ГОСТ EN 13016-1-2013

ОбозначениеГОСТ EN 13016-1-2013
НаименованиеНефтепродукты жидкие. Часть 1. Определение давления насыщенных паров, содержащих воздух (ASVP), и расчет эквивалентного давления сухих паров (DVPE)
СтатусДействует
Дата введения01.01.2015
Дата отмены-
Заменен на-
Код ОКС75.160.20
Текст ГОСТа

ГОСТ EN 13016-1-2013

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

НЕФТЕПРОДУКТЫ ЖИДКИЕ

Часть 1

Определение давления насыщенных паров, содержащих воздух (ASVP), и расчет эквивалентного давления сухих паров (DVPE)

Liquid petroleum products. Part 1. Determination of air saturated vapour pressure (ASVP) and calculated dry vapour pressure equivalent (DVPE)

МКС 75.080

Дата введения 2015-01-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием "Всероссийский научно-исследовательский центр стандартизации, информации и сертификации сырья, материалов и веществ" (ФГУП "ВНИЦСМВ") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 ноября 2013 г. N 44)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Киргизия

KG

Кыргызстандарт

Молдова

MD

Молдова-Стандарт

Россия

RU

Росстандарт

Узбекистан

UZ

Узстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 22 ноября 2013 г. N 722-ст межгосударственный стандарт ГОСТ EN 13016-1-2013 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.

5 Настоящий стандарт идентичен европейскому стандарту EN 13016-1:2007* "Жидкие нефтепродукты. Давление паров. Часть 1. Определение давления насыщенных паров, содержащих воздух (ASVP), и расчет эквивалентного давления сухих паров (DVPE)" ["Liquid petroleum products - Vapour pressure - Part 1: Determination of air saturated vapour pressure (ASVP) and calculated dry vapour pressure equivalent (DVPE)", IDT].

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - .

Настоящий стандарт разработан на основе ГОСТ Р ЕН 13016-1-2008 "Нефтепродукты жидкие. Давление паров. Часть 1. Определение давления насыщенных паров, содержащих воздух (ASVP)".

Европейский стандарт разработан Техническим комитетом CEN/TC 19 "Газообразные и жидкие топлива, смазочные материалы и родственные продукты нефтяного, синтетического и природного происхождения".

Сведения о соответствии ссылочных европейского и международного стандартов межгосударственным стандартам приведены в дополнительном приложении ДА

6 ВВЕДЕН ВПЕРВЫЕ

7 ПЕРЕИЗДАНИЕ. Сентябрь 2019 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

Введение

Значение давления паров используют для классификации нефтепродуктов, их компонентов и исходного сырья для обеспечения безопасности слива, налива, перекачивания или транспортирования продукции в цистернах; данный показатель характеризует способность углеводородов выделять пары в неконтролируемых условиях и поэтому используется для экологического мониторинга.

Ограничение значения давления паров предотвращает кавитацию в насосе при перекачке нефтепродуктов.

Давление паров является мерой летучести топлив, используемых в двигателях разных типов с разными рабочими температурами. Топлива, имеющие высокое давление паров, могут слишком быстро испаряться в системах управления подачей топлива, что приводит к снижению потока топлива к двигателю и возможной закупорке из-за паровой пробки. И наоборот, топлива с низким давлением паров не могут достаточно легко испаряться, что приводит к затруднению запуска двигателя, снижению степени его прогрева и приемистости.

1 Область применения

Настоящий стандарт устанавливает метод определения общего давления в вакууме, создаваемого низкокипящими маловязкими нефтепродуктами, их компонентами и исходным сырьем, содержащим воздух. Эквивалентное давление сухих паров (DVPE) можно вычислить, используя давление насыщенных паров, содержащих воздух (ASVP).

Испытания по настоящему стандарту следует проводить при соотношении пар - жидкость 4:1 и температуре 37,8°C.

Для арбитражных испытаний используют контейнеры для проб вместимостью 1 л. Однако в связи с ограничением объема контейнера для проб при автоматическом отборе из паровых пробок танкера или наземных резервуаров в настоящем стандарте установлены значения прецизионности для контейнеров вместимостью 250 мл, которые также используют для арбитражных целей.

Примечание 1 - В настоящем стандарте установлена прецизионность для контейнеров вместимостью 1 л и 250 мл. В приложении A приведены значения прецизионности результатов испытания образца объемом 50 мл при температуре 37,8°C или образца объемом 1 л при температуре 50,0°С.

При проведении испытания оборудование не смачивают водой, поэтому данный метод пригоден для испытания образцов, содержащих или не содержащих оксигенаты. Воду, растворенную в образце, не учитывают.

Настоящий метод применяют для испытания образцов, насыщенных воздухом, которые создают давление насыщенных паров, содержащих воздух, в диапазоне от 9,0 до 150,0 кПа при температуре 37,8°C.

Настоящий стандарт используют для испытания топлива с кислородсодержащими соединениями в пределах, установленных директивой [4].

Примечание 2 - В настоящем стандарте для обозначения объемной и массовой доли используют обозначения "% об." и "% масс." соответственно.

Предупреждение - При применении настоящего стандарта могут быть использованы опасные материалы, процедуры и оборудование. В настоящем стандарте не указаны все проблемы безопасности, связанные с его применением. Ответственным за определение соответствующих правил безопасности и охраны здоровья и применимости законодательных ограничений до его использования является пользователь настоящего стандарта.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных - последнее издание (включая все изменения).

EN ISO 3170, Petroleum liquids - Manual sampling (ISO 3170:2004) (Нефтепродукты жидкие. Ручной отбор проб)

ISO 3007, Petroleum products and crude petroleum - Determination of vapour pressure - Reid method (Нефтепродукты и сырая нефть. Определение давления пара. Метод Рейда)

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.1 давление насыщенных паров, содержащих воздух; ASVP [air saturated vapour pressure (ASVP)]: Общее, наблюдаемое в вакууме давление, состоящее из парциального давления паров нефтепродукта, их компонентов и исходного сырья в отсутствие нерастворенной воды и парциального давления растворенного воздуха.

3.2 давление насыщенных паров по Рейду (Reid vapour pressure): Давление насыщенных паров, определяемое по ISO 3007.

3.3 эквивалентное давление сухих паров; DVPE [dry vapour pressure equivalent (DVPE)]: Значение эквивалентного давления пара, вычисляемое по формуле корреляции со значением сухого давления паров по Рейду.

4 Сущность метода

Охлажденный и насыщенный воздухом образец известного объема впрыскивают в термостатически регулируемую вакуумную камеру или полость, образуемую перемещающимся поршнем при впрыскивании образца, внутренний объем которой в пять раз больше объема испытуемого образца, введенного в камеру. После введения образца в камеру его выдерживают до достижения равновесия при температуре 37,8°С. Общее давление в камере равно сумме давления паров образца и парциального давления растворенного воздуха, измеряемых с помощью датчика давления и индикатора. Измеренное общее давление пара может быть преобразовано в эквивалентное давление сухих паров (DVPE) по формуле корреляции.

5 Реактивы и материалы

Для проверки аппаратуры с помощью контрольных образцов для контроля качества используют реактивы чистотой не менее 99% масс.

