ГОСТ Р ИСО 8573-7-2005

ОбозначениеГОСТ Р ИСО 8573-7-2005
НаименованиеСжатый воздух. Часть 7. Метод контроля загрязнения жизнеспособными микроорганизмами
СтатусДействует
Дата введения01.01.2006
Дата отмены-
Заменен на-
Код ОКС71.100.20
Текст ГОСТа


ГОСТ Р ИСО 8573-7-2005


Группа Т58

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Сжатый воздух

Часть 7

МЕТОД КОНТРОЛЯ ЗАГРЯЗНЕНИЯ ЖИЗНЕСПОСОБНЫМИ МИКРООРГАНИЗМАМИ

Compressed air - Part 7: Test method for viable microbiological contamination content

ОКС 71.100.20

Дата введения 2006-01-01

Предисловие

Задачи, основные принципы и правила проведения работ по государственной стандартизации в Российской Федерации установлены ГОСТ Р 1.0-92 "Государственная система стандартизации Российской Федерации. Основные положения" и ГОСТ Р 1.2-92 "Государственная система стандартизации Российской Федерации. Порядок разработки государственных стандартов"

________________

* На территории Российской Федерации действует ГОСТ Р 1.0-2004 .

** На территории Российской Федерации действует ГОСТ Р 1.2-2004 . - Примечание "КОДЕКС".

Сведения о стандарте

1 ПОДГОТОВЛЕН Общероссийской общественной организацией "Ассоциация инженеров по контролю микрозагрязнений" (АСИНКОМ), ООО "ЭНСИ", ОАО "НИЦ КД", ОАО "Мосэлектронпроект" на основе собственного аутентичного перевода стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 184 "Обеспечение промышленной чистоты"

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 11 марта 2005 г. N 48-ст

4 Настоящий стандарт идентичен международному стандарту ИСО 8573-7:2003 "Сжатый воздух. Часть 7. Метод контроля загрязнения жизнеспособными микроорганизмами" (ISO 8573-7:2003 "Compressed air - Part 7: Test method for viable microbiological contamination content").

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в приложении Е

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в указателе "Национальные стандарты", а текст изменений - в информационных указателях "Национальные стандарты". В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе "Национальные стандарты"

Введение

Серия международных стандартов по чистоте сжатого воздуха ИСО 8573 разработана Техническим комитетом ИСО/ТК 118 Compressors, pneumatic tools and pneumatic machines, Subcommittee SC 4, Quality of compressed air - Компрессоры, пневматические инструменты и пневматическое оборудование, подкомитет ПК 4 "Качество сжатого воздуха".

В указанную серию входят следующие стандарты:

- ИСО 8573-1:2001 Сжатый воздух. Часть 1. Загрязнения и классы чистоты;

- ИСО 8573-2:1996 Сжатый воздух. Часть 2. Методы контроля содержания масел в виде аэрозолей;

- ИСО 8573-3:1999 Сжатый воздух. Часть 3. Методы контроля влажности;

- ИСО 8573-4:2001 Сжатый воздух. Часть 4. Методы контроля содержания твердых частиц;

- ИСО 8573-5:2001 Сжатый воздух. Часть 5. Методы контроля содержания паров масла и органических растворителей;

- ИСО 8573-6:2003 Сжатый воздух. Часть 6. Методы контроля загрязнения газами;

- ИСО 8573-7:2003 Сжатый воздух. Часть 7. Метод контроля загрязнения жизнеспособными микроорганизмами;

- ИСО 8573-8:2004 Сжатый воздух. Часть 8. Методы контроля загрязнения твердыми частицами по массовой концентрации;

- ИСО 8573-9:2004 Сжатый воздух. Часть 9. Методы контроля содержания воды в жидкой фазе.

1 Область применения

Настоящий стандарт устанавливает метод контроля загрязнения жизнеспособными колониеобразующими микроорганизмами (например дрожжей, бактерий, эндотоксинов) из твердых частиц, присутствующих в сжатом воздухе, а также методы отбора проб и условия инкубации.

