод определения температуры появления парафина в дистиллятных топливах) (отменен в 2010 г.)

________________

Отменен в 2010 г. без замены.

ASTM D 3699, Specification for kerosine (Спецификация на керосин)

ASTM D 4057, Practice for manual sampling of petroleum and petroleum products (Практика ручного отбора проб нефти и нефтепродуктов)

ASTM D 4177, Practice for automatic sampling of petroleum and petroleum products (Практика автоматического отбора проб нефти и нефтепродуктов)

ASTM D 7962, Practice for determination of minimum immersion depth and assessment of temperature sensor measurement drift (Практика определения минимальной глубины погружения и оценки дрейфа датчика измерения температуры)

ASTM Е 1, Specification for ASTM liquid-in-glass thermometers (Спецификация на стеклянные жидкостные термометры ASTM)

ASTM Е 1137, Specification for industrial platinum resistance thermometers (Спецификация на промышленные платиновые термометры сопротивления)

ASTM Е 2251, Specification for liquid-in-glass ASTM thermometers with low-hazard precision liquids (Спецификация на стеклянные жидкостные термометры ASTM с малоопасными прецизионными жидкостями)

ASTM Е 2877, Guide for digital contact thermometers (Руководство по цифровым контактным термометрам)

2.2 Координационный совет по научным исследованиям (CRC):

CRC Report No. 528 Diesel fuel low-temperature operability field test (Отчет CRC N 528 Полевые испытания эксплуатационных свойств дизельных топлив при низкой температуре)

________________

Можно получить в координационном совете по научным исследованиям, Inc., 219 Perimeter Center Parkway, Atlanta, GA 30346.

2.3 Комитет Канады по стандартизации:

CAN/CGSB-3.0, No. 140.1-М86. Low temperature flow test (LTFT) for diesel fuels [Испытание текучести дизельных топлив при низкой температуре (LTFT)]

________________

Можно приобрести в Канадском комитете по стандартизации, Ottawa, Canada K1A 1G6.

Примечание 1 - Метод по CAN/CGSB-3.0, No. 140.1-М86 в основном эквивалентен методу настоящего стандарта, но отличия в аппаратуре и процедурах могут приводить к разным результатам.

3 Термины и определения

3.1 В настоящем стандарте применен следующий термин с соответствующим определением:

3.1.1 цифровой контактный термометр (DCT): Электронное устройство, состоящее из цифрового дисплея и соответствующего термочувствительного зонда.

3.1.1.1 Пояснение - Устройство состоит из датчика температуры, соединенного с измерительным прибором, который измеряет количественную зависимость значений датчика от температуры, вычисляет температуру по измеренному значению, а также обеспечивает цифровой выход, который поступает на цифровой дисплей и/или записывающее устройство. Устройство может быть внутренним или внешним. Это устройство иногда называют цифровым термометром.

3.1.1.2 Пояснение - PET является аббревиатурой для портативных электронных термометров - разновидности цифровых контактных термометров (DCT).

4 Сущность метода

4.1 Температуру серии испытуемых образцов топлива снижают с заданной скоростью охлаждения. Начиная с требуемой температуры испытания, через каждый 1°C фильтруют отдельный образец серии через сетчатый фильтр с размером пор 17 мкм до получения минимальной температуры фильтруемости LTFT. Минимальная температура фильтруемости LTFT является самой низкой температурой, выражаемой значением, кратным 1°C, при которой испытуемый образец фильтруется за 60 с или менее.

4.2 Альтернативно можно охладить один образец в условиях по 4.1 и выполнить испытание при заданной температуре, чтобы определить выдерживает или не выдерживает образец испытание при этой температуре.

5 Назначение и применение

5.1 Результаты определения текучести при низкой температуре (LTFT) являются характеристикой текучести испытуемого топлива при низкой температуре в дизельных двигателях (по данным отчета CRC N 528). Настоящий метод следует использовать для оценки топлив, содержащих присадки, улучшающие текучесть.

5.2 Для определения низкотемпературных характеристик дизельного топлива этот метод можно использовать дополнительно с методами по ASTM D 97, ASTM D 2500 и ASTM D 3117.

6 Аппаратура

6.1 Стеклянные сосуды для образца

Сосуды для образца из боросиликатного термостойкого стекла или аналогичные. Применяют прозрачные термостойкие сосуды с широким горлом, вместимостью 300 см, имеющие отметку (200±10) см, внутренним диаметром 50-60 мм или высокие прозрачные термостойкие стаканы таких же размеров без сливных носиков.

6.2 Стеклянные приемные сосуды

Прозрачные приемные сосуды из термостойкого стекла, градуированные до 180 см, с ценой деления (10±2) см.

6.3 Устройство для фильтрования

Устройство для фильтрования с крышкой (в соответствии с рисунком 1) или крышкой другой формы, стеклянной трубкой, гибкой маслобензостойкой трубкой, распорно-клиновым зажимом или краном и резиновой пробкой или другим средством, обеспечивающим герметичность под вакуумом.


1 - пришлифованное соединение (точка A); 2 - крышка из алюминиевой фольги; 3 - образец объемом 200 см; 4 - стеклянная трубка; 5 - качественная эластичная трубка; 6 - фильтр; 7 - контейнер для образца, высокий стакан вместимостью 300 см; 8 - приемник для образца, высокий стакан вместимостью 400 см; 9 - резиновая пробка; 10 - резиновая толстостенная трубка внутренним диаметром 4 мм, наружным диаметром 15 мм; 11 - вакуумметр; 12 - стеклянная трубка внутренним диаметром не менее 6 мм; 13 - распорно-клиновый зажим (точка B); 14 - качественная эластичная трубка

Рисунок 1 - Устройство для фильтрования LTFT

6.4 Фильтр в сборе

Фильтр в сборе, приведенный на рисунке 2, для каждого сосуда для образца (стакан вместимостью 300 см). Спеченный сетчатый фильтр 304SS, представляющий собой проволочную сетку саржевого голландского плетения с номинальным размером пор 17 мкм. Сетка имеет плетеную структуру с шагом 65 проволок/см (основа)303/315 проволок/см (уток). Нити проволоки имеют диаметр 0,0071 и 0,0046 см соответственно. Номинальный размер пор позволяет удалить 98% всех частиц, размеры которых составляют 17 мкм или более.

________________

Единственным известным комитету поставщиком фильтра в сборе в настоящее время является компания Lawler Manufacturing Corp., Kilmer Ct., Edison, NJ and Alberta Research Council, Fuels and Lubricants Group, 250 Karl Clark Rd., Edmonton, Alberta, Canada.


