ГОСТ ISO 7536-2015

ОбозначениеГОСТ ISO 7536-2015
НаименованиеБензины. Определение окислительной стабильности методом индукционного периода
СтатусДействует
Дата введения01.01.2017
Дата отмены-
Заменен на-
Код ОКС75.160.20
Текст ГОСТа

ГОСТ ISO 7536-2015



МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

БЕНЗИНЫ

Определение окислительной стабильности методом индукционного периода

Gasolines. Determination of oxidation stability by induction period method



МКС 75.160.20

Дата введения 2017-01-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 ПОДГОТОВЛЕН Межгосударственным техническим комитетом по стандартизации МТК 31 "Нефтяные топлива и смазочные материалы", Открытым акционерным обществом "Всероссийский научно-исследовательский институт по переработке нефти" (ОАО "ВНИИ НП") на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 5

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 29 мая 2015 г. N 77-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Армения

AM

Минэкономики Республики Армения

Беларусь

BY

Госстандарт Республики Беларусь

Казахстан

KZ

Госстандарт Республики Казахстан

Киргизия

KG

Кыргызстандарт

Молдова

MD

Молдова-Стандарт

Россия

RU

Росстандарт

Таджикистан

TJ

Таджикстандарт

Туркменистан

ТМ

Главслужба "Туркменстандартлары"

(Поправка)

4 Приказом Федерального агентства по техническому регулированию и метрологии от 12 августа 2015 г. N 1141-ст межгосударственный стандарт ГОСТ ISO 7536-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2017 г.

5 Настоящий стандарт идентичен международному стандарту ISO 7536:1994* "Нефтепродукты. Определение окислительной стабильности бензина. Метод индукционного периода" ("Petroleum products - Determination of oxidation stability of gasoline - Induction period method", IDT).

________________

* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. - .

Стандарт разработан комитетом ISO/ТС 28 "Нефтепродукты и смазочные материалы" Международной организации по стандартизации ISO.

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ 1.5 (подраздел 3.6)

6 ВВЕДЕН ВПЕРВЫЕ

7 ИЗДАНИЕ (сентябрь 2019 г.) с Поправкой (ИУС 5-2019)

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

1 Область применения

1.1 Настоящий стандарт устанавливает метод определения окислительной стабильности авиационного и автомобильного бензинов в условиях ускоренного окисления в бомбе путем измерения индукционного периода.

1.2 Метод не используют для определения окислительной стабильности компонентов бензина с высоким процентным содержанием низкокипящих непредельных соединений, т.к. они могут создавать взрывоопасные условия в аппаратуре. Однако из-за неизвестной природы некоторых образцов комплект аппаратуры с бомбой включает мембранное предохранительное устройство для защиты оператора.

________________

Дополнительную информацию можно найти в журнале Institute of Petroleum Review за июнь 1978 г., январь 1979 г. и июнь 1986 г.

1.3 Индукционный период можно использовать как показатель, характеризующий склонность бензина к образованию смол при хранении. Однако следует отметить, что склонность бензина к образованию смол при хранении может заметно изменяться в зависимости от марки бензина и условий его хранения.

Предупреждение - Применение настоящего стандарта может быть связано с использованием опасных веществ, операций и оборудования. В настоящем стандарте не предусмотрено рассмотрение всех вопросов обеспечения безопасности. Пользователь несет ответственность за установление соответствующих правил по технике безопасности и охране труда, а также определяет целесообразность применения законодательных ограничений перед его использованием.

2 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

2.1 контрольная точка (breakpoint): Точка на кривой зависимости давления от времени, которая предшествует падению давления на 14 кПа в течение 15 мин и за которой следует падение давления не менее чем на 14 кПа в течение 15 мин.

2.2 индукционный период (induction period): Время между размещением бомбы в бане и контрольной точкой при температуре 100°С.

3 Сущность метода

Образец окисляют в бомбе, предварительно заполненной кислородом под давлением 690 кПа при температуре от 15°С до 25°С, при нагревании до температуры 98°С-102°С. Регистрируют давление через установленные интервалы времени или постоянно до достижения контрольной точки. Время, необходимое для достижения образцом контрольной точки, является наблюдаемым индукционным периодом при температуре испытания, по которому можно вычислить индукционный период при 100°С.

Предупреждение - Для обеспечения защиты от возможного взрыва бомбы все работы с бомбой следует проводить за защитным экраном.

4 Реактивы и материалы

4.1 Толуол чистотой не менее 99%.

4.2 Ацетон чистотой не менее 99%.

4.3 Растворитель смол, смесь равных объемов толуола (4.1) и ацетона (4.2).

4.4 Кислород технический осушенный чистотой не менее 99%.

4.5 Раствор моющего средства для очистки использованных крышек и контейнеров для образцов. Качество очистки при визуальной оценке и оценке по потере массы при нагревании в условиях проведения испытания должно соответствовать очистке, достижимой при погружении контейнеров и крышек в свежеприготовленный раствор хромовой кислоты на 6 ч с последующей промывкой водой, как указано в 6.1.

Примечание 1 - Тип моющего средства и его применение устанавливают в каждой лаборатории, основываясь на опыте очистки использованных контейнеров для образцов и крышек.

Предупреждение - Хромовая кислота потенциально опасна при контакте с органическими материалами, а также токсична и имеет высокую коррозионную активность. При работе с кислотой применяют маску, закрывающую все лицо, защитную одежду и перчатки.

5 Аппаратура

5.1 Бомба из коррозионно-стойкой стали с размерами внутренней части, контактирующей со смесью бензина и кислорода, приведена на рисунке 1.

Внутренние поверхности бомбы и крышки должны быть хорошо отполированы для облегчения очистки и предотвращения коррозии.