5.1 Пентан.

5.2 2,2-Диметилбутан.

5.3 2,3-Диметилбутан.

5.4 Циклопентан.

6 Аппаратура

6.1 Прибор

6.1.1 Прибор должен соответствовать основным требованиям, изложенным в 6.1.2-6.1.6.

Примечание - В настоящем стандарте отсутствует подробное описание приборов из-за разных основных принципов действия приборов разных изготовителей.

Установка, эксплуатация и обслуживание прибора - в соответствии с инструкциями изготовителя.

6.1.2 Конструкция прибора должна обеспечивать возможность создавать вакуум в испытательной камере, извлекать ее из аппарата, сливать образец из нее и при необходимости промывать и продувать камеру.

6.1.3 Испытательная камера должна быть герметичной, иметь приспособление для впрыскивания образца и вмещать от 5 до 50 см жидкости и пара с точностью до 1%. Испытательная камера должна быть оснащена устройством, позволяющим контролировать заданную температуру образца с точностью до ±0,1°С и показывать ее с разрешением не менее 0,1°С.

Примечание 1 - Испытательные камеры, используемые в приборах, обеспечивающие заданную прецизионность, должны быть из алюминия или нержавеющей стали.

Примечание 2 - Допускается использовать испытательные камеры вместимостью менее 5 и более 50 мл, однако это может повлиять на прецизионность результатов испытания по настоящему методу.

6.1.4 Прибор должен измерять давление паров образца нефтепродукта небольших объемов, его компонентов и исходного сырья в диапазоне от 9,0 до 150,0 кПа с помощью датчика давления точностью до 0,8 кПа и разрешением 0,1 кПа.

6.1.5 Если используют вакуумный насос, он должен обеспечивать уменьшение абсолютного давления в испытательной камере не менее чем до 0,01 кПа.

6.1.6 Если используют герметичный шприц или аналогичное устройство для измерения или введения заданного объема образца в испытательную камеру, его размеры должны соответствовать заданному объему образца с точностью не менее 1%.

6.2 Охлаждающее оборудование

Для охлаждения образцов до температуры от 0°С до 1°С используют воздушную баню, баню с ледяной водой или холодильник.

Примечание - Для низкокипящих нефтепродуктов используют холодильник в безопасном исполнении.

6.3 Барометр, измеряющий атмосферное давление с точностью не менее 0,1 кПа, калиброванный и/или проверенный в установленном порядке.

6.4 Вакуумметр для калибровки с диапазоном измерения не менее чем от 0,00 до 0,67 кПа, калиброванный и/или проверенный в установленном порядке.

6.5 Датчик давления с диапазоном измерения не менее чем от 0,00 до 177 кПа, калиброванный и/или проверенный в установленном порядке.

6.6 Устройство измерения температуры в требуемом диапазоне с разрешением 0,1°С и погрешностью шкалы не более 0,1°С, калиброванное и/или проверенное в установленном порядке.

7 Отбор проб

7.1 Следует соблюдать меры предосторожности и аккуратность при отборе проб и работе с ними, учитывая потери за счет испарения, которые приводят к изменению состава образца и изменению давления паров.

7.2 Пробы отбирают по EN ISO 3170 и/или по национальным стандартам на отбор проб нефтепродуктов, при этом не используют методику вытеснения водой.

Примечание - Не рекомендуется автоматический отбор проб по стандарту [5], если при этом происходят потери легких фракций отбираемых продуктов или компонентов. Потеря легких фракций может влиять на значение давления паров.

7.3 Для текущих испытаний образец отбирают в герметичный контейнер из подходящего материала вместимостью 1 л или в контейнер другой вместимости с тем же требованием по заполнению контейнера. Для арбитражного испытания используют контейнер вместимостью 1 л или 250 мл. На момент доставки в лабораторию контейнер должен быть заполнен образцом не менее чем на 70% об.

7.4 После отбора пробу как можно быстрее помещают в холодное место и хранят до проведения испытания.

Примечание - Для защиты от воздействия высоких температур рекомендуется до проведения испытания хранить пробу в охлаждающем оборудовании (6.2).

7.5 Пробы, находившиеся в негерметичных контейнерах, не используют, их утилизируют, и испытания проводят на новых пробах.

8 Подготовка образцов

8.1 При проведении испытаний образца в первую очередь определяют давление насыщенных паров. Для арбитражных испытаний из контейнера должна быть отобрана только одна испытуемая проба; для текущих испытаний допускается отбирать несколько образцов из одного и того же контейнера.

Примечание - Оценка прецизионности, проведенная ASTM в 2003 г. [6], показала отсутствие отклонения результатов испытаний первого и второго образцов, отобранных из одного контейнера для проб вместимостью 1 л. При отборе образцов для испытания из контейнера для проб вместимостью 250 мл наблюдалось небольшое уменьшение значения давления насыщенных паров первого и второго образцов.

8.2 Перед открытием контейнер помещают в охлаждающее оборудование (6.2) и выдерживают до достижения контейнером и его содержимым температуры от 0°С до 1°С.

Примечание - Время, необходимое для достижения указанного температурного диапазона, может быть определено прямым измерением температуры аналогичной жидкости в аналогичном контейнере, охлаждаемом одновременно с образцом.

8.3 После достижения температуры от 0°С до 1°С контейнер с образцом вынимают из охлаждающего оборудования (6.2) и насухо вытирают хорошо впитывающим материалом. Открывают контейнер (если он непрозрачный) и осматривают его содержимое.

8.4 Образец должен занимать от 70% об. до 80% об. вместимости контейнера. Образец бракуют, если его объем занимает менее 70% об. вместимости контейнера. Если контейнер заполнен образцом более чем на 80% об., сливают часть содержимого, чтобы образец занимал от 70% об. до 80% об. вместимости контейнера. Не допускается возвращать в контейнер ранее слитую порцию образца. Снова закрывают контейнер и возвращают в охлаждающее оборудование (6.2).

8.5 Для насыщения образца воздухом после охлаждения до температуры от 0°С до 1°С извлекают контейнер из охлаждающей бани. Насухо вытирают контейнер хорошо впитывающим материалом, быстро открывают контейнер, не допуская попадания в него воды, затем закрывают контейнер, энергично встряхивают и снова охлаждают не менее 2 мин.

8.6 Процедуру по 8.5 повторяют два раза. Помещают контейнер с образцом в охлаждающую баню и оставляют в ней до проведения испытаний.

9 Подготовка аппаратуры

9.1 Готовят оборудование к работе в соответствии с инструкциями изготовителя.

9.2 Готовят испытательную камеру в соответствии с инструкциями изготовителя, чтобы избежать загрязнения испытуемого образца. Если используют вакуумную камеру, по дисплею испытательной камеры визуально убеждаются в том, что давление в испытательной камере стабильно и не превышает 0,1 кПа. Если давление не стабильно или превышает 0,1 кПа, проверяют испытательную камеру на наличие в ней следов низкокипящих компонентов от предыдущего образца или проверяют калибровку датчика.