1 - корпус; 2 - фиксатор (болт типа 4); 3 - диафрагма; 4 - сетчатый фильтр; 5 - шайба; 6 - медная трубка; 7 - уплотнительное кольцо внутренним диаметром 12,5 мм, наружным диаметром 17,5 мм; 8 - место пайки

Примечание - Материал для деталей: 1, 2, 3 - латунь; 5 - коррозионно-стойкий полимер; 6 - медь.

Рисунок 2 - Фильтр в сборе для LTFT

6.5 Система программируемого охлаждения

Система программируемого охлаждения, обеспечивающая охлаждение нескольких образцов до требуемой температуры со средней скоростью 1,0°C/ч в диапазоне от плюс 10°C до минус 30°C. Абсолютное отклонение любого единичного значения температуры любого образца от заданной линейной функции не должно превышать 0,5°C. Размеры и форма системы могут быть произвольными. Можно использовать жидкостную или воздушную баню.

6.6 Секундомер или электрический таймер, обеспечивающий измерение до десятых долей секунды.

6.7 Вакуумная система, обеспечивающая поддержание постоянного уровня вакуума на (20,0±0,2) кПа ниже атмосферного давления в приемном сосуде в течение каждого определения.

6.8 Устройство измерения температуры

Устройство измерения температуры - стеклянный жидкостный термометр по 6.8.1 или цифровой контактный термометр (DCT), соответствующий требованиям, приведенным в таблице 1.

6.8.1 Устройство измерения температуры - стеклянный жидкостный термометр, соответствующий требованиям к термометру ASTM 114C, для воздушных бань. Для жидкостных бань используют термометр ASTM 5C по ASTM E 1, или термометр ASTM S5C по ASTM E 2251, или аналогичный стеклянный жидкостный термометр с равной или более высокой точностью измерения и равной температурной чувствительностью.

6.8.2 Требования к цифровым контактным термометрам (см. таблицу 1).

Таблица 1 - Требования к цифровым контактным термометрам

Параметр

Требование

DCT

Класс F или выше по ASTM E 2877

Температурный диапазон

От -80°C до 20°C

Разрешение дисплея

Не менее 0,1°C

Тип датчика

Платиновый термометр сопротивления (PRT)

Чувствительный элемент

Чувствительный элемент длиной не более 18 мм с защитным колпачком наружным диаметром 3 мм

Минимальное погружение

Менее 40 мм в соответствии с ASTM D 7962

Погрешность

±500 мК (±0,5°C) для зонда, совмещенного с датчиком

Время отклика

Не более или равно 25 с по ASTM E 1137

Дрейф

Не более 500 мК (0,5°C) в год

Погрешность калибровки

Менее 500 мК (0,5°C) в диапазоне предполагаемого использования

Диапазон калибровки

От -75°C или ниже до 0°C или выше

Данные калибровки

Протокол калибровки, содержащий данные по четырем точкам, равномерно распределенным по диапазону калибровки

Протокол калибровки

Калибровочная лаборатория должна иметь компетентность в области температурной калибровки и входить в национальную калибровочную лабораторию или метрологическую организацию по стандартизации

Примечание 2 - Дисплей DCT, установленный на конец оболочки зонда, вероятно, не подходит из-за воздействия температуры на электронику. Следует обратиться к инструкции изготовителя о наличии температурных ограничений.

6.8.3 Дрейф калибровки DCT должен проверяться не менее одного раза в год измерением температуры таяния льда или с использованием образцового термометра в бане с постоянной температурой при заданной глубине погружения по 6.8.2 в соответствии с ASTM D 7962.

Примечание 3 - Если при калибровке DCT наблюдают однонаправленный дрейф в течение нескольких проверок калибровки, это может быть признаком повреждения DCT

7 Реактивы

7.1 Авиационное топливо для турбореактивных двигателей Jet A по ASTM D 1655, керосин сорта N 1 по ASTM D 3699, или малосернистый керосин сорта N 1 по ASTM D 975, или аналогичная жидкость, которая не разделяется на фазы при температурах до минус 30°C.

7.2 Гептан квалификации х.ч. (Предупреждение - Легковоспламеняющийся, см. A1.2, приложение A1).

7.3 Ацетон квалификации х.ч. (Предупреждение - Легковоспламеняющийся, см. A1.1, приложение A1).

8 Отбор проб

Отбор проб - по ASTM D 4057 или ASTM D 4177.

9 Проведение испытаний

9.1 Фильтруют свежий образец испытуемого топлива при температуре 15°C или более высокой температуре через сухую неволокнистую фильтровальную бумагу с номинальным размером пор не более 17 мкм (Предупреждение - Воспламеняющаяся жидкость, см. A1.3, приложение A1).

Примечание 4 - Цель данного этапа фильтрования - удаление любых загрязнений, которые влияют на эффективность присадок, улучшающих текучесть при низкой температуре. Этап предварительного фильтрования может удалить загрязнения, влияющие на свойства текучести топлива при низкой температуре в условиях эксплуатации. Пользователи настоящего метода для сравнения результатов могут выполнять испытания с этапом предварительного фильтрования и без него, если этап предварительного фильтрования не выполняли, прецизионность настоящего метода не применяют.

9.2 Перед каждым испытанием очищают и проверяют фильтр в сборе. Фильтры, приобретаемые у изготовителя, уже стандартизованы. В приложении X1 приведена процедура проверки характеристик фильтра при необходимости.

9.2.1 Очищают собранный фильтр двумя растворителями с использованием вакуума для прокачивания растворителей через сетчатый фильтр. Начинают с трех последовательных промывок гептаном порциями по 50 см (Предупреждение - Легковоспламеняющийся, см. A1.2, приложение А1). Затем проводят три последовательные промывки ацетоном порциями по 50 см (Предупреждение - Легковоспламеняющийся, см. A1.1, приложение A1). После промывки фильтры сушат на воздухе.

9.2.2 Визуально проверяют каждый фильтр в сборе на наличие повреждений сетчатого фильтра или присутствие твердых частиц. Поврежденные сетчатые фильтры бракуют. Повторно очищают сетчатые фильтры, содержащие твердые частицы. Если стандартизация фильтра вызывает сомнения, используют новый фильтр или возвращают фильтр изготовителю для проверки. В приложении X1 приведена процедура проверки характеристик фильтра.

9.3 Наливают по 200 см чистого обезвоженного топлива в каждый из нескольких стаканов вместимостью 300 см (Предупреждение - Воспламеняющаяся жидкость, см. A1.3, приложение A1).