Особенности конструкции, такие как тип крышки (многоугольная или с насечкой), материал прокладки и наружные размеры могут быть произвольными при условии соблюдения ограничений, приведенных в 5.1.1 и 5.1.2.

Для подтверждения пригодности к эксплуатации проводят предварительное испытание и периодически осматривают бомбу.


Рисунок 1, лист 1 - Бомба с мембранным предохранительным устройством для определения окислительной стабильности бензина

1 - бомба; 2 - крышка бомбы; 3 - ствол бомбы; 4 - мембранное предохранительное устройство; 5 - соединительная муфта; 6 - трубка для заполнения бомбы; 7 - внутренний диаметр резьбы; 8 - насечка; 9 - трубка внутренним диаметром 4,00 мм, наружным диаметром 6,35 мм

Примечание - Если нет других указаний, предельное отклонение размеров равно ±0,25 мм.

Рисунок 1, лист 2

5.1.1 Конструкция бомбы должна выдерживать рабочее давление 1240 кПа при температуре 100°С и иметь предел прочности не менее предела прочности бомбы, изготовленной из стали, содержащей 18% масс. хрома и 8% масс. никеля. Подходящим материалом является легированная сталь, соответствующая требованиям, приведенным в приложении А.

5.1.2 Крышка бомбы должна обеспечивать герметичность бомбы при наполнении кислородом до давления 690 кПа при температуре от 15°С до 25°С и ее последующем погружении в баню, нагретую до температуры 100°С. Предпочтительно, чтобы уплотнительное кольцо крышки бомбы для получения нужного уплотнения при навинчивании крышки на корпус бомбы было изготовлено из сплава, отличающегося от материала корпуса бомбы.

5.2 Прокладка из любого подходящего материала, выдерживающего следующее испытание: помещают испытуемую прокладку в бомбу, не содержащую бензин, и используют аналогичную прокладку для герметизации крышки. Заполняют бомбу кислородом до давления 690 кПа и погружают в баню, нагретую до температуры 100°С. Если давление снизится не более чем на 14 кПа от максимального давления через 24 ч при постоянной температуре бани (100,0±1,0)°С, прокладку считают пригодной для применения.

5.3 Контейнер для образца и крышка приведены на рисунке 2.

Примечание 2 - Крышка предназначена для предотвращения попадания в образец вещества, стекающего обратно по стволу бомбы, но не препятствует свободному доступу кислорода в образец.


1 - крышка (стеклянная или фарфоровая); 2 - контейнер для пробы (стеклянный) толщиной стенки (2,0±0,5) мм; 3 - слив; 4 - две прорези или углубления

Рисунок 2 - Стеклянный контейнер для образца и крышка (стеклянная или фарфоровая)

5.4 Ствол бомбы с трубкой для ее заполнения должны быть изготовлены из того же материала, что и крышка бомбы, и иметь размеры, приведенные на рисунке 1. Трубка для заполнения бомбы и внутренняя поверхность ствола бомбы должны быть хорошо отполированы для облегчения очистки и предотвращения коррозии. Ствол с круглой металлической пластинкой диаметром 89 мм, которая служит крышкой для бани, когда в ней установлена бомба, устанавливают в положении, приведенном на рисунке 1.

5.5 Установленное на стволе бомбы мембранное предохранительное устройство из нержавеющей стали с разрывным давлением 1530 кПа±10%. Выброс газа должен быть направлен в сторону, противоположную от оператора.

5.6 Присоединяют манометр и закрываемый игольчатый клапан к стволу бомбы, как показано на рисунке 1. Для обеспечения быстрого сброса воздуха и впуска кислорода в бомбу применяют быстроразъемную пневматическую муфту, установленную на игольчатом клапане.

5.7 Игольчатый клапан с заостренной иглой и отверстием для полного отключения потока газа.

Примечание 3 - Игольчатый клапан применяют для продувки, повышения и понижения давления кислорода в бомбе.

5.8 Манометр индикаторного или записывающего типа, обеспечивающий регистрацию показаний при давлении не менее 1380 кПа. Длина половины интервала измеренной по дуге шкалы от 690 до 1380 кПа (345 кПа) должна быть не менее 25 мм. Цена деления должна быть не более 35 кПа. Точность должна быть не более 1% полного интервала шкалы.

Манометр соединяют с бомбой непосредственно или с помощью гибкой металлической или полимерной трубки в металлической оболочке, устойчивой к газам, выдерживающей установленное давление и удовлетворяющей вышеуказанным условиям. Общий объем гибкой трубки, соединений и ствола бомбы с трубкой для ее заполнения должен быть не более 30 см. При заказе оборудования для данного испытания изготовитель должен гарантировать, что манометр и игольчатый клапан пригодны для использования в кислородной среде.

5.9 Окислительная баня с водой вместимостью не менее 18 дм для одной бомбы и дополнительно по 8 дм для каждой дополнительной бомбы. Глубина жидкости в бане должна быть не менее 290 мм. Верхняя часть бани должна иметь отверстия соответствующего диаметра для размещения бомбы с металлической пластинкой, прикрепленной к ее стволу, и термометра, закрепляемого в таком положении, чтобы отметка 97°С на термометре находилась выше крышки бани. При размещении бомбы в бане верхняя часть крышки бомбы должна находиться ниже поверхности жидкости не менее чем на 50 мм. Следует иметь дополнительные крышки для закрывания отверстия, когда бомба не установлена в бане. Баня должна быть оснащена холодильником и нагревателем для поддержания интенсивного кипения воды.

5.10 Термометр диапазоном измерения от 95°С до 103°С, соответствующий требованиям, приведенным в приложении B.

5.11 Пинцеты из коррозионно-стойкой стали с плоскими кончиками.