9.3 При введении испытуемого образца шприцем (6.1.6) перед отбором образца его охлаждают в воздушной бане или холодильнике до температуры от 0°С до 1°С. Для предотвращения загрязнения резервуара шприца водой при охлаждении его выходное отверстие герметизируют.

10 Калибровка аппаратуры

10.1 Датчик давления

10.1.1 Проверяют калибровку датчика давления при температуре 37,8°С не реже 1 раза в 6 мес или при необходимости по результатам проверки контроля качества. Калибровку датчика проверяют по двум контрольным точкам: при нулевом давлении (менее 0,1 кПа) и барометрическом давлении окружающей среды.

Примечание - Ртутный барометр более точный и подходящий для калибровки показания датчика при атмосферном давлении. Такие барометры калибруют при 0°С или по значению плотности ртути, определенному при 0°С. Это означает, что если барометр используется в лаборатории при температуре окружающей среды, его показание будет слегка завышено, например для получения правильного значения давления при температуре 20°С из показания барометра вычитают 0,33 кПа.

10.1.2 Присоединяют калиброванный вакуумметр (6.4) или датчик давления (6.5) к источнику вакуума в линию с испытательной камерой. Если калиброванный манометр или датчик регистрирует давление менее 0,1 кПа, устанавливают датчик аппарата на нуль или на фактическое показание калиброванного манометра или датчика в соответствии с конструкцией аппаратуры и инструкциями изготовителя.

10.1.3 Открывают испытательную камеру, чтобы внутри нее установилось атмосферное давление, и наблюдают за показанием датчика. Если давление отличается от атмосферного барометрического давления более чем на 0,1 кПа (которое скорректировано в зависимости от температуры по 10.1.1), регулируют датчик давления для получения соответствующего показания. Убеждаются в том, что оборудование установлено на регистрацию общего давления, а не на рассчитанное или скорректированное значение.

10.1.2 10.1.4 Повторяют процедуры по 10.1.2 и 10.1.3 до тех пор, пока нуль и показание значений барометрического давления можно считывать с точностью ±0,1 кПа без дальнейшей регулировки.

Примечание - В некоторых приборах проверка и регулирование давления осуществляется автоматически.

10.2 Устройство измерения температуры

Проверяют устройство измерения температуры, используемое для контроля температуры образца в испытательной камере, по калиброванному устройству измерения температуры (6.5) не реже 1 раза в 6 мес или при необходимости по результатам проверки контроля качества. Значения температуры должны быть в пределах ±0,1°С температуры испытания. При проверке калибровки устройства измерения температуры по калиброванному стеклянному жидкостному термометру используют термометр с соответствующей глубиной погружения или применяют соответствующие поправки на выступающий столбик.

11 Проверка аппаратуры

11.1 Проверяют работу аппаратуры каждый раз при использовании или с периодичностью, определенной анализом статистических данных контроля качества. При этом в качестве образца для проведения проверки контроля качества используют чистое углеводородное соединение с известным давлением насыщенных паров, аналогичным давлению насыщенных паров испытуемого образца. Испытание образца чистого углеводородного соединения для проведения проверки контроля качества проводят так же, как образца (разделы 8 и 12).

11.2 Определяют давление насыщенных паров, содержащих воздух (ASVP), и если полученное значение отличается от принятого опорного значения более чем на значение предельного отклонения, повторно калибруют прибор (раздел 10).

Примечание 1 - В качестве образцов для проверки контроля качества рекомендуется использовать пентан, 2,2-диметилбутан, 2,3-диметилбутан и циклопентан чистотой не менее 99%. К образцам контроля качества не предъявляют требования как к прослеживаемым эталонным материалам. Принятые значения ASVP и DVPE и их предельные отклонения, приведенные в приложении B, были установлены по результатам межлабораторных испытаний ASTM в 2003 и 2004 гг. [6].

Примечание 2 - Для чистых углеводородных соединений (11.1) могут быть отобраны из одного контейнера несколько проб в течение длительного времени при условии, что испытуемая проба чистого углеводородного соединения насыщена воздухом по (8.5) и не используется повторно. При использовании пентана рекомендуется наполнять контейнер не менее чем на 50% об.

12 Проведение испытания

12.1 Вынимают контейнер с образцом из охлаждающего оборудования (6.2), насухо вытирают наружную поверхность впитывающим материалом, открывают и вставляют шприц (9.3). Отбирают образец без пузырьков воздуха и как можно быстрее переносят его в испытательную камеру. Закрывают контейнер. Общее время между открыванием охлажденного контейнера с образцом и введением испытуемой пробы образца в испытательную камеру должно быть не более 1 мин.

12.2 Для получения точного значения давления насыщенных паров, содержащих воздух, при температуре (37,8±0,1)°С следуют инструкциям изготовителя при введении пробы образца в испытательную камеру и работе с прибором.

12.3 Записывают показания датчика давления с точностью до 0,1 кПа. Если прибор автоматически не регистрирует значение стабильного давления, через каждые (60±5) с записывают показания датчика давления с точностью до 0,1 кПа. Если три последовательных показания находятся в пределах 0,1 кПа, регистрируют среднеарифметическое значение этих показаний как ASVP с точностью до 0,1 кПа.

12.4 После отбора образца и введения его в прибор проверяют оставшийся образец на расслоение фаз.

Если образец находится в непрозрачном контейнере, тщательно встряхивают его содержимое, немедленно переносят пробу оставшегося образца в стеклянный контейнер и проверяют на наличие расслоения фаз. Если испытуемый образец находится в стеклянном контейнере, наличие расслоения фаз устанавливают до переноса образца.

Если образец не прозрачный и не светлый, или если наблюдается разделение фаз, образец утилизируют и результаты считают недействительными.

13 Вычисление

Эквивалентное давление сухих паров DVPE, кПа, вычисляют по формуле

DVPE=(0,965 ASVP)-3,78, (1)

где ASVP - измеренное давление насыщенных паров, содержащих воздух, не скорректированное с помощью запрограммированного поправочного коэффициента.

В некоторых приборах вычисление DVPE осуществляется автоматически.

Примечание - Формула корреляции DVPE разработана по результатам совместной программы ASTM в 1988 г. и подтверждена в расширенной программе ASTM в 1991 г. Формула DVPE корректирует отклонение между значениями измеренного давления насыщенных паров, содержащих воздух, и давления сухого пара, полученными по стандарту [7]. Значение DVPE установлено в стандарте [1].

14 Обработка результатов

Записывают значения ASVP и DVPE образца с точностью до 0,1 кПа.

15 Прецизионность

Примечание 1 - Данные прецизионности образцов, отобранных в контейнеры вместимостью 1 л, получены по результатам испытаний, проведенных ASTM в 2003 г. [6], в 27 лабораториях на 20 типах углеводородных смесей и смесей углеводородов с оксигенатами со значениями DVPE в диапазоне от 17,5 до 102,5 кПа при использовании испытательной аппаратуры Laboratory Grabner, Portable Grabner и Setavap® Tester.

________________

Laboratory Grabner, Portable Grabner и Setavap Tester являются примерами подходящей аппаратуры, доступной в продаже. Эта информация приведена для удобства пользователей настоящего стандарта и не является одобрением данной продукции CEN.