9.4 Устанавливают чистый фильтр в сборе в каждый контейнер с образцом, плотно соединяют стык (точка A на рисунке 1) и закрывают алюминиевой фольгой для предотвращения конденсации.

9.5 Устанавливают устройство измерения температуры в один или несколько сосудов или стаканов, содержащих 200 см авиационного топлива для турбореактивных двигателей Jet A, или керосина сорта N 1 (или малосернистого топлива сорта N 1), или аналогичной жидкости, которая не разделяется на фазы при температурах до минус 30°C (Предупреждение - Воспламеняющаяся жидкость, см. А1.3, приложение А1). Помещают измерительную часть устройства для определения температуры в центр или вблизи центра сосуда или стакана примерно посередине между поверхностью жидкости и дном стакана.

9.6 Помещают сосуды или стаканы с образцами (см. 9.3-9.5) в охлаждающую баню, температура которой не менее чем на 5°C выше температуры начала кристаллизации парафина (по ASTM D 3117) или температуры помутнения (по ASTM D 2500) испытуемого топлива. При испытаниях нескольких образцов в охлаждающей бане должно быть установлено достаточное количество сосудов с контролируемой температурой (см. 9.5) для обеспечения требуемой точности определения температуры всех испытуемых образцов. Расположение всех сосудов или стаканов должно обеспечивать беспрепятственную циркуляцию охлаждающей среды между дном и боковыми стенками сосудов или стаканов.

9.7 Закрывают крышку охлаждающей бани при наличии.

9.8 Запускают устройство программирования температуры, обеспечивающее скорость снижения температуры 1,0°C/ч.

9.9 Перед тем как температура образца достигнет требуемого значения температуры испытания, выполняют следующие процедуры.

9.9.1 Зажимают распорно-клиновый зажим или закрывают клапан в точке B (см. рисунок 1).

9.9.2 Устанавливают пустой приемник в рабочее положение.

9.9.3 Устанавливают значение вакуума на (20,0±0,2) кПа ниже атмосферного давления.

9.9.4 Устанавливают таймер на нуль.

9.10 После охлаждения образца до требуемой температуры, используя стержень фильтра в сборе, аккуратно перемешивают образец (15 оборотов с частотой вращения примерно 1 об/с) для диспергирования образовавшихся кристаллов парафина. Снимают алюминиевую фольгу и соединяют устройство для фильтрования в точке A (см. рисунок 1). Если образец для выполнения фильтрования должен быть удален из охлаждающей бани, то эти процедуры должны быть завершены в течение 1 мин.

9.11 Фильтруют образец, перемещая распорно-клиновый зажим или открывая клапан в точке B (см. рисунок 1), и одновременно запускают таймер. При необходимости регулируют вакуумную систему для поддержания вакуума на (20,0±0,2) кПа ниже атмосферного давления.

9.12 Зажимают распорно-клиновый зажим или закрывают клапан в точке B (см. рисунок 1) точно через 60 с или при прекращении всасывания в зависимости от того, что наступит раньше. Регистрируют объем отфильтрованного образца в кубических сантиметрах и температуру испытания в градусах Цельсия.

9.13 Критерий "выдерживает испытание" - "не выдерживает испытание"

9.13.1 Результат "выдерживает испытание"

Образец считают выдержавшим испытание, если большая часть образца откачивается в приемник в течение 60 с и всасывание прекращается из-за низкого уровня образца, остающегося в сосуде.

Примечание 5 - Обычно объем в приемнике составляет 180 см при получении результата "выдерживает испытание", но этот объем может изменяться из-за различий в размерах сосуда и разных характеристик топлива "температура/объем".

9.13.2 Результат "не выдерживает испытание"

Образец считают не выдержавшим испытание, если всасывание не прекращается в течение 60 с.

9.14 Для определения минимальной температуры текучести LTFT повторяют процедуры по 9.9-9.12 на последующих образцах, охлаждаемых на 1°C ниже температуры предыдущего испытания, до получения не менее одного результата "выдерживает испытание" и одного результата "не выдерживает испытание" (см. 9.13.1 и 9.13.2).

9.15 В качестве альтернативы охлаждают один образец до требуемой температуры, проводят фильтрование и определяют - "выдерживает образец испытание" (см. 9.13.1) или "не выдерживает испытание" (см. 9.13.2).

10 Оформление результатов

10.1 Записывают значение температуры последнего результата "выдерживает испытание", зарегистрированного по 9.14, как "минимальную температуру LTFT "выдерживает испытание" ____°C.

10.2 Альтернативно записывают результат, зарегистрированный по 9.15, как "выдерживает испытание" или "не выдерживает испытание" при ____°C.

11 Прецизионность и смещение

11.1 Прецизионность настоящего метода была получена путем статистической обработки результатов межлабораторной программы исследования топлив в диапазоне температур от минус 10°C до минус 25°C с использованием жидкостных стеклянных термометров.

11.1.1 Повторяемость

Расхождение результатов последовательных испытаний, полученных одним и тем же оператором, на одной и той же аппаратуре, при постоянных рабочих условиях, на идентичном испытуемом материале в течение длительного времени при нормальном и правильном выполнении настоящего метода испытаний, может превышать следующее значение только в одном случае из двадцати:

повторяемость=2°C. (1)

11.1.2 Воспроизводимость

Расхождение результатов двух единичных и независимых испытаний, полученных разными операторами, работающими в разных лабораториях, на идентичном испытуемом материале в течение длительного времени при нормальном и правильном выполнении настоящего метода, может превышать следующее значение только в одном случае из двадцати:

воспроизводимость=4°C. (2)

11.2 Смещение

Смещение не может быть определено, поскольку отсутствуют критерии для измерения смещения в условиях испытаний.

Приложение A1
(обязательное)

Предупреждающая информация

A1.1 Ацетон

A1.1.1 (Предупреждение - Чрезвычайно легковоспламеняющийся).

A1.1.2 (Предупреждение - Пары могут привести к вспышке).

A1.1.3 (Предупреждение - Следует хранить вдали от источников тепла, искр и открытого пламени).

A1.1.4 (Предупреждение - Следует хранить контейнер закрытым).

A1.1.5 (Предупреждение - Следует использовать только при достаточной вентиляции).

A1.1.6 (Предупреждение - Следует избегать скопления паров и удалять все источники возгорания, особенно невзрывозащищенные электрические устройства и нагреватели).

A1.1.7 (Предупреждение - Следует избегать продолжительного вдыхания паров или аэрозоля).

A1.1.8 (Предупреждение - Следует избегать попадания в глаза или на кожу).

A1.2 н-Гептан

A1.2.1 (Предупреждение - Легковоспламеняющийся. Вреден при вдыхании).