6 Подготовка аппаратуры

6.1 Стеклянный контейнер для образца (5.3) промывают растворителем (4.3) до полной очистки от смолы. Затем контейнер для образца с крышкой тщательно ополаскивают водой, погружают в горячий раствор моющего средства (4.5), удаляют из раствора пинцетом (5.11) и далее пользуются для перемещения только пинцетом. Тщательно промывают контейнер и крышку водопроводной, затем дистиллированной водой и сушат не менее 1 ч в термостате при температуре от 100°С до 150°С.

6.2 Сливают бензин из бомбы (5.1), вытирают внутреннюю поверхность бомбы и крышку чистой тканью, смоченной растворителем смол (4.3), а затем чистой сухой тканью. Удаляют из ствола бомбы трубку для ее заполнения, осторожно смывают смолы и бензин со ствола, трубки и игольчатого клапана растворителем (4.3). Очищают быстроразъемную пневматическую муфту и все соединительные линии.

Предупреждение - Убеждаются, что все детали оборудования тщательно очищены перед хранением и повторным использованием, чтобы не допустить возможного образования летучих пероксидов во время испытания. Очищающие растворы должны быть утилизированы в соответствии с процедурами, установленными для утилизации вредных веществ.

Бомбу и все соединительные линии следует тщательно высушить перед началом каждого испытания.

7 Проведение испытаний

7.1 Доводят бомбу (5.1) и испытуемый образец бензина до температуры от 15°С до 25°С. Устанавливают стеклянный контейнер для образца (5.3) в бомбу и помещают в него (50±1) см испытуемого образца. Закрывают контейнер для образца крышкой, закрывают бомбу и подают в нее кислород до достижения давления в бомбе от 690 до 705 кПа. Обеспечивают медленный выход газа из бомбы, снижая давление со скоростью не более 350 кПа/мин, чтобы вытеснить первоначально присутствующий в бомбе воздух. Снова подают кислород до достижения давления в бомбе от 690 до 705 кПа и проверяют утечку газа, не учитывая при этом первоначальное быстрое падание давления (обычно не более 40 кПа) за счет растворения кислорода в образце. Если скорость падения давления не превышает 7,0 кПа за 10 мин, считают, что утечка газа отсутствует, и проводят испытание без повторного повышения давления.

7.2 Избегая взбалтывания, помещают бомбу с образцом в интенсивно кипящую окислительную баню с водой (5.9) и регистрируют время погружения как начальное время проведения испытания. Поддерживают температуру воды в бане в диапазоне от 98°С и 102°С. В течение испытания в установленные интервалы времени регистрируют показания термометра с точностью до 0,1°С, вычисляют среднеарифметическое значение температуры с точностью до 0,1°С и записывают это значение как температуру испытания.

Непрерывно регистрируют давление в бомбе или при использовании индикаторного манометра регистрируют показания давления не менее чем через каждые 15 мин. Если в течение первых 30 мин испытания произойдет утечка (на что указывает равномерное падение давления со скоростью более 14 кПа за 15 мин), то испытание прекращают.

Продолжают испытание до достижения контрольной точки, которой предшествует падение давления точно на 14 кПа за 15 мин и за которой следует падение давления не менее чем на 14 кПа за 15 мин. Записывают время в минутах с момента помещения бомбы в баню до достижения контрольной точки как индукционный период при температуре испытания.

Примечание 4 - Если испытание проводят в месте, где атмосферное давление ниже стандартного (101,3 кПа), для поддержания рабочей температуры, по возможности близкой к температуре 100°С, добавляют в баню высококипящую жидкость, например этиленгликоль.

7.3 Охлаждают бомбу, погружая ее в холодную водопроводную воду. Извлекают охлажденную бомбу из воды и медленно сбрасывают давление через игольчатый вентиль со скоростью не более 350 кПа/мин. Очищают бомбу и контейнер для образца перед проведением следующего испытания.

8 Вычисления

Вычисляют индукционный период , мин, при температуре 100°С по одной из следующих формул:

- температура испытания выше 100°С:

; (1)

- температура испытания ниже 100°С:

, (2)

где - наблюдаемый индукционный период при температуре проведения испытания, мин;

- температура испытания выше 100°С;

- температура испытания ниже 100°С.

9 Оформление результатов

Записывают индукционный период при температуре 100°С , вычисленный в соответствии с разделом 8, с точностью до 1 мин.

10 Прецизионность

Прецизионность метода, полученная статистическим анализом результатов межлабораторных испытаний, приведена в 10.1 и 10.2.

Примечание 5 - Прецизионность была получена при использовании оборудования без мембранного предохранительного устройства. Установлено, что влияние мембранного предохранительного устройства минимально.

10.1 Повторяемость

Расхождение результатов последовательных испытаний, полученных одним и тем же оператором на одной и той же аппаратуре при постоянных рабочих условиях на идентичном испытуемом материале в течение длительного времени при нормальном и правильном выполнении метода, может превышать 5% среднего значения только в одном случае из двадцати.

10.2 Воспроизводимость

Расхождение результатов двух единичных и независимых испытаний, полученных разными операторами в разных лабораториях на идентичном испытуемом материале в течение длительного времени при нормальном и правильном выполнении метода, может превышать 10% среднего значения только в одном случае из двадцати.

11 Протокол испытаний

Протокол испытаний должен содержать:

а) идентификацию испытуемого продукта;

б) обозначение настоящего стандарта;

в) результат испытаний (в соответствии с разделом 9);

г) любое отклонение установленной процедуры испытаний;

д) дату проведения испытаний.