По результатам проведения аналогичных программ, организованных ASTM [7] и CEN/TC 19/WG 15 [9] в 1991 г., были получены несколько худшие значения прецизионности, чем приведенные в настоящем разделе.

Примечание 2 - Данные прецизионности образцов, отобранных в контейнеры вместимостью 250 мл, получены по результатам испытаний, проведенных ASTM в 2003 г. [6] в 27 лабораториях на 20 типах образцов со значением DVPE в диапазоне от 17,5 до 102,5 кПа при использовании четырех типов испытательной аппаратуры.

15.1 Повторяемость

15.1.1 Общие положения

Расхождение между двумя результатами испытаний, полученными одним и тем же оператором на одном и том же оборудовании при постоянных рабочих условиях на идентичном испытуемом материале при нормальном и правильном выполнении метода испытания в течение длительного времени, может превысить значения, указанные ниже, только в одном случае из двадцати.

В приложении А приведены значения прецизионности результатов испытания образцов объемом 50 мл при температурах 37,8°C и 50°C из контейнера вместимостью 1 л.

15.1.2 Контейнер для образцов вместимостью 1 л

, (2)

где - среднеарифметическое значение сравниваемых результатов, кПа;

- давление, равное 160 кПа.

15.1.3 Контейнер для образцов вместимостью 250 мл

=1,47 кПа.

15.2 Воспроизводимость

15.2.1 Общие положения

Расхождение между двумя единичными и независимыми результатами испытаний, полученными разными операторами, работающими в разных лабораториях на идентичном испытуемом материале при нормальном и правильном выполнении метода испытания в течение длительного времени, может превысить значения, указанные ниже, только в одном случае из двадцати.

В приложении А приведены значения прецизионности результатов испытания образцов объемом 50 мл при температурах 37,8°C и 50°C из контейнера вместимостью 1 л.

15.2.2 Контейнер для образцов вместимостью 1 л

, (3)

где - среднеарифметическое значение двух независимых сравниваемых результатов;

- 160 кПа.

15.2.3 Контейнер для образцов вместимостью 250 мл

=2,75 кПа.

В приложении A приведены значения прецизионности результатов испытания образцов объемом 50 мл при температурах 37,8°C и 50°C из контейнеров вместимостью 1 л.

16 Протокол испытания

Протокол испытания должен содержать:

a) тип и идентификацию испытуемого продукта;

b) обозначение настоящего стандарта;

c) использованную процедуру отбора проб (раздел 8) и объем контейнера для проб;

d) результаты испытания (раздел 14);

e) любое отклонение от процедуры испытания по настоящему стандарту;

f) дату проведения испытания.

Приложение A
(справочное)

Дополнительные данные прецизионности

При разработке настоящего метода были проведены дополнительные испытания. В первом испытании давление насыщенных паров было измерено при температуре 50,0°C, во втором - измерения были сделаны с использованием образцов объемом 50 мл.

Дополнительные испытания образцов объемом 50 мл при температуре 37,8°C и температуре 50°C из контейнера вместимостью 1 л были проведены с целью:

- установления требований Европейского соглашения о перевозке опасных грузов (ADR), в котором давление насыщенных паров указано для температуры 50,0°C;

- проверки возможности применения для испытаний образцов, отобранных в контейнеры меньших объемов. Это дает преимущества для обеспечения безопасности и экономии транспортных расходов при отправке проб в испытательную лабораторию. Кроме того, это позволяет проводить научные исследования с использованием пробы небольших объемов.

Статистическая оценка результатов показала, что в обоих случаях не было снижения прецизионности по сравнению со стандартными условиями.

________________

Можно получить в Институте энергетики Великобритании по следующей ссылке: MS 65.5.2 (14.04.92).

Были получены следующие значения прецизионности:

Таблица А.1 - Значения прецизионности для образцов объемом 50 см

Условие

Повторяемость

Воспроизводимость

Проба из контейнера вместимостью 1 л при температуре 50,0°С

0,054

0,127

Проба объемом 50 мл при температуре 37,8°С

0,195

0,533

- среднеарифметическое значение сравниваемых результатов.

Примечание - Данные прецизионности для образцов объемом 50 см при температуре испытания 50,0°С основаны на результатах испытаний образцов с давлением насыщенных паров от 10 до 150 кПа на аппарате Setavap Tester, проведенных в 8 лабораториях.

Приложение B
(справочное)

Значения ASVP и DVPE для образцов контроля качества

В таблице B.1 приведены принятые значения для образцов контроля качества ASVP и DVPE чистых углеводородных соединений.

Используют чистые углеводородные соединения чистотой не менее 99%.

Таблица В.1 - Принятые значения ASVP и DVPE и приемлемый диапазон определения

Чистое углеводородное соединение

Значение давления насыщенных паров, содержащих воздух (ASVP) ± предельное отклонение, кПа

Приемлемый диапазон определения для ASVP, кПа

Значение эквивалентного давления сухих паров (DVPE) ± предельное отклонение, кПа

Приемлемый диапазон определения для DVPE, кПа

Источник

Пентан

112,8±0,2

112,8±1,2

105,1±1,2

105,1±1,2

[6]

(от 110,6 до 114,0)

(от 103,9 до 106,3)

2,2-Диметилбутан

74,1±0,2

74,1±1,2

67,7±1,2

67,7±1,2

[6]

(от 72,9 до 75,3)

(от 66,5 до 68,9)

Чистое углеводородное соединение

Значение давления
насыщенных паров, содержащих воздух (ASVP) ± неопределен-
ность, кПа

Приемлемый диапазон определения для ASVP, кПа

Значение эквивалентного давления сухих паров (DVPE) ± неопределен-
ность, кПа

Приемлемый диапазон определе-
ния для DVPE, кПа

Отчет

2,3-Диметилбутан

57,1±0,2

57,1±1,2

51,3±1,2

51,3±1,2

[6]

(от 55,9 до 58,3)

(от 50,1 до 52,5)

Циклопентан

73,3±0,2

73,3±1,2

67,0±1,2

67,0±1,2

Исследования ASTM 2004 г.

(от 72,1 до 74,5)

(от 65,8 до 68,2)

Примечание - Принятые значения для образцов контроля качества (ARV) с предельными отклонениями (с 95%-ной доверительной вероятностью) были получены по результатам исследований, проведенных в 2003 г. [6], и основаны на измеренном значении общего давления насыщенных паров (ASVP). Это значение с предельным отклонением, рекомендованным изготовителями приборов, было использовано для определения приемлемых диапазонов значений ASVP и DVPE образцов контроля качества для проверки работы прибора. Значения, находящиеся в пределах приемлемого диапазона определения, показывают, что прибор работает правильно.

Приложение ДА
(справочное)

Сведения о соответствии ссылочных европейского и международного стандартов межгосударственным стандартам

Таблица ДА.1

Обозначение ссылочного европейского и международного стандартов

Степень соответствия

Обозначение и наименование соответствующего межгосударственного стандарта

EN ISO 3170

-

*

ISO 3007

MOD

ГОСТ 1756-2000 "Нефтепродукты. Определение давления насыщенных паров"

* Соответствующий межгосударственный стандарт отсутствует. До его принятия рекомендуется использовать перевод на русский язык данного европейского стандарта.