A1.2.2 (Предупреждение - Следует хранить вдали от источников тепла, искр и открытого пламени).

A1.2.3 (Предупреждение - Следует хранить контейнер закрытым).

A1.2.4 (Предупреждение - Следует использовать только при достаточной вентиляции).

A1.2.5 (Предупреждение - Следует избегать продолжительного вдыхания паров или аэрозоля).

A1.2.6 (Предупреждение - Следует избегать продолжительного или повторного контакта с кожей).

A1.3 Воспламеняющаяся жидкость

A1.3.1 (Предупреждение - Воспламеняющаяся жидкость. Пары опасны для здоровья).

A1.3.2 (Предупреждение - Следует хранить вдали от источников тепла, искр и открытого пламени).

A1.3.3 (Предупреждение - Следует хранить контейнер закрытым).

A1.3.4 (Предупреждение - Следует использовать только при достаточной вентиляции).

A1.3.5 (Предупреждение - Следует избегать продолжительного вдыхания паров или аэрозоля).

A1.3.6 (Предупреждение - Следует избегать продолжительного или повторного контакта с кожей).

A1.4 Ртуть

A1.4.1 (Предупреждение - Яд. Может быть вредной или смертельно опасной при вдыхании или проглатывании).

A1.4.2 (Предупреждение - Пары вредны. Токсична при нагревании).

A1.4.3 (Предупреждение - Давление паров при нормальной комнатной температуре превышает предельное пороговое значение для гигиенического норматива в воздухе рабочей зоны).

A1.4.4 (Предупреждение - Не следует вдыхать пары).

A1.4.5 (Предупреждение - Следует хранить только в закрытом контейнере).

A1.4.6 (Предупреждение - Следует использовать только при достаточной вентиляции).

A1.4.7 (Предупреждение - Не следует принимать внутрь).

A1.4.8 (Предупреждение - По возможности следует хранить ртуть под слоем воды для сведения испарения к минимуму).

A1.4.9 (Предупреждение - Не следует нагревать).

A1.4.10 (Предупреждение - Следует хранить использованную ртуть в герметично закрытом контейнере до утилизации или очистки. Не следует сбрасывать в водостоки или отходы).

Приложение X1
(справочное)

Процедура стандартизации сетчатого фильтра LTFT

X1.1 Последовательность действий

X1.1.1 Разбирают фильтр в сборе и проверяют сетчатый фильтр. Бракуют фильтрующие элементы с любыми повреждениями.

X1.1.2 Повторно собирают и промывают фильтр в сборе в соответствии с 9.2 настоящего стандарта.

X1.1.3 Фильтруют при температуре окружающей среды эталонное масло Vistone А-30 через сухую неволокнистую фильтровальную бумагу с номинальным размером пор не более 17 мкм.

X1.1.4 Наливают 150 см чистого, сухого масла Vistone А-30 в высокий термостойкий стакан (термостойкое боросиликатное стекло или аналогичное) вместимостью 300 см без сливного носика.

X1.1.5 Помещают фильтр в сборе в образец.

X1.1.6 Устанавливают термометр в стакан и выдерживают до стабилизации показаний температуры.

X1.1.7 Фильтруют масло Vistone А-30 с приложением вакуума на (20,0±0,2) кПа ниже атмосферного давления при одновременном запуске секундомера.

X1.1.8 Останавливают таймер в момент, когда фильтр прекращает всасывание масла и начинает засасывать воздух.

X1.1.9 Регистрируют время фильтрования в секундах и температуру фильтрования с точностью до 0,5°C.

X1.1.10 Вычисляют температурный поправочный коэффициент, соответствующий температуре фильтрования, с использованием следующих формул. Используют значение вязкости эталонного масла Vistone А-30, указанное поставщиком.

; (X1.1)

, (X1.2)

где - значение вязкости эталонного масла при заданной температуре, мм/с;

A, B - вычисляемые коэффициенты;

T - значение температуры в градусах Кельвина, при которой определяют ;

- температурный поправочный коэффициент;

- вязкость эталонного масла при 20°C.

.

Пример - Вычисление температурного поправочного коэффициента при 10°C, если вязкость Vistone А-30 составляет: 27,04 мм/с (сСт) при 40°C; 5,38 мм/с (сСт) при 100°C.

X1.1.11 Записывают значения вязкости и соответствующей температуры в формулу (X1.1)

; (X1.3)

; (X1.4)

. (X1.5)

X1.1.12 Вычисляют значения A и B:

A=8,8500; В=3,4823. (X1.6)

X1.1.13 Вычисляют вязкость Vistone А-30 при 20°C и 10°C по формуле (X1.1)

; (X1.7)

; (X1.8)

; (X1.9)

; (X1.10)

X1.1.14 Вычисляют температурный поправочный коэффициент при 10°C по формуле (X1.2)

; (X1.11)

. (X1.12)

X1.1.15 Умножают значение фактического времени фильтрования в секундах на температурный поправочный коэффициент для получения скорректированного времени фильтрования.

Пример - Для фактического времени фильтрования 79 с при 10°C значение скорректированного времени фильтрования составляет 790,582=46 с (X1.1.11), записывают, что фильтр является приемлемым.

X1.2 Протокол испытаний

X1.2.1 Если значение скорректированного времени фильтрования находится в диапазоне от 45 до 53 с включительно, то указывают, что фильтр является приемлемым для использования в LTFT. Если значение скорректированного времени фильтрования выходит за пределы указанного диапазона, то фильтр является неприемлемым и его бракуют.

Приложение ДА
(справочное)

Сведения о соответствии ссылочных стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного стандарта

Степень соответствия

Обозначение и наименование соответствующего межгосударственного стандарта

ASTM D 97

-

*

ASTM D 975

-

*

ASTM D 1655

-

*

ASTM D 2500

-

*

ASTM D 3117

-

*

ASTM D 3699

-

*

ASTM D 4057

NEQ

ГОСТ 31873-2012 "Нефть и нефтепродукты. Методы ручного отбора проб"

ASTM D 4177

-

*

ASTM D 7962

-

*

ASTM E 1

-

*

ASTM E 1137

-

*

ASTM E 2251

-

*

ASTM E 2877

-

*

CRC Report No. 528

-

*

CAN/CGSB-3.0, No. 140.1-M86

-

*

* Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного стандарта.

Примечание - В настоящей таблице использовано следующее условное обозначение степени соответствия стандартов:

- NEQ - неэквивалентные стандарты.