Приложение А
(обязательное)


Требования к хромоникелевой легированной стали

Окислительную бомбу (5.1 настоящего стандарта) с прочностью, соответствующей установленным требованиям, изготовляют из коррозионно-стойкой стали, состав которой приведен в таблице А.1.

Таблица A.1 - Состав коррозионно-стойкой стали

Компонент

Массовая доля, %

Углерод

Не более 0,08

Марганец

Не более 2,00

Фосфор

Не более 0,045

Сера

Не более 0,030

Кремний

Не более 1,00

Хром

От 18,0 до 20,00 включ.

Никель

От 8,00 до 10,50 включ.

Азот

Не более 0,10

Приложение В
(обязательное)


Требования к термометру

Термометр (см. 5.10 настоящего стандарта) должен соответствовать требованиям, указанным в таблице В.1.

Примечание 6 - Термометр ASTM 22C/IP 240 удовлетворяет этим требованиям.

Таблица В.1 - Требования к термометру для определения окислительной стабильности

Параметр

Значение

Диапазон,°С

От 95 до 103 включ.

Для испытания при температуре, °С

100

Погружение

Полное

Общая длина, мм

От 270 до 280 включ.

Наружный диаметр основной части, мм

От 6,0 до 8,0 включ.

Длина шарика, мм

От 25 до З5 включ.

Наружный диаметр шарика, мм

Более 5,0 и менее диаметра основной части

Расположение шкалы, мм:

- длина от дна шарика до отметки 95°С

От 135 до 150 включ.

- длина градуированной части

От 70 до 100 включ.

Градуировки, °С:

- промежуточные деления

0,1

- длинная линия для каждого деления

0,5

- номер на каждом делении

1

Погрешность шкалы, °С, не более

0,1

Камера расширения объема при нагревании до, °С

155

Камера сжатия:

- расстояние до верха, мм, не более

60

Расширение основной части, мм:

- наружный диаметр

От 8,0 до 10,0 включ.

- длина

От 4,0 до 7,0 включ.

- расстояние до нижнего конца

От 112 до 116 включ.

УДК 665.733:665.7.035.5:006.354

МКС 75.160.20

Ключевые слова: бензины, окислительная стабильность, метод индукционного периода

Электронный текст документа

и сверен по:

, 2019

Другие госты в подкатегории

    ГОСТ 1012-2013

    ГОСТ 10196-62

    ГОСТ 1038-75

    ГОСТ 10433-75

    ГОСТ 10585-2013

    ГОСТ 10585-99

    ГОСТ 10089-89

    ГОСТ 10220-82

    ГОСТ 11022-95

    ГОСТ 10200-83

    ГОСТ 10585-75

    ГОСТ 10373-75

    ГОСТ 10650-72

    ГОСТ 10835-78

    ГОСТ 11303-2013

    ГОСТ 11014-2001

    ГОСТ 11303-75

    ГОСТ 10227-2013

    ГОСТ 10227-86

    ГОСТ 11305-83

    ГОСТ 11130-75

    ГОСТ 10200-2017

    ГОСТ 11065-90

    ГОСТ 11304-75

    ГОСТ 11304-2013

    ГОСТ 11802-88

    ГОСТ 11804-76

    ГОСТ 11130-2013

    ГОСТ 12308-89

    ГОСТ 11239-76

    ГОСТ 11311-76

    ГОСТ 10650-2013

    ГОСТ 11306-83

    ГОСТ 11306-2013

    ГОСТ 13673-76

    ГОСТ 11305-2013

    ГОСТ 13674-78

    ГОСТ 13674-2013

    ГОСТ 147-2013

    ГОСТ 13672-76

    ГОСТ 14298-79

    ГОСТ 12308-2013

    ГОСТ 11623-89

    ГОСТ 14921-2018

    ГОСТ 13673-2013

    ГОСТ 1567-83

    ГОСТ 14921-78

    ГОСТ 14834-2014

    ГОСТ 1667-68

    ГОСТ 12433-83

    ГОСТ 1720-76

    ГОСТ 1012-72

    ГОСТ 16106-2019

    ГОСТ 17644-83

    ГОСТ 10679-76

    ГОСТ 11126-2019

    ГОСТ 12525-85

    ГОСТ 11382-76

    ГОСТ 15489.2-2018

    ГОСТ 18132-72

    ГОСТ 17749-72

    ГОСТ 17751-79

    ГОСТ 13210-72

    ГОСТ 13455-91

    ГОСТ 18597-73

    ГОСТ 19723-74

    ГОСТ 1709-75

    ГОСТ 11126-88

    ГОСТ 20448-90

    ГОСТ 19006-73

    ГОСТ 20924-75

    ГОСТ 2084-77

    ГОСТ 21290-75

    ГОСТ 17750-72

    ГОСТ 18598-73

    ГОСТ 21291-75

    ГОСТ 1928-2019

    ГОСТ 21289-75

    ГОСТ 1928-79

    ГОСТ 21103-75

    ГОСТ 1567-97

    ГОСТ 22254-92

    ГОСТ 22387.5-77

    ГОСТ 14920-79

    ГОСТ 22387.4-77

    ГОСТ 23083-78

    ГОСТ 10478-93

    ГОСТ 22054-76

    ГОСТ 23781-87

    ГОСТ 20448-2018

    ГОСТ 22055-76

    ГОСТ 21708-96

    ГОСТ 24160-80

    ГОСТ 2059-95

    ГОСТ 24764-81

    ГОСТ 24160-2014

    ГОСТ 24701-2013

    ГОСТ 25927-83

    ГОСТ 25927-95

    ГОСТ 24701-81

    ГОСТ 25950-83

    ГОСТ 2408.4-98

    ГОСТ 21443-75

    ГОСТ 27044-86

    ГОСТ 26370-84

    ГОСТ 26801-86

    ГОСТ 2408.1-95

    ГОСТ 2160-92

    ГОСТ 24676-2017

    ГОСТ 25828-83

    ГОСТ 22986-78

    ГОСТ 27154-86

    ГОСТ 27588-2020

    ГОСТ 25784-83

    ГОСТ 27589-2020

    ГОСТ 27578-2018

    ГОСТ 22667-82

    ГОСТ 27588-91

    ГОСТ 2669-81

    ГОСТ 27577-87

    ГОСТ 17323-71

    ГОСТ 27768-88

    ГОСТ 27894.0-88

    ГОСТ 27589-91

    ГОСТ 27894.2-88

    ГОСТ 25543-2013

    ГОСТ 2408.3-95

    ГОСТ 27314-91

    ГОСТ 2093-82

    ГОСТ 28245-89

    ГОСТ 27894.6-88

    ГОСТ 27894.9-88

    ГОСТ 28577.0-90

    ГОСТ 27894.1-88

    ГОСТ 28577.1-90

    ГОСТ 28577.2-90

    ГОСТ 28577.3-90

    ГОСТ 10538-87

    ГОСТ 27894.8-88

    ГОСТ 27894.11-88

    ГОСТ 22985-90

    ГОСТ 28781-90

    ГОСТ 28935-91

    ГОСТ 28946-2020

    ГОСТ 28357-89

    ГОСТ 29026-91

    ГОСТ 28946-91

    ГОСТ 22985-2017

    ГОСТ 27894.10-88

    ГОСТ 28572-90

    ГОСТ 30404-94

    ГОСТ 29064-91

    ГОСТ 305-82

    ГОСТ 27894.5-88

    ГОСТ 305-2013

    ГОСТ 29087-91

    ГОСТ 27578-87

    ГОСТ 27894.7-88

    ГОСТ 31872-2019

    ГОСТ 147-95

    ГОСТ 27894.3-88

    ГОСТ 28656-2019

    ГОСТ 28812-90

    ГОСТ 31871-2012

    ГОСТ 1932-93

    ГОСТ 3168-93

    ГОСТ 29040-91

    ГОСТ 31872-2012

    ГОСТ 3122-67

    ГОСТ 32353-2013

    ГОСТ 27894.4-88

    ГОСТ 32338-2013

    ГОСТ 28828-90

    ГОСТ 29040-2018

    ГОСТ 32346-2013

    ГОСТ 3213-91

    ГОСТ 32348-2013

    ГОСТ 32347-2013

    ГОСТ 32464-2013

    ГОСТ 32248-2013

    ГОСТ 32510-2013

    ГОСТ 32345-2013

    ГОСТ 32340-2013

    ГОСТ 28743-93

    ГОСТ 32465-2013

    ГОСТ 32977-2022

    ГОСТ 32975.2-2014

    ГОСТ 32462-2013

    ГОСТ 32975.3-2014

    ГОСТ 32511-2013

    ГОСТ 32978-2014