Примечание - В настоящей таблице использовано следующее условное обозначение степени соответствия стандарта:

- MOD - модифицированный стандарт.

Библиография

[1]

EN 228

Automotive fuels - Unleaded petrol - Requirements and test methods

(Моторные топлива. Бензин неэтилированный. Технические требования и методы испытаний)

________________

Заменен на EN 228+A1 (2017-05).

[2]

IP 394

Determination of air-saturated vapour pressure (ASVP)

[Определение давления насыщенных паров, содержащих воздух (ASVP)]

[3]

ASTM D 5191

Test method for vapor pressure of petroleum products (mini method)

[Метод определения давления насыщенных паров нефтепродуктов (экспресс-метод)]

[4]

EC Directive 85/536/EEC

Council Directive on crude-oil savings through the use of substitute fuel components in petrol

(Директива EC по экономии сырой нефти за счет использования в бензине замещающих топливных компонентов)

[5]

EN ISO 3171

Petroleum liquids - Automatic pipeline sampling (ISO 3171:1988)

(Нефтепродукты жидкие. Автоматический отбор проб из трубопровода)

[6]

ASTM RR:D02-1619

Interlaboratory precision evaluation program

(Отчет по межлабораторной программе определения прецизионности. Можно получить в ASTM International, 100 Barr Habor Drive, West Conshohocken, PA 19428-2959, USA)

[7]

ASTM RR:D02-1286, 1991

Interlaboratory precision evaluation program

(Отчет по межлабораторной программе определения прецизионности. Можно получить в ASTM International, 100 Barr Habor Drive, West Conshohocken, PA 19428-2959, USA)

[8]

ASTM D 4953

Test method for vapor pressure of gasoline and gasoline-oxygenate blends (dry method)

[Метод определения давления насыщенных паров бензина и смесей бензина с оксигенатами (сухой метод)]

[9]

CEN/TC 19/WG 15

Precision Evaluation, 1991

(Оценка прецизионности, 1991 г. Можно получить в Институте энергетики, 61 New Cavendish Street, London W1G 7AR, UK)

УДК 662.753.1:006.354

МКС 75.080

Ключевые слова: жидкие нефтепродукты, давление насыщенных паров, содержащих воздух, ASVP, эквивалентное давление сухих паров, DVPE

Электронный текст документа

и сверен по:

, 2019

Другие госты в подкатегории

    ГОСТ 1012-2013

    ГОСТ 10196-62

    ГОСТ 1038-75

    ГОСТ 10433-75

    ГОСТ 10585-2013

    ГОСТ 10585-99

    ГОСТ 10089-89

    ГОСТ 10220-82

    ГОСТ 11022-95

    ГОСТ 10200-83

    ГОСТ 10585-75

    ГОСТ 10373-75

    ГОСТ 10650-72

    ГОСТ 10835-78

    ГОСТ 11303-2013

    ГОСТ 11014-2001

    ГОСТ 11303-75

    ГОСТ 10227-2013

    ГОСТ 10227-86

    ГОСТ 11305-83

    ГОСТ 11130-75

    ГОСТ 10200-2017

    ГОСТ 11065-90

    ГОСТ 11304-75

    ГОСТ 11304-2013

    ГОСТ 11802-88

    ГОСТ 11804-76

    ГОСТ 11130-2013

    ГОСТ 12308-89

    ГОСТ 11239-76

    ГОСТ 11311-76

    ГОСТ 10650-2013

    ГОСТ 11306-83

    ГОСТ 11306-2013

    ГОСТ 13673-76

    ГОСТ 11305-2013

    ГОСТ 13674-78

    ГОСТ 13674-2013

    ГОСТ 147-2013

    ГОСТ 13672-76

    ГОСТ 14298-79

    ГОСТ 12308-2013

    ГОСТ 11623-89

    ГОСТ 14921-2018

    ГОСТ 13673-2013

    ГОСТ 1567-83

    ГОСТ 14921-78

    ГОСТ 14834-2014

    ГОСТ 1667-68

    ГОСТ 12433-83

    ГОСТ 1720-76

    ГОСТ 1012-72

    ГОСТ 16106-2019

    ГОСТ 17644-83

    ГОСТ 10679-76

    ГОСТ 11126-2019

    ГОСТ 12525-85

    ГОСТ 11382-76

    ГОСТ 15489.2-2018

    ГОСТ 18132-72

    ГОСТ 17749-72

    ГОСТ 17751-79

    ГОСТ 13210-72

    ГОСТ 13455-91

    ГОСТ 18597-73

    ГОСТ 19723-74

    ГОСТ 1709-75

    ГОСТ 11126-88

    ГОСТ 20448-90

    ГОСТ 19006-73

    ГОСТ 20924-75

    ГОСТ 2084-77

    ГОСТ 21290-75

    ГОСТ 17750-72

    ГОСТ 18598-73

    ГОСТ 21291-75

    ГОСТ 1928-2019

    ГОСТ 21289-75

    ГОСТ 1928-79

    ГОСТ 21103-75

    ГОСТ 1567-97

    ГОСТ 22254-92

    ГОСТ 22387.5-77

    ГОСТ 14920-79

    ГОСТ 22387.4-77

    ГОСТ 23083-78

    ГОСТ 10478-93

    ГОСТ 22054-76

    ГОСТ 23781-87

    ГОСТ 20448-2018

    ГОСТ 22055-76

    ГОСТ 21708-96

    ГОСТ 24160-80

    ГОСТ 2059-95

    ГОСТ 24764-81

    ГОСТ 24160-2014

    ГОСТ 24701-2013

    ГОСТ 25927-83

    ГОСТ 25927-95

    ГОСТ 24701-81

    ГОСТ 25950-83

    ГОСТ 2408.4-98

    ГОСТ 21443-75

    ГОСТ 27044-86

    ГОСТ 26370-84

    ГОСТ 26801-86

    ГОСТ 2408.1-95

    ГОСТ 2160-92

    ГОСТ 24676-2017

    ГОСТ 25828-83

    ГОСТ 22986-78

    ГОСТ 27154-86

    ГОСТ 27588-2020

    ГОСТ 25784-83

    ГОСТ 27589-2020

    ГОСТ 27578-2018

    ГОСТ 22667-82

    ГОСТ 27588-91

    ГОСТ 2669-81

    ГОСТ 27577-87

    ГОСТ 17323-71

    ГОСТ 27768-88

    ГОСТ 27894.0-88

    ГОСТ 27589-91

    ГОСТ 27894.2-88

    ГОСТ 25543-2013

    ГОСТ 2408.3-95

    ГОСТ 27314-91

    ГОСТ 2093-82

    ГОСТ 28245-89

    ГОСТ 27894.6-88

    ГОСТ 27894.9-88

    ГОСТ 28577.0-90

    ГОСТ 27894.1-88

    ГОСТ 28577.1-90

    ГОСТ 28577.2-90

    ГОСТ 28577.3-90

    ГОСТ 10538-87

    ГОСТ 27894.8-88

    ГОСТ 27894.11-88

    ГОСТ 22985-90

    ГОСТ 28781-90

    ГОСТ 28935-91

    ГОСТ 28946-2020

    ГОСТ 28357-89

    ГОСТ 29026-91

    ГОСТ 28946-91

    ГОСТ 22985-2017

    ГОСТ 27894.10-88

    ГОСТ 28572-90

    ГОСТ 30404-94

    ГОСТ 29064-91

    ГОСТ 305-82

    ГОСТ 27894.5-88

    ГОСТ 305-2013

    ГОСТ 29087-91

    ГОСТ 27578-87

    ГОСТ 27894.7-88

    ГОСТ 31872-2019

    ГОСТ 147-95

    ГОСТ 27894.3-88

    ГОСТ 28656-2019

    ГОСТ 28812-90

    ГОСТ 31871-2012

    ГОСТ 1932-93

    ГОСТ 3168-93

    ГОСТ 29040-91

    ГОСТ 31872-2012

    ГОСТ 3122-67

    ГОСТ 32353-2013

    ГОСТ 27894.4-88

    ГОСТ 32338-2013

    ГОСТ 28828-90

    ГОСТ 29040-2018

    ГОСТ 32346-2013

    ГОСТ 3213-91

    ГОСТ 32348-2013

    ГОСТ 32347-2013

    ГОСТ 32464-2013

    ГОСТ 32248-2013

    ГОСТ 32510-2013

    ГОСТ 32345-2013

    ГОСТ 32340-2013

    ГОСТ 28743-93

    ГОСТ 32465-2013

    ГОСТ 32977-2022

    ГОСТ 32975.2-2014

    ГОСТ 32462-2013

    ГОСТ 32975.3-2014

    ГОСТ 32511-2013

    ГОСТ 32978-2014

    ГОСТ 32349-2013

    ГОСТ 32513-2013

    ГОСТ 32976-2014

    ГОСТ 32339-2013

    ГОСТ 32988-2014

    ГОСТ 32990-2014

    ГОСТ 32989.3-2014

    ГОСТ 32987-2014

    ГОСТ 32979-2014

    ГОСТ 32508-2013

    ГОСТ 32350-2013

    ГОСТ 32514-2013

    ГОСТ 32401-2013

    ГОСТ 27379-87

    ГОСТ 32989.1-2014

    ГОСТ 32977-2014

    ГОСТ 32989.2-2014

    ГОСТ 33104-2014

    ГОСТ 32985-2014

    ГОСТ 28656-90

    ГОСТ 32595-2013

    ГОСТ 33112-2014

    ГОСТ 33018-2014

    ГОСТ 33156-2014

    ГОСТ 33132-2014

    ГОСТ 33103.7-2017

    ГОСТ 33131-2014

    ГОСТ 32984-2014

    ГОСТ 33103.4-2017

    ГОСТ 33162-2014

    ГОСТ 33158-2014

    ГОСТ 33103.3-2017

    ГОСТ 33195-2014

    ГОСТ 33103.5-2017

    ГОСТ 33113-2014

    ГОСТ 33077-2014

    ГОСТ 33196-2014

    ГОСТ 33192-2014

    ГОСТ 33197-2014

    ГОСТ 33288-2015

    ГОСТ 33298-2015

    ГОСТ 33255-2015

    ГОСТ 33256-2015

    ГОСТ 33304-2015

    ГОСТ 33297-2015

    ГОСТ 33193-2014

    ГОСТ 33157-2014

    ГОСТ 27313-2015

    ГОСТ 33296-2015

    ГОСТ 33253-2015

    ГОСТ 3340-88

    ГОСТ 33130-2014

    ГОСТ 33365-2015

    ГОСТ 33012-2014

    ГОСТ 33300-2015

    ГОСТ 33360-2015

    ГОСТ 32507-2013

    ГОСТ 33198-2014

    ГОСТ 33508-2015

    ГОСТ 33103.6-2017