УДК 665.753.4:66.067.11:006.354

МКС 75.160.20

Ключевые слова: дизельные топлива, определение фильтруемости, текучесть при низких температурах (LTFT)




Электронный текст документа
и сверен по:

, 2019

Другие госты в подкатегории

    ГОСТ 1012-2013

    ГОСТ 10196-62

    ГОСТ 1038-75

    ГОСТ 10433-75

    ГОСТ 10585-2013

    ГОСТ 10585-99

    ГОСТ 10089-89

    ГОСТ 10220-82

    ГОСТ 11022-95

    ГОСТ 10200-83

    ГОСТ 10585-75

    ГОСТ 10373-75

    ГОСТ 10650-72

    ГОСТ 10835-78

    ГОСТ 11303-2013

    ГОСТ 11014-2001

    ГОСТ 11303-75

    ГОСТ 10227-2013

    ГОСТ 10227-86

    ГОСТ 11305-83

    ГОСТ 11130-75

    ГОСТ 10200-2017

    ГОСТ 11065-90

    ГОСТ 11304-75

    ГОСТ 11304-2013

    ГОСТ 11802-88

    ГОСТ 11804-76

    ГОСТ 11130-2013

    ГОСТ 12308-89

    ГОСТ 11239-76

    ГОСТ 11311-76

    ГОСТ 10650-2013

    ГОСТ 11306-83

    ГОСТ 11306-2013

    ГОСТ 13673-76

    ГОСТ 11305-2013

    ГОСТ 13674-78

    ГОСТ 13674-2013

    ГОСТ 147-2013

    ГОСТ 13672-76

    ГОСТ 14298-79

    ГОСТ 12308-2013

    ГОСТ 11623-89

    ГОСТ 14921-2018

    ГОСТ 13673-2013

    ГОСТ 1567-83

    ГОСТ 14921-78

    ГОСТ 14834-2014

    ГОСТ 1667-68

    ГОСТ 12433-83

    ГОСТ 1720-76

    ГОСТ 1012-72

    ГОСТ 16106-2019

    ГОСТ 17644-83

    ГОСТ 10679-76

    ГОСТ 11126-2019

    ГОСТ 12525-85

    ГОСТ 11382-76

    ГОСТ 15489.2-2018

    ГОСТ 18132-72

    ГОСТ 17749-72

    ГОСТ 17751-79

    ГОСТ 13210-72

    ГОСТ 13455-91

    ГОСТ 18597-73

    ГОСТ 19723-74

    ГОСТ 1709-75

    ГОСТ 11126-88

    ГОСТ 20448-90

    ГОСТ 19006-73

    ГОСТ 20924-75

    ГОСТ 2084-77

    ГОСТ 21290-75

    ГОСТ 17750-72

    ГОСТ 18598-73

    ГОСТ 21291-75

    ГОСТ 1928-2019

    ГОСТ 21289-75

    ГОСТ 1928-79

    ГОСТ 21103-75

    ГОСТ 1567-97

    ГОСТ 22254-92

    ГОСТ 22387.5-77

    ГОСТ 14920-79

    ГОСТ 22387.4-77

    ГОСТ 23083-78

    ГОСТ 10478-93

    ГОСТ 22054-76

    ГОСТ 23781-87

    ГОСТ 20448-2018

    ГОСТ 22055-76

    ГОСТ 21708-96

    ГОСТ 24160-80

    ГОСТ 2059-95

    ГОСТ 24764-81

    ГОСТ 24160-2014

    ГОСТ 24701-2013

    ГОСТ 25927-83

    ГОСТ 25927-95

    ГОСТ 24701-81

    ГОСТ 25950-83

    ГОСТ 2408.4-98

    ГОСТ 21443-75

    ГОСТ 27044-86

    ГОСТ 26370-84

    ГОСТ 26801-86

    ГОСТ 2408.1-95

    ГОСТ 2160-92

    ГОСТ 24676-2017

    ГОСТ 25828-83

    ГОСТ 22986-78

    ГОСТ 27154-86

    ГОСТ 27588-2020

    ГОСТ 25784-83

    ГОСТ 27589-2020

    ГОСТ 27578-2018

    ГОСТ 22667-82

    ГОСТ 27588-91

    ГОСТ 2669-81

    ГОСТ 27577-87

    ГОСТ 17323-71

    ГОСТ 27768-88

    ГОСТ 27894.0-88

    ГОСТ 27589-91

    ГОСТ 27894.2-88

    ГОСТ 25543-2013

    ГОСТ 2408.3-95

    ГОСТ 27314-91

    ГОСТ 2093-82

    ГОСТ 28245-89

    ГОСТ 27894.6-88

    ГОСТ 27894.9-88

    ГОСТ 28577.0-90

    ГОСТ 27894.1-88

    ГОСТ 28577.1-90

    ГОСТ 28577.2-90

    ГОСТ 28577.3-90

    ГОСТ 10538-87

    ГОСТ 27894.8-88

    ГОСТ 27894.11-88

    ГОСТ 22985-90

    ГОСТ 28781-90

    ГОСТ 28935-91

    ГОСТ 28946-2020

    ГОСТ 28357-89

    ГОСТ 29026-91

    ГОСТ 28946-91

    ГОСТ 22985-2017

    ГОСТ 27894.10-88

    ГОСТ 28572-90

    ГОСТ 30404-94

    ГОСТ 29064-91

    ГОСТ 305-82

    ГОСТ 27894.5-88

    ГОСТ 305-2013

    ГОСТ 29087-91

    ГОСТ 27578-87

    ГОСТ 27894.7-88

    ГОСТ 31872-2019

    ГОСТ 147-95

    ГОСТ 27894.3-88

    ГОСТ 28656-2019

    ГОСТ 28812-90

    ГОСТ 31871-2012

    ГОСТ 1932-93

    ГОСТ 3168-93

    ГОСТ 29040-91

    ГОСТ 31872-2012

    ГОСТ 3122-67

    ГОСТ 32353-2013

    ГОСТ 27894.4-88

    ГОСТ 32338-2013

    ГОСТ 28828-90

    ГОСТ 29040-2018

    ГОСТ 32346-2013

    ГОСТ 3213-91

    ГОСТ 32348-2013

    ГОСТ 32347-2013

    ГОСТ 32464-2013

    ГОСТ 32248-2013

    ГОСТ 32510-2013

    ГОСТ 32345-2013

    ГОСТ 32340-2013

    ГОСТ 28743-93

    ГОСТ 32465-2013