    ГОСТ 32349-2013

    ГОСТ 32513-2013

    ГОСТ 32976-2014

    ГОСТ 32339-2013

    ГОСТ 32988-2014

    ГОСТ 32990-2014

    ГОСТ 32989.3-2014

    ГОСТ 32987-2014

    ГОСТ 32979-2014

    ГОСТ 32508-2013

    ГОСТ 32350-2013

    ГОСТ 32514-2013

    ГОСТ 32401-2013

    ГОСТ 27379-87

    ГОСТ 32989.1-2014

    ГОСТ 32977-2014

    ГОСТ 32989.2-2014

    ГОСТ 33104-2014

    ГОСТ 32985-2014

    ГОСТ 28656-90

    ГОСТ 32595-2013

    ГОСТ 33112-2014

    ГОСТ 33018-2014

    ГОСТ 33156-2014

    ГОСТ 33132-2014

    ГОСТ 33103.7-2017

    ГОСТ 33131-2014

    ГОСТ 32984-2014

    ГОСТ 33103.4-2017

    ГОСТ 33162-2014

    ГОСТ 33158-2014

    ГОСТ 33103.3-2017

    ГОСТ 33195-2014

    ГОСТ 33103.5-2017

    ГОСТ 33113-2014

    ГОСТ 33077-2014

    ГОСТ 33196-2014

    ГОСТ 33192-2014

    ГОСТ 33197-2014

    ГОСТ 33288-2015

    ГОСТ 33298-2015

    ГОСТ 33255-2015

    ГОСТ 33256-2015

    ГОСТ 33304-2015

    ГОСТ 33297-2015

    ГОСТ 33193-2014

    ГОСТ 33157-2014

    ГОСТ 27313-2015

    ГОСТ 33296-2015

    ГОСТ 33253-2015

    ГОСТ 3340-88

    ГОСТ 33130-2014

    ГОСТ 33365-2015

    ГОСТ 33012-2014

    ГОСТ 33300-2015

    ГОСТ 33360-2015

    ГОСТ 32507-2013

    ГОСТ 33198-2014

    ГОСТ 33508-2015

    ГОСТ 33103.6-2017

    ГОСТ 33343-2015

    ГОСТ 33511-2015

    ГОСТ 33510-2015

    ГОСТ 33512.3-2015

    ГОСТ 33359-2015

    ГОСТ 33564-2015

    ГОСТ 33576-2015

    ГОСТ 33578-2015

    ГОСТ 33502-2015

    ГОСТ 33513-2015

    ГОСТ 33577-2015

    ГОСТ 3338-2015

    ГОСТ 33507-2015

    ГОСТ 33509-2015

    ГОСТ 33194-2014

    ГОСТ 3338-68

    ГОСТ 27313-95

    ГОСТ 33461-2015

    ГОСТ 33617-2015

    ГОСТ 33580-2015

    ГОСТ 33585-2015

    ГОСТ 33103.2-2017

    ГОСТ 33588-2015

    ГОСТ 33621-2015

    ГОСТ 33624-2015

    ГОСТ 33625-2015

    ГОСТ 33515-2015

    ГОСТ 33654-2022

    ГОСТ 33252-2015

    ГОСТ 33582-2015

    ГОСТ 33501-2015

    ГОСТ 33614-2015

    ГОСТ 33516-2015

    ГОСТ 33583-2015

    ГОСТ 33872-2016

    ГОСТ 33622-2015

    ГОСТ 33618-2015

    ГОСТ 33586-2015

    ГОСТ 33903-2016

    ГОСТ 33584-2015

    ГОСТ 33755-2016

    ГОСТ 33299-2015

    ГОСТ 33589-2015

    ГОСТ 34089-2017

    ГОСТ 33908-2016

    ГОСТ 33587-2015

    ГОСТ 34090.1-2017

    ГОСТ 33654-2015

    ГОСТ 34090.2-2017

    ГОСТ 33909-2016

    ГОСТ 33901-2016

    ГОСТ 33627-2015

    ГОСТ 33906-2016

    ГОСТ 33913-2016

    ГОСТ 33912-2016

    ГОСТ 34429-2018

    ГОСТ 34858-2022

    ГОСТ 34195-2017

    ГОСТ 34194-2017

    ГОСТ 34239-2017

    ГОСТ 34240-2017

    ГОСТ 4095-75

    ГОСТ 4338-74

    ГОСТ 4339-74

    ГОСТ 33899-2016

    ГОСТ 4790-80

    ГОСТ 34241-2017

    ГОСТ 4.105-2014

    ГОСТ 4806-79

    ГОСТ 33907-2016

    ГОСТ 5066-2018

    ГОСТ 5.1261-72

    ГОСТ 34238-2017

    ГОСТ 4668-75

    ГОСТ 5066-91

    ГОСТ 4338-91

    ГОСТ 5396-77

    ГОСТ 5445-2020

    ГОСТ 4039-88

    ГОСТ 5953-81

    ГОСТ 5445-79

    ГОСТ 33911-2016

    ГОСТ 5954.2-2020

    ГОСТ 34091-2017

    ГОСТ 34092-2017

    ГОСТ 5954.2-91

    ГОСТ 34210-2017

    ГОСТ 5953-93

    ГОСТ 5954.1-2020

    ГОСТ 6321-92

    ГОСТ 6382-91

    ГОСТ 5954.1-91

    ГОСТ 6667-75

    ГОСТ 5953-2020

    ГОСТ 6263-2020

    ГОСТ 7423-55

    ГОСТ 511-82

    ГОСТ 6382-2001

    ГОСТ 33902-2016

    ГОСТ 7847-2020

    ГОСТ 7846-73

    ГОСТ 7978-74

    ГОСТ 8606-2015

    ГОСТ 6263-80

    ГОСТ 8606-72

    ГОСТ 33898-2016

    ГОСТ 8448-2019

    ГОСТ 8489-85

    ГОСТ 33626-2015

    ГОСТ 8935-2020

    ГОСТ 8929-2020

    ГОСТ 511-2015

    ГОСТ 9326-90

    ГОСТ 34236-2017

    ГОСТ 9434-75

    ГОСТ 8935-77

    ГОСТ 8929-75

    ГОСТ 8448-78

    ГОСТ 8.649-2015

    ГОСТ 7847-73

    ГОСТ 9144-79

    ГОСТ 9880-2019

    ГОСТ 6073-75

    ГОСТ 9950-2020

    ГОСТ 9963-84

    ГОСТ 9951-73