    ГОСТ 33343-2015

    ГОСТ 33511-2015

    ГОСТ 33510-2015

    ГОСТ 33512.3-2015

    ГОСТ 33359-2015

    ГОСТ 33564-2015

    ГОСТ 33576-2015

    ГОСТ 33578-2015

    ГОСТ 33502-2015

    ГОСТ 33513-2015

    ГОСТ 33577-2015

    ГОСТ 3338-2015

    ГОСТ 33507-2015

    ГОСТ 33509-2015

    ГОСТ 33194-2014

    ГОСТ 3338-68

    ГОСТ 27313-95

    ГОСТ 33461-2015

    ГОСТ 33617-2015

    ГОСТ 33580-2015

    ГОСТ 33585-2015

    ГОСТ 33103.2-2017

    ГОСТ 33588-2015

    ГОСТ 33621-2015

    ГОСТ 33624-2015

    ГОСТ 33625-2015

    ГОСТ 33515-2015

    ГОСТ 33654-2022

    ГОСТ 33252-2015

    ГОСТ 33582-2015

    ГОСТ 33501-2015

    ГОСТ 33614-2015

    ГОСТ 33516-2015

    ГОСТ 33583-2015

    ГОСТ 33872-2016

    ГОСТ 33622-2015

    ГОСТ 33618-2015

    ГОСТ 33586-2015

    ГОСТ 33903-2016

    ГОСТ 33584-2015

    ГОСТ 33755-2016

    ГОСТ 33299-2015

    ГОСТ 33589-2015

    ГОСТ 34089-2017

    ГОСТ 33908-2016

    ГОСТ 33587-2015

    ГОСТ 34090.1-2017

    ГОСТ 33654-2015

    ГОСТ 34090.2-2017

    ГОСТ 33909-2016

    ГОСТ 33901-2016

    ГОСТ 33627-2015

    ГОСТ 33906-2016

    ГОСТ 33913-2016

    ГОСТ 33912-2016

    ГОСТ 34429-2018

    ГОСТ 34858-2022

    ГОСТ 34195-2017

    ГОСТ 34194-2017

    ГОСТ 34239-2017

    ГОСТ 34240-2017

    ГОСТ 4095-75

    ГОСТ 4338-74

    ГОСТ 4339-74

    ГОСТ 33899-2016

    ГОСТ 4790-80

    ГОСТ 34241-2017

    ГОСТ 4.105-2014

    ГОСТ 4806-79

    ГОСТ 33907-2016

    ГОСТ 5066-2018

    ГОСТ 5.1261-72

    ГОСТ 34238-2017

    ГОСТ 4668-75

    ГОСТ 5066-91

    ГОСТ 4338-91

    ГОСТ 5396-77

    ГОСТ 5445-2020

    ГОСТ 4039-88

    ГОСТ 5953-81

    ГОСТ 5445-79

    ГОСТ 33911-2016

    ГОСТ 5954.2-2020

    ГОСТ 34091-2017

    ГОСТ 34092-2017

    ГОСТ 5954.2-91

    ГОСТ 34210-2017

    ГОСТ 5953-93

    ГОСТ 5954.1-2020

    ГОСТ 6321-92

    ГОСТ 6382-91

    ГОСТ 5954.1-91

    ГОСТ 6667-75

    ГОСТ 5953-2020

    ГОСТ 6263-2020

    ГОСТ 7423-55

    ГОСТ 511-82

    ГОСТ 6382-2001

    ГОСТ 33902-2016

    ГОСТ 7847-2020

    ГОСТ 7846-73

    ГОСТ 7978-74

    ГОСТ 8606-2015

    ГОСТ 6263-80

    ГОСТ 8606-72

    ГОСТ 33898-2016

    ГОСТ 8448-2019

    ГОСТ 8489-85

    ГОСТ 33626-2015

    ГОСТ 8935-2020

    ГОСТ 8929-2020

    ГОСТ 511-2015

    ГОСТ 9326-90

    ГОСТ 34236-2017

    ГОСТ 9434-75

    ГОСТ 8935-77

    ГОСТ 8929-75

    ГОСТ 8448-78

    ГОСТ 8.649-2015

    ГОСТ 7847-73

    ГОСТ 9144-79

    ГОСТ 9880-2019

    ГОСТ 6073-75

    ГОСТ 9950-2020

    ГОСТ 9963-84

    ГОСТ 9951-73

    ГОСТ 9880-76

    ГОСТ 9950-83

    ГОСТ 9.023-74

    ГОСТ 8226-82

    ГОСТ 9521-2017

    ГОСТ 8606-93

    ГОСТ EN 116-2013

    ГОСТ 8226-2015

    ГОСТ ИСО 1013-95

    ГОСТ 5439-76

    ГОСТ 9949-76

    ГОСТ EN 15376-2014

    ГОСТ ISO 13758-2013

    ГОСТ 33563-2015

    ГОСТ EN 15484-2014

    ГОСТ EN 15195-2014

    ГОСТ EN 12177-2013

    ГОСТ ISO 13736-2009

    ГОСТ ISO 3013-2016

    ГОСТ ISO 13757-2013

    ГОСТ ISO 4257-2013

    ГОСТ ISO 20884-2012

    ГОСТ ISO 20884-2016

    ГОСТ ISO 20846-2016

    ГОСТ 4790-2017

    ГОСТ ISO 20846-2012

    ГОСТ 4790-93

    ГОСТ ISO 3734-2016

    ГОСТ ISO 6297-2015

    ГОСТ ISO 8216-3-2013

    ГОСТ ISO 4256-2013

    ГОСТ ISO 12156-1-2012

    ГОСТ ISO 6245-2016

    ГОСТ EN 14078-2016

    ГОСТ Р 50837.2-95

    ГОСТ EN 13132-2012

    ГОСТ ISO 8819-2013

    ГОСТ ISO 6251-2013

    ГОСТ ISO 5165-2014

    ГОСТ ISO 7536-2015

    ГОСТ ISO 5275-2017

    ГОСТ EN 1601-2017

    ГОСТ Р 50921-96

    ГОСТ Р 50902-96

    ГОСТ Р 50902-2011

    ГОСТ Р 50837.7-95

    ГОСТ Р 50837.4-95

    ГОСТ 9326-2002

    ГОСТ Р 50837.1-95

    ГОСТ Р 51062-97

    ГОСТ Р 51062-2011

    ГОСТ Р 50837.8-95

    ГОСТ Р 51313-99

    ГОСТ Р 50994-96

    ГОСТ Р 50837.5-95

    ГОСТ Р 51105-97

    ГОСТ Р 51661.1-2000

    ГОСТ Р 51661.2-2000

    ГОСТ Р 51587-2000

    ГОСТ EN 237-2013

    ГОСТ Р 51661.3-2000

    ГОСТ Р 51213-98

    ГОСТ Р 51586-2000

    ГОСТ Р 50837.6-95

    ГОСТ Р 51661.4-2000

    ГОСТ ISO 8973-2013

    ГОСТ Р 50837.3-95

    ГОСТ Р 50921-2005

    ГОСТ 33108-2014

    ГОСТ EN 1601-2012

    ГОСТ Р 51588-2000

    ГОСТ Р 51925-2002

    ГОСТ Р 51925-2011

    ГОСТ 33106-2014

    ГОСТ Р 52050-2003

    ГОСТ Р 52067-2003

    ГОСТ ISO 3993-2013

    ГОСТ Р 51104-97

    ГОСТ Р 51971-2002

    ГОСТ Р 51105-2020

    ГОСТ Р 52201-2004

    ГОСТ Р 52332-2022

    ГОСТ Р 51930-2002

    ГОСТ Р 52332-2005

    ГОСТ Р 51972-2002

    ГОСТ Р 52087-2003

    ГОСТ Р 52068-2003

    ГОСТ ISO 9162-2013

    ГОСТ Р 52256-2004

    ГОСТ Р 52709-2019

    ГОСТ Р 52755-2007

    ГОСТ Р 51942-2002

    ГОСТ Р 51941-2002

    ГОСТ Р 51866-2002

    ГОСТ Р 52911-2020

    ГОСТ Р 51661.5-2000

    ГОСТ Р 52050-2020

    ГОСТ Р 52917-2008

    ГОСТ Р 52257-2004

    ГОСТ Р 53355-2018

    ГОСТ Р 53356-2009

    ГОСТ Р 53200-2008

    ГОСТ Р 53706-2009

    ГОСТ Р 52911-2008

    ГОСТ Р 52340-2005

    ГОСТ Р 52087-2018

    ГОСТ Р 52709-2007

    ГОСТ Р 53357-2013

    ГОСТ Р 53357-2009

    ГОСТ Р 51942-2019

    ГОСТ Р 53199-2008