    ГОСТ 32977-2022

    ГОСТ 32975.2-2014

    ГОСТ 32462-2013

    ГОСТ 32975.3-2014

    ГОСТ 32511-2013

    ГОСТ 32978-2014

    ГОСТ 32349-2013

    ГОСТ 32513-2013

    ГОСТ 32976-2014

    ГОСТ 32339-2013

    ГОСТ 32988-2014

    ГОСТ 32990-2014

    ГОСТ 32989.3-2014

    ГОСТ 32987-2014

    ГОСТ 32979-2014

    ГОСТ 32508-2013

    ГОСТ 32350-2013

    ГОСТ 32514-2013

    ГОСТ 32401-2013

    ГОСТ 27379-87

    ГОСТ 32989.1-2014

    ГОСТ 32977-2014

    ГОСТ 32989.2-2014

    ГОСТ 33104-2014

    ГОСТ 32985-2014

    ГОСТ 28656-90

    ГОСТ 32595-2013

    ГОСТ 33112-2014

    ГОСТ 33018-2014

    ГОСТ 33156-2014

    ГОСТ 33132-2014

    ГОСТ 33103.7-2017

    ГОСТ 33131-2014

    ГОСТ 32984-2014

    ГОСТ 33103.4-2017

    ГОСТ 33162-2014

    ГОСТ 33158-2014

    ГОСТ 33103.3-2017

    ГОСТ 33195-2014

    ГОСТ 33103.5-2017

    ГОСТ 33113-2014

    ГОСТ 33077-2014

    ГОСТ 33196-2014

    ГОСТ 33192-2014

    ГОСТ 33197-2014

    ГОСТ 33288-2015

    ГОСТ 33298-2015

    ГОСТ 33255-2015

    ГОСТ 33256-2015

    ГОСТ 33304-2015

    ГОСТ 33297-2015

    ГОСТ 33193-2014

    ГОСТ 33157-2014

    ГОСТ 27313-2015

    ГОСТ 33296-2015

    ГОСТ 33253-2015

    ГОСТ 3340-88

    ГОСТ 33130-2014

    ГОСТ 33365-2015

    ГОСТ 33012-2014

    ГОСТ 33300-2015

    ГОСТ 33360-2015

    ГОСТ 32507-2013

    ГОСТ 33198-2014

    ГОСТ 33508-2015

    ГОСТ 33103.6-2017

    ГОСТ 33343-2015

    ГОСТ 33511-2015

    ГОСТ 33510-2015

    ГОСТ 33512.3-2015

    ГОСТ 33359-2015

    ГОСТ 33564-2015

    ГОСТ 33576-2015

    ГОСТ 33578-2015

    ГОСТ 33502-2015

    ГОСТ 33513-2015

    ГОСТ 33577-2015

    ГОСТ 3338-2015

    ГОСТ 33507-2015

    ГОСТ 33509-2015

    ГОСТ 33194-2014

    ГОСТ 3338-68

    ГОСТ 27313-95

    ГОСТ 33461-2015

    ГОСТ 33617-2015

    ГОСТ 33580-2015

    ГОСТ 33585-2015

    ГОСТ 33103.2-2017

    ГОСТ 33588-2015

    ГОСТ 33621-2015

    ГОСТ 33624-2015

    ГОСТ 33625-2015

    ГОСТ 33515-2015

    ГОСТ 33654-2022

    ГОСТ 33252-2015

    ГОСТ 33582-2015

    ГОСТ 33501-2015

    ГОСТ 33614-2015

    ГОСТ 33516-2015

    ГОСТ 33583-2015

    ГОСТ 33872-2016

    ГОСТ 33622-2015

    ГОСТ 33618-2015

    ГОСТ 33586-2015

    ГОСТ 33903-2016

    ГОСТ 33584-2015

    ГОСТ 33755-2016

    ГОСТ 33299-2015

    ГОСТ 33589-2015

    ГОСТ 34089-2017

    ГОСТ 33908-2016

    ГОСТ 33587-2015

    ГОСТ 34090.1-2017

    ГОСТ 33654-2015

    ГОСТ 34090.2-2017

    ГОСТ 33909-2016

    ГОСТ 33901-2016

    ГОСТ 33627-2015

    ГОСТ 33906-2016

    ГОСТ 33913-2016

    ГОСТ 33912-2016

    ГОСТ 34429-2018

    ГОСТ 34858-2022

    ГОСТ 34194-2017

    ГОСТ 34239-2017

    ГОСТ 34240-2017

    ГОСТ 4095-75

    ГОСТ 4338-74

    ГОСТ 4339-74

    ГОСТ 33899-2016

    ГОСТ 4790-80

    ГОСТ 34241-2017

    ГОСТ 4.105-2014

    ГОСТ 4806-79

    ГОСТ 33907-2016

    ГОСТ 5066-2018

    ГОСТ 5.1261-72

    ГОСТ 34238-2017

    ГОСТ 4668-75

    ГОСТ 5066-91

    ГОСТ 4338-91

    ГОСТ 5396-77

    ГОСТ 5445-2020

    ГОСТ 4039-88

    ГОСТ 5953-81

    ГОСТ 5445-79

    ГОСТ 33911-2016

    ГОСТ 5954.2-2020

    ГОСТ 34091-2017

    ГОСТ 34092-2017

    ГОСТ 5954.2-91

    ГОСТ 34210-2017

    ГОСТ 5953-93

    ГОСТ 5954.1-2020

    ГОСТ 6321-92

    ГОСТ 6382-91

    ГОСТ 5954.1-91

    ГОСТ 6667-75

    ГОСТ 5953-2020

    ГОСТ 6263-2020

    ГОСТ 7423-55

    ГОСТ 511-82

    ГОСТ 6382-2001

    ГОСТ 33902-2016

    ГОСТ 7847-2020

    ГОСТ 7846-73

    ГОСТ 7978-74

    ГОСТ 8606-2015

    ГОСТ 6263-80

    ГОСТ 8606-72

    ГОСТ 33898-2016

    ГОСТ 8448-2019

    ГОСТ 8489-85

    ГОСТ 33626-2015

    ГОСТ 8935-2020

    ГОСТ 8929-2020

    ГОСТ 511-2015

    ГОСТ 9326-90

    ГОСТ 34236-2017

    ГОСТ 9434-75

    ГОСТ 8935-77

    ГОСТ 8929-75

    ГОСТ 8448-78

    ГОСТ 8.649-2015

    ГОСТ 7847-73

    ГОСТ 9144-79

    ГОСТ 9880-2019