    ГОСТ 9880-76

    ГОСТ 9950-83

    ГОСТ 9.023-74

    ГОСТ 8226-82

    ГОСТ 9521-2017

    ГОСТ 8606-93

    ГОСТ EN 116-2013

    ГОСТ 8226-2015

    ГОСТ ИСО 1013-95

    ГОСТ 5439-76

    ГОСТ EN 13016-1-2013

    ГОСТ 9949-76

    ГОСТ EN 15376-2014

    ГОСТ ISO 13758-2013

    ГОСТ 33563-2015

    ГОСТ EN 15484-2014

    ГОСТ EN 15195-2014

    ГОСТ EN 12177-2013

    ГОСТ ISO 13736-2009

    ГОСТ ISO 3013-2016

    ГОСТ ISO 13757-2013

    ГОСТ ISO 4257-2013

    ГОСТ ISO 20884-2012

    ГОСТ ISO 20884-2016

    ГОСТ ISO 20846-2016

    ГОСТ 4790-2017

    ГОСТ ISO 20846-2012

    ГОСТ 4790-93

    ГОСТ ISO 3734-2016

    ГОСТ ISO 6297-2015

    ГОСТ ISO 8216-3-2013

    ГОСТ ISO 4256-2013

    ГОСТ ISO 12156-1-2012

    ГОСТ ISO 6245-2016

    ГОСТ EN 14078-2016

    ГОСТ Р 50837.2-95

    ГОСТ EN 13132-2012

    ГОСТ ISO 8819-2013

    ГОСТ ISO 6251-2013

    ГОСТ ISO 5165-2014

    ГОСТ ISO 5275-2017

    ГОСТ EN 1601-2017

    ГОСТ Р 50921-96

    ГОСТ Р 50902-96

    ГОСТ Р 50902-2011

    ГОСТ Р 50837.7-95

    ГОСТ Р 50837.4-95

    ГОСТ 9326-2002

    ГОСТ Р 50837.1-95

    ГОСТ Р 51062-97

    ГОСТ Р 51062-2011

    ГОСТ Р 50837.8-95

    ГОСТ Р 51313-99

    ГОСТ Р 50994-96

    ГОСТ Р 50837.5-95

    ГОСТ Р 51105-97

    ГОСТ Р 51661.1-2000

    ГОСТ Р 51661.2-2000

    ГОСТ Р 51587-2000

    ГОСТ EN 237-2013

    ГОСТ Р 51661.3-2000

    ГОСТ Р 51213-98

    ГОСТ Р 51586-2000

    ГОСТ Р 50837.6-95

    ГОСТ Р 51661.4-2000

    ГОСТ ISO 8973-2013

    ГОСТ Р 50837.3-95

    ГОСТ Р 50921-2005

    ГОСТ 33108-2014

    ГОСТ EN 1601-2012

    ГОСТ Р 51588-2000

    ГОСТ Р 51925-2002

    ГОСТ Р 51925-2011

    ГОСТ 33106-2014

    ГОСТ Р 52050-2003

    ГОСТ Р 52067-2003

    ГОСТ ISO 3993-2013

    ГОСТ Р 51104-97

    ГОСТ Р 51971-2002

    ГОСТ Р 51105-2020

    ГОСТ Р 52201-2004

    ГОСТ Р 52332-2022

    ГОСТ Р 51930-2002

    ГОСТ Р 52332-2005

    ГОСТ Р 51972-2002

    ГОСТ Р 52087-2003

    ГОСТ Р 52068-2003

    ГОСТ ISO 9162-2013

    ГОСТ Р 52256-2004

    ГОСТ Р 52709-2019

    ГОСТ Р 52755-2007

    ГОСТ Р 51942-2002

    ГОСТ Р 51941-2002

    ГОСТ Р 51866-2002

    ГОСТ Р 52911-2020

    ГОСТ Р 51661.5-2000

    ГОСТ Р 52050-2020

    ГОСТ Р 52917-2008

    ГОСТ Р 52257-2004

    ГОСТ Р 53355-2018

    ГОСТ Р 53356-2009

    ГОСТ Р 53200-2008

    ГОСТ Р 53706-2009

    ГОСТ Р 52911-2008

    ГОСТ Р 52340-2005

    ГОСТ Р 52087-2018

    ГОСТ Р 52709-2007

    ГОСТ Р 53357-2013

    ГОСТ Р 53357-2009

    ГОСТ Р 51942-2019

    ГОСТ Р 53199-2008

    ГОСТ Р 52660-2006

    ГОСТ Р 52714-2018

    ГОСТ Р 54184-2010

    ГОСТ Р 53355-2009

    ГОСТ Р 53718-2009

    ГОСТ Р 54188-2010

    ГОСТ Р 54185-2010

    ГОСТ Р 53715-2009

    ГОСТ Р 54189-2010

    ГОСТ Р 54192-2010

    ГОСТ Р 54190-2010

    ГОСТ Р 52240-2004

    ГОСТ Р 53717-2009

    ГОСТ Р 54211-2010

    ГОСТ Р 52954-2008

    ГОСТ Р 54186-2010

    ГОСТ Р 54212-2010

    ГОСТ Р 54214-2015

    ГОСТ Р 54191-2010

    ГОСТ Р 54219-2010

    ГОСТ Р 52050-2006

    ГОСТ Р 54214-2010

    ГОСТ Р 54223-2010

    ГОСТ Р 54187-2010

    ГОСТ Р 54224-2010

    ГОСТ Р 54215-2010

    ГОСТ Р 54230-2010

    ГОСТ Р 53605-2009

    ГОСТ Р 53714-2009

    ГОСТ Р 54225-2010

    ГОСТ Р 54218-2010

    ГОСТ Р 54217-2010

    ГОСТ Р 54232-2010

    ГОСТ Р 54237-2022

    ГОСТ Р 54233-2010

    ГОСТ Р 54226-2010

    ГОСТ Р 54235-2010

    ГОСТ Р 54216-2010

    ГОСТ Р 54238-2010

    ГОСТ Р 53716-2009

    ГОСТ Р 54231-2010

    ГОСТ Р 54213-2015

    ГОСТ ISO 13909-8-2013

    ГОСТ 33103.1-2014

    ГОСТ Р 54229-2010

    ГОСТ Р 54239-2018

    ГОСТ Р 54213-2010

    ГОСТ Р 54239-2010

    ГОСТ Р 54251-2010

    ГОСТ Р 54244-2010

    ГОСТ Р 54248-2010

    ГОСТ Р 54234-2010

    ГОСТ Р 54283-2010

    ГОСТ Р 54228-2010

    ГОСТ Р 54245-2010