    ГОСТ Р 52660-2006

    ГОСТ Р 52714-2018

    ГОСТ Р 54184-2010

    ГОСТ Р 53355-2009

    ГОСТ Р 53718-2009

    ГОСТ Р 54188-2010

    ГОСТ Р 54185-2010

    ГОСТ Р 53715-2009

    ГОСТ Р 54189-2010

    ГОСТ Р 54192-2010

    ГОСТ Р 54190-2010

    ГОСТ Р 52240-2004

    ГОСТ Р 53717-2009

    ГОСТ Р 54211-2010

    ГОСТ Р 52954-2008

    ГОСТ Р 54186-2010

    ГОСТ Р 54212-2010

    ГОСТ Р 54214-2015

    ГОСТ Р 54191-2010

    ГОСТ Р 54219-2010

    ГОСТ Р 52050-2006

    ГОСТ Р 54214-2010

    ГОСТ Р 54223-2010

    ГОСТ Р 54187-2010

    ГОСТ Р 54224-2010

    ГОСТ Р 54215-2010

    ГОСТ Р 54230-2010

    ГОСТ Р 53605-2009

    ГОСТ Р 53714-2009

    ГОСТ Р 54225-2010

    ГОСТ Р 54218-2010

    ГОСТ Р 54217-2010

    ГОСТ Р 54232-2010

    ГОСТ Р 54237-2022

    ГОСТ Р 54233-2010

    ГОСТ Р 54226-2010

    ГОСТ Р 54235-2010

    ГОСТ Р 54216-2010

    ГОСТ Р 54238-2010

    ГОСТ Р 53716-2009

    ГОСТ Р 54231-2010

    ГОСТ Р 54213-2015

    ГОСТ ISO 13909-8-2013

    ГОСТ 33103.1-2014

    ГОСТ Р 54229-2010

    ГОСТ Р 54239-2018

    ГОСТ Р 54213-2010

    ГОСТ Р 54239-2010

    ГОСТ Р 54251-2010

    ГОСТ Р 54244-2010

    ГОСТ Р 54248-2010

    ГОСТ Р 54234-2010

    ГОСТ Р 54283-2010

    ГОСТ Р 54228-2010

    ГОСТ Р 54245-2010

    ГОСТ Р 54262-2010

    ГОСТ Р 54280-2010

    ГОСТ Р 54241-2010

    ГОСТ Р 54269-2010

    ГОСТ Р 52368-2005

    ГОСТ Р 54332-2011

    ГОСТ Р 54221-2010

    ГОСТ Р 54290-2010

    ГОСТ Р 55110-2012

    ГОСТ Р 54274-2010

    ГОСТ Р 55111-2012

    ГОСТ Р 54236-2010

    ГОСТ Р 54240-2010

    ГОСТ Р 54242-2020

    ГОСТ Р 54289-2010

    ГОСТ Р 52714-2007

    ГОСТ Р 54250-2010

    ГОСТ Р 55121-2012

    ГОСТ 33103.1-2017

    ГОСТ Р 55118-2012

    ГОСТ Р 55112-2012

    ГОСТ Р 54237-2010

    ГОСТ Р 54285-2010

    ГОСТ Р 55123-2012

    ГОСТ Р 55125-2012

    ГОСТ Р 54282-2010

    ГОСТ Р 55120-2012

    ГОСТ Р 55128-2012

    ГОСТ Р 55115-2012

    ГОСТ Р 55117-2012

    ГОСТ Р 55122-2012

    ГОСТ Р 54261-2010

    ГОСТ Р 55124-2012

    ГОСТ Р 55133-2012

    ГОСТ Р 55113-2012

    ГОСТ Р 54299-2010

    ГОСТ Р 54982-2012

    ГОСТ Р 55475-2013

    ГОСТ Р 54287-2010

    ГОСТ Р 55552-2013

    ГОСТ Р 55551-2013

    ГОСТ Р 55549-2013

    ГОСТ Р 55116-2012

    ГОСТ Р 55131-2012

    ГОСТ Р 55132-2012

    ГОСТ Р 55566-2013

    ГОСТ Р 55660-2013

    ГОСТ Р 55869-2013

    ГОСТ Р 55546-2013

    ГОСТ Р 55661-2013

    ГОСТ Р 55548-2013

    ГОСТ Р 54227-2010

    ГОСТ Р 55874-2013

    ГОСТ Р 55957-2014

    ГОСТ Р 55550-2013

    ГОСТ Р 55956-2014

    ГОСТ Р 55547-2013

    ГОСТ Р 55960-2014

    ГОСТ Р 56147-2014

    ГОСТ Р 55961-2014

    ГОСТ Р 55958-2014

    ГОСТ Р 55959-2014

    ГОСТ Р 55873-2013

    ГОСТ Р 55955-2014

    ГОСТ Р 56868-2016

    ГОСТ Р 56870-2016

    ГОСТ Р 56146-2014

    ГОСТ Р 56871-2016

    ГОСТ Р 55523-2013

    ГОСТ Р 55493-2013

    ГОСТ Р 55879-2013

    ГОСТ Р 56866-2016

    ГОСТ Р 56883-2016

    ГОСТ Р 55126-2012

    ГОСТ Р 56867-2016

    ГОСТ Р 55114-2012

    ГОСТ Р 56882-2016

    ГОСТ Р 56888-2016

    ГОСТ Р 56886-2016

    ГОСТ Р 56889-2016

    ГОСТ Р 56887-2016

    ГОСТ Р 55130-2012

    ГОСТ Р 56890-2016

    ГОСТ Р 56881-2016

    ГОСТ Р 56884-2016

    ГОСТ Р 57040-2016

    ГОСТ Р 57039-2016

    ГОСТ Р 58221-2018

    ГОСТ Р 57658-2017

    ГОСТ Р 57016-2016

    ГОСТ Р 58440-2019

    ГОСТ Р 56885-2016

    ГОСТ Р 59045-2020

    ГОСТ Р 58255-2018

    ГОСТ Р 55553-2013

    ГОСТ Р 58914-2020

    ГОСТ Р 59244-2020

    ГОСТ Р 59245-2020

    ГОСТ Р 57431-2017

    ГОСТ Р 59249-2020

    ГОСТ Р 59250-2020

    ГОСТ Р 59013-2020

    ГОСТ Р 59012-2020

    ГОСТ Р 59253-2020

    ГОСТ Р 59251-2020

    ГОСТ Р 59254-2020

    ГОСТ Р 59256-2020

    ГОСТ Р 59257-2020

    ГОСТ Р 59176-2020

    ГОСТ Р 59261-2020

    ГОСТ Р 59255-2020

    ГОСТ Р 56869-2016

    ГОСТ Р 59592-2021

    ГОСТ Р 59248-2020

    ГОСТ Р 70204-2022

    ГОСТ Р 70205-2022

    ГОСТ Р 59258-2020

    ГОСТ Р 70206-2022

    ГОСТ Р 59161-2020

    ГОСТ Р 70207-2022

    ГОСТ Р 70208-2022

    ГОСТ Р 70211-2022

    ГОСТ Р 70263-2022

    ГОСТ Р 59014-2020

    ГОСТ Р 70209-2022

    ГОСТ Р 70264-2022

    ГОСТ Р 59262-2020

    ГОСТ Р 59015-2020

    ГОСТ Р 58227-2018

    ГОСТ Р 59177-2020

    ГОСТ Р 59264-2020

    ГОСТ Р 55129-2012

    ГОСТ Р ЕН ИСО 20847-2010

    ГОСТ Р ЕН ИСО 7536-2007

    ГОСТ Р 56720-2015

    ГОСТ Р 56718-2015

    ГОСТ Р 55868-2013

    ГОСТ Р 59593-2021

    ГОСТ Р ИСО 13909-1-2010

    ГОСТ Р 59252-2020

    ГОСТ Р 55997-2014

    ГОСТ Р ИСО 12156-1-2006

    ГОСТ Р ИСО 15585-2009

    ГОСТ Р ЕН 15195-2011

    ГОСТ Р ИСО 13909-6-2013

    ГОСТ Р ЕН 12177-2008

    ГОСТ Р ЕН ИСО 12205-2007

    ГОСТ Р ЕН 12916-2008

    ГОСТ Р ИСО 5275-2009

    ГОСТ Р ИСО 13759-2010

    ГОСТ Р ИСО 3734-2009

    ГОСТ Р ЕН ИСО 20846-2006

    ГОСТ Р 54220-2010

    ГОСТ Р ЕН 237-2008

    ГОСТ Р ИСО 13909-5-2013

    ГОСТ Р 55119-2012

    ГОСТ Р ЕН ИСО 3405-2007

    ГОСТ Р 54484-2011

    ГОСТ Р 55127-2012

    ГОСТ Р ИСО 18283-2010

    ГОСТ Р 54275-2010

    ГОСТ Р 56873-2016