    ГОСТ 6073-75

    ГОСТ 9950-2020

    ГОСТ 9963-84

    ГОСТ 9951-73

    ГОСТ 9880-76

    ГОСТ 9950-83

    ГОСТ 9.023-74

    ГОСТ 8226-82

    ГОСТ 9521-2017

    ГОСТ 8606-93

    ГОСТ EN 116-2013

    ГОСТ 8226-2015

    ГОСТ ИСО 1013-95

    ГОСТ 5439-76

    ГОСТ EN 13016-1-2013

    ГОСТ 9949-76

    ГОСТ EN 15376-2014

    ГОСТ ISO 13758-2013

    ГОСТ 33563-2015

    ГОСТ EN 15484-2014

    ГОСТ EN 15195-2014

    ГОСТ EN 12177-2013

    ГОСТ ISO 13736-2009

    ГОСТ ISO 3013-2016

    ГОСТ ISO 13757-2013

    ГОСТ ISO 4257-2013

    ГОСТ ISO 20884-2012

    ГОСТ ISO 20884-2016

    ГОСТ ISO 20846-2016

    ГОСТ 4790-2017

    ГОСТ ISO 20846-2012

    ГОСТ 4790-93

    ГОСТ ISO 3734-2016

    ГОСТ ISO 6297-2015

    ГОСТ ISO 8216-3-2013

    ГОСТ ISO 4256-2013

    ГОСТ ISO 12156-1-2012

    ГОСТ ISO 6245-2016

    ГОСТ EN 14078-2016

    ГОСТ Р 50837.2-95

    ГОСТ EN 13132-2012

    ГОСТ ISO 8819-2013

    ГОСТ ISO 6251-2013

    ГОСТ ISO 5165-2014

    ГОСТ ISO 7536-2015

    ГОСТ ISO 5275-2017

    ГОСТ EN 1601-2017

    ГОСТ Р 50921-96

    ГОСТ Р 50902-96

    ГОСТ Р 50902-2011

    ГОСТ Р 50837.7-95

    ГОСТ Р 50837.4-95

    ГОСТ 9326-2002

    ГОСТ Р 50837.1-95

    ГОСТ Р 51062-97

    ГОСТ Р 51062-2011

    ГОСТ Р 50837.8-95

    ГОСТ Р 51313-99

    ГОСТ Р 50994-96

    ГОСТ Р 50837.5-95

    ГОСТ Р 51105-97

    ГОСТ Р 51661.1-2000

    ГОСТ Р 51661.2-2000

    ГОСТ Р 51587-2000

    ГОСТ EN 237-2013

    ГОСТ Р 51661.3-2000

    ГОСТ Р 51213-98

    ГОСТ Р 51586-2000

    ГОСТ Р 50837.6-95

    ГОСТ Р 51661.4-2000

    ГОСТ ISO 8973-2013

    ГОСТ Р 50837.3-95

    ГОСТ Р 50921-2005

    ГОСТ 33108-2014

    ГОСТ EN 1601-2012

    ГОСТ Р 51588-2000

    ГОСТ Р 51925-2002

    ГОСТ Р 51925-2011

    ГОСТ 33106-2014

    ГОСТ Р 52050-2003

    ГОСТ Р 52067-2003

    ГОСТ ISO 3993-2013

    ГОСТ Р 51104-97

    ГОСТ Р 51971-2002

    ГОСТ Р 51105-2020

    ГОСТ Р 52201-2004

    ГОСТ Р 52332-2022

    ГОСТ Р 51930-2002

    ГОСТ Р 52332-2005

    ГОСТ Р 51972-2002

    ГОСТ Р 52087-2003

    ГОСТ Р 52068-2003

    ГОСТ ISO 9162-2013

    ГОСТ Р 52256-2004

    ГОСТ Р 52709-2019

    ГОСТ Р 52755-2007

    ГОСТ Р 51942-2002

    ГОСТ Р 51941-2002

    ГОСТ Р 51866-2002

    ГОСТ Р 52911-2020

    ГОСТ Р 51661.5-2000

    ГОСТ Р 52050-2020

    ГОСТ Р 52917-2008

    ГОСТ Р 52257-2004

    ГОСТ Р 53355-2018

    ГОСТ Р 53356-2009

    ГОСТ Р 53200-2008

    ГОСТ Р 53706-2009

    ГОСТ Р 52911-2008

    ГОСТ Р 52340-2005

    ГОСТ Р 52087-2018

    ГОСТ Р 52709-2007

    ГОСТ Р 53357-2013

    ГОСТ Р 53357-2009

    ГОСТ Р 51942-2019

    ГОСТ Р 53199-2008

    ГОСТ Р 52660-2006

    ГОСТ Р 52714-2018

    ГОСТ Р 54184-2010

    ГОСТ Р 53355-2009

    ГОСТ Р 53718-2009

    ГОСТ Р 54188-2010

    ГОСТ Р 54185-2010

    ГОСТ Р 53715-2009

    ГОСТ Р 54189-2010

    ГОСТ Р 54192-2010

    ГОСТ Р 54190-2010

    ГОСТ Р 52240-2004

    ГОСТ Р 53717-2009

    ГОСТ Р 54211-2010

    ГОСТ Р 52954-2008

    ГОСТ Р 54186-2010

    ГОСТ Р 54212-2010

    ГОСТ Р 54214-2015

    ГОСТ Р 54191-2010

    ГОСТ Р 54219-2010

    ГОСТ Р 52050-2006

    ГОСТ Р 54214-2010

    ГОСТ Р 54223-2010

    ГОСТ Р 54187-2010

    ГОСТ Р 54224-2010

    ГОСТ Р 54215-2010

    ГОСТ Р 54230-2010

    ГОСТ Р 53605-2009

    ГОСТ Р 53714-2009

    ГОСТ Р 54225-2010

    ГОСТ Р 54218-2010

    ГОСТ Р 54217-2010

    ГОСТ Р 54232-2010

    ГОСТ Р 54237-2022

    ГОСТ Р 54233-2010

    ГОСТ Р 54226-2010

    ГОСТ Р 54235-2010

    ГОСТ Р 54216-2010

    ГОСТ Р 54238-2010

    ГОСТ Р 53716-2009

    ГОСТ Р 54231-2010

    ГОСТ Р 54213-2015

    ГОСТ ISO 13909-8-2013

    ГОСТ 33103.1-2014

    ГОСТ Р 54229-2010

    ГОСТ Р 54239-2018

    ГОСТ Р 54213-2010

    ГОСТ Р 54239-2010

    ГОСТ Р 54251-2010

    ГОСТ Р 54244-2010

    ГОСТ Р 54248-2010

    ГОСТ Р 54234-2010

    ГОСТ Р 54283-2010