    ГОСТ Р 54262-2010

    ГОСТ Р 54280-2010

    ГОСТ Р 54241-2010

    ГОСТ Р 54269-2010

    ГОСТ Р 52368-2005

    ГОСТ Р 54332-2011

    ГОСТ Р 54221-2010

    ГОСТ Р 54290-2010

    ГОСТ Р 55110-2012

    ГОСТ Р 54274-2010

    ГОСТ Р 55111-2012

    ГОСТ Р 54236-2010

    ГОСТ Р 54240-2010

    ГОСТ Р 54242-2020

    ГОСТ Р 54289-2010

    ГОСТ Р 52714-2007

    ГОСТ Р 54250-2010

    ГОСТ Р 55121-2012

    ГОСТ 33103.1-2017

    ГОСТ Р 55118-2012

    ГОСТ Р 55112-2012

    ГОСТ Р 54237-2010

    ГОСТ Р 54285-2010

    ГОСТ Р 55123-2012

    ГОСТ Р 55125-2012

    ГОСТ Р 54282-2010

    ГОСТ Р 55120-2012

    ГОСТ Р 55128-2012

    ГОСТ Р 55115-2012

    ГОСТ Р 55117-2012

    ГОСТ Р 55122-2012

    ГОСТ Р 54261-2010

    ГОСТ Р 55124-2012

    ГОСТ Р 55133-2012

    ГОСТ Р 55113-2012

    ГОСТ Р 54299-2010

    ГОСТ Р 54982-2012

    ГОСТ Р 55475-2013

    ГОСТ Р 54287-2010

    ГОСТ Р 55552-2013

    ГОСТ Р 55551-2013

    ГОСТ Р 55549-2013

    ГОСТ Р 55116-2012

    ГОСТ Р 55131-2012

    ГОСТ Р 55132-2012

    ГОСТ Р 55566-2013

    ГОСТ Р 55660-2013

    ГОСТ Р 55869-2013

    ГОСТ Р 55546-2013

    ГОСТ Р 55661-2013

    ГОСТ Р 55548-2013

    ГОСТ Р 54227-2010

    ГОСТ Р 55874-2013

    ГОСТ Р 55957-2014

    ГОСТ Р 55550-2013

    ГОСТ Р 55956-2014

    ГОСТ Р 55547-2013

    ГОСТ Р 55960-2014

    ГОСТ Р 56147-2014

    ГОСТ Р 55961-2014

    ГОСТ Р 55958-2014

    ГОСТ Р 55959-2014

    ГОСТ Р 55873-2013

    ГОСТ Р 55955-2014

    ГОСТ Р 56868-2016

    ГОСТ Р 56870-2016

    ГОСТ Р 56146-2014

    ГОСТ Р 56871-2016

    ГОСТ Р 55523-2013

    ГОСТ Р 55493-2013

    ГОСТ Р 55879-2013

    ГОСТ Р 56866-2016

    ГОСТ Р 56883-2016

    ГОСТ Р 55126-2012

    ГОСТ Р 56867-2016

    ГОСТ Р 55114-2012

    ГОСТ Р 56882-2016

    ГОСТ Р 56888-2016

    ГОСТ Р 56886-2016

    ГОСТ Р 56889-2016

    ГОСТ Р 56887-2016

    ГОСТ Р 55130-2012

    ГОСТ Р 56890-2016

    ГОСТ Р 56881-2016

    ГОСТ Р 56884-2016

    ГОСТ Р 57040-2016

    ГОСТ Р 57039-2016

    ГОСТ Р 58221-2018

    ГОСТ Р 57658-2017

    ГОСТ Р 57016-2016

    ГОСТ Р 58440-2019

    ГОСТ Р 56885-2016

    ГОСТ Р 59045-2020

    ГОСТ Р 58255-2018

    ГОСТ Р 55553-2013

    ГОСТ Р 58914-2020

    ГОСТ Р 59244-2020

    ГОСТ Р 59245-2020

    ГОСТ Р 57431-2017

    ГОСТ Р 59249-2020

    ГОСТ Р 59250-2020

    ГОСТ Р 59013-2020

    ГОСТ Р 59012-2020

    ГОСТ Р 59253-2020

    ГОСТ Р 59251-2020

    ГОСТ Р 59254-2020

    ГОСТ Р 59256-2020

    ГОСТ Р 59257-2020

    ГОСТ Р 59176-2020

    ГОСТ Р 59261-2020

    ГОСТ Р 59255-2020

    ГОСТ Р 56869-2016

    ГОСТ Р 59592-2021

    ГОСТ Р 59248-2020

    ГОСТ Р 70204-2022

    ГОСТ Р 70205-2022

    ГОСТ Р 59258-2020

    ГОСТ Р 70206-2022

    ГОСТ Р 59161-2020

    ГОСТ Р 70207-2022

    ГОСТ Р 70208-2022

    ГОСТ Р 70211-2022

    ГОСТ Р 70263-2022

    ГОСТ Р 59014-2020

    ГОСТ Р 70209-2022

    ГОСТ Р 70264-2022

    ГОСТ Р 59262-2020

    ГОСТ Р 59015-2020

    ГОСТ Р 58227-2018

    ГОСТ Р 59177-2020

    ГОСТ Р 59264-2020

    ГОСТ Р 55129-2012

    ГОСТ Р ЕН ИСО 20847-2010

    ГОСТ Р ЕН ИСО 7536-2007

    ГОСТ Р 56720-2015

    ГОСТ Р 56718-2015

    ГОСТ Р 55868-2013

    ГОСТ Р 59593-2021

    ГОСТ Р ИСО 13909-1-2010

    ГОСТ Р 59252-2020

    ГОСТ Р 55997-2014

    ГОСТ Р ИСО 12156-1-2006

    ГОСТ Р ИСО 15585-2009

    ГОСТ Р ЕН 15195-2011

    ГОСТ Р ИСО 13909-6-2013

    ГОСТ Р ЕН 12177-2008

    ГОСТ Р ЕН ИСО 12205-2007

    ГОСТ Р ЕН 12916-2008

    ГОСТ Р ИСО 5275-2009

    ГОСТ Р ИСО 13759-2010

    ГОСТ Р ИСО 3734-2009

    ГОСТ Р ЕН ИСО 20846-2006

    ГОСТ Р 54220-2010

    ГОСТ Р ЕН 237-2008

    ГОСТ Р ИСО 13909-5-2013

    ГОСТ Р 55119-2012

    ГОСТ Р ЕН ИСО 3405-2007

    ГОСТ Р 54484-2011

    ГОСТ Р 55127-2012

    ГОСТ Р ИСО 18283-2010

    ГОСТ Р 54275-2010

    ГОСТ Р 56873-2016