    ГОСТ Р 54228-2010

    ГОСТ Р 54245-2010

    ГОСТ Р 54262-2010

    ГОСТ Р 54280-2010

    ГОСТ Р 54241-2010

    ГОСТ Р 54269-2010

    ГОСТ Р 52368-2005

    ГОСТ Р 54332-2011

    ГОСТ Р 54221-2010

    ГОСТ Р 54290-2010

    ГОСТ Р 55110-2012

    ГОСТ Р 54274-2010

    ГОСТ Р 55111-2012

    ГОСТ Р 54236-2010

    ГОСТ Р 54240-2010

    ГОСТ Р 54242-2020

    ГОСТ Р 54289-2010

    ГОСТ Р 52714-2007

    ГОСТ Р 54250-2010

    ГОСТ Р 55121-2012

    ГОСТ 33103.1-2017

    ГОСТ Р 55118-2012

    ГОСТ Р 55112-2012

    ГОСТ Р 54237-2010

    ГОСТ Р 54285-2010

    ГОСТ Р 55123-2012

    ГОСТ Р 55125-2012

    ГОСТ Р 54282-2010

    ГОСТ Р 55120-2012

    ГОСТ Р 55128-2012

    ГОСТ Р 55115-2012

    ГОСТ Р 55117-2012

    ГОСТ Р 55122-2012

    ГОСТ Р 54261-2010

    ГОСТ Р 55124-2012

    ГОСТ Р 55133-2012

    ГОСТ Р 55113-2012

    ГОСТ Р 54299-2010

    ГОСТ Р 54982-2012

    ГОСТ Р 55475-2013

    ГОСТ Р 54287-2010

    ГОСТ Р 55552-2013

    ГОСТ Р 55551-2013

    ГОСТ Р 55549-2013

    ГОСТ Р 55116-2012

    ГОСТ Р 55131-2012

    ГОСТ Р 55132-2012

    ГОСТ Р 55566-2013

    ГОСТ Р 55660-2013

    ГОСТ Р 55869-2013

    ГОСТ Р 55546-2013

    ГОСТ Р 55661-2013

    ГОСТ Р 55548-2013

    ГОСТ Р 54227-2010

    ГОСТ Р 55874-2013

    ГОСТ Р 55957-2014

    ГОСТ Р 55550-2013

    ГОСТ Р 55956-2014

    ГОСТ Р 55547-2013

    ГОСТ Р 55960-2014

    ГОСТ Р 56147-2014

    ГОСТ Р 55961-2014

    ГОСТ Р 55958-2014

    ГОСТ Р 55959-2014

    ГОСТ Р 55873-2013

    ГОСТ Р 55955-2014

    ГОСТ Р 56868-2016

    ГОСТ Р 56870-2016

    ГОСТ Р 56146-2014

    ГОСТ Р 56871-2016

    ГОСТ Р 55523-2013

    ГОСТ Р 55493-2013

    ГОСТ Р 55879-2013

    ГОСТ Р 56866-2016

    ГОСТ Р 56883-2016

    ГОСТ Р 55126-2012

    ГОСТ Р 56867-2016

    ГОСТ Р 55114-2012

    ГОСТ Р 56882-2016

    ГОСТ Р 56888-2016

    ГОСТ Р 56886-2016

    ГОСТ Р 56889-2016

    ГОСТ Р 56887-2016

    ГОСТ Р 55130-2012

    ГОСТ Р 56890-2016

    ГОСТ Р 56881-2016

    ГОСТ Р 56884-2016

    ГОСТ Р 57040-2016

    ГОСТ Р 57039-2016

    ГОСТ Р 58221-2018

    ГОСТ Р 57658-2017

    ГОСТ Р 57016-2016

    ГОСТ Р 58440-2019

    ГОСТ Р 56885-2016

    ГОСТ Р 59045-2020

    ГОСТ Р 58255-2018

    ГОСТ Р 55553-2013

    ГОСТ Р 58914-2020

    ГОСТ Р 59244-2020

    ГОСТ Р 59245-2020

    ГОСТ Р 57431-2017

    ГОСТ Р 59249-2020

    ГОСТ Р 59250-2020

    ГОСТ Р 59013-2020

    ГОСТ Р 59012-2020

    ГОСТ Р 59253-2020

    ГОСТ Р 59251-2020

    ГОСТ Р 59254-2020

    ГОСТ Р 59256-2020

    ГОСТ Р 59257-2020

    ГОСТ Р 59176-2020

    ГОСТ Р 59261-2020

    ГОСТ Р 59255-2020

    ГОСТ Р 56869-2016

    ГОСТ Р 59592-2021

    ГОСТ Р 59248-2020

    ГОСТ Р 70204-2022

    ГОСТ Р 70205-2022

    ГОСТ Р 59258-2020

    ГОСТ Р 70206-2022

    ГОСТ Р 59161-2020

    ГОСТ Р 70207-2022

    ГОСТ Р 70208-2022

    ГОСТ Р 70211-2022

    ГОСТ Р 70263-2022

    ГОСТ Р 59014-2020

    ГОСТ Р 70209-2022

    ГОСТ Р 70264-2022

    ГОСТ Р 59262-2020

    ГОСТ Р 59015-2020

    ГОСТ Р 58227-2018

    ГОСТ Р 59177-2020

    ГОСТ Р 59264-2020

    ГОСТ Р 55129-2012

    ГОСТ Р ЕН ИСО 20847-2010

    ГОСТ Р ЕН ИСО 7536-2007

    ГОСТ Р 56720-2015

    ГОСТ Р 56718-2015

    ГОСТ Р 55868-2013

    ГОСТ Р 59593-2021

    ГОСТ Р ИСО 13909-1-2010

    ГОСТ Р 59252-2020

    ГОСТ Р 55997-2014

    ГОСТ Р ИСО 12156-1-2006

    ГОСТ Р ИСО 15585-2009

    ГОСТ Р ЕН 15195-2011

    ГОСТ Р ИСО 13909-6-2013

    ГОСТ Р ЕН 12177-2008

    ГОСТ Р ЕН ИСО 12205-2007

    ГОСТ Р ЕН 12916-2008

    ГОСТ Р ИСО 5275-2009

    ГОСТ Р ИСО 13759-2010

    ГОСТ Р ИСО 3734-2009

    ГОСТ Р ЕН ИСО 20846-2006

    ГОСТ Р 54220-2010

    ГОСТ Р ЕН 237-2008

    ГОСТ Р ИСО 13909-5-2013

    ГОСТ Р 55119-2012

    ГОСТ Р ЕН ИСО 3405-2007

    ГОСТ Р 54484-2011

    ГОСТ Р 55127-2012

    ГОСТ Р ИСО 18283-2010

    ГОСТ Р 54275-2010

    ГОСТ Р 56873-2016