Метод контроля используется для определения классов чистоты в соответствии с ИСО 8573-1 и ИСО 8573-4 и может, при необходимости, применяться для выявления твердых частиц, одновременно являющихся жизнеспособными колониеобразующими единицами.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ИСО 4833:2003 Микробиология пищевых продуктов и кормов для животных. Горизонтальный метод подсчета микроорганизмов. Метод подсчета колоний при температуре 30 °С

ИСО 7218:1996 Микробиология пищевых продуктов и кормовых продуктов. Общие правила микробиологических исследований

ИСО 7954:1987 Микробиология. Общее руководство по подсчету дрожжевых и плесневых грибов. Метод подсчета колоний при температуре 25 °С

ИСО 8573-1:2001 Сжатый воздух. Часть 1. Загрязнения и классы чистоты

ИСО 8573-4:2001 Сжатый воздух. Часть 4. Методы контроля содержания твердых частиц

3 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями.

3.1 микроорганизмы (microbiological organisms): Частицы, характеризующиеся своей способностью образовывать жизнеспособные колонии.

Примечание - Они могут идентифицироваться как бактерии, дрожжи или грибы.

3.2 число жизнеспособных микроорганизмов (number of viable microorganisms): Число микроорганизмов, проявляющих метаболическую активность.

3.3 число культиватов (culturable number): Число микроорганизмов (единичных клеток или агрегатов), способных образовывать колонии на твердой питательной среде.

3.4 колониеобразующая единица (КОЕ) (Colony-forming unit (CFU)): Единица, в которой выражается число культиватов.

4 Метод контроля содержания жизнеспособных микроорганизмов путем парциального отбора проб воздуха

Метод контроля наличия жизнеспособных микроорганизмов в пробе сжатого воздуха основан на воздействии воздуха на агаровую питательную среду. Количественная оценка может быть проведена с использованием метода, приведенного в приложении В. Метод подготовки чашки Петри с агаровой питательной средой приведен в приложении D.

Для парциального отбора проб воздуха следует использовать щелевой пробоотборник (вид импактора для анализа воздуха) и метод, приведенный в ИСО 8573-4; провести изокинетический отбор проб и снизить давление сжатого воздуха до диапазона, указанного для данного пробоотборника в инструкции производителя. Снижение давления воздуха до атмосферного и измерение скорости потока воздуха следует проводить для подтверждения диапазона, установленного производителем или в соответствии с ИСО 8753-4. При известной скорости потока должно регистрироваться время экспозиции пробы сжатого воздуха с агаровой питательной средой.

Для более легкого разделения частиц, содержащих и не содержащих микроорганизмы, контроль следует проводить в течение 4 ч.


1 - вход воздуха; 2 - вращающаяся чашка Петри с агаровой питательной средой;
3 - выход воздуха; 4 - поток воздуха

Рисунок 1 - Щелевой пробоотборник

При контроле, для получения достоверных результатов по количеству и размерам частиц, следует устранить влияние на них воды и других жидкостей.

Влияние воды на получение результатов следует устранять путем нагревания или сушки воздуха (что в других случаях может быть приемлемым), так как наличие ее может оказать отрицательное воздействие на жизнеспособность микроорганизмов.

5 Рабочие условия

Фактические рабочие условия должны быть приведены в аналитическом отчете о контроле содержания жизнеспособных микробиологических частиц в сжатом воздухе (приложение А).

6 Контроль наличия жизнеспособных колониеобразующих микроорганизмов

После инкубации пробы воздуха на агаровой питательной среде (В.3) поверхность среды визуально исследуется на наличие жизнеспособных колониеобразующих микроорганизмов.

7 Заключение в аналитическом отчете

В аналитическом отчете о контроле содержания твердых частиц в соответствии с ИСО 8573-4 дополнительно следует привести заключение о наличии частиц, содержащих жизнеспособные колониеобразующие микроорганизмы, твердых частиц и слова "Стерильность сжатого воздуха декларируется в соответствии с ИСО 8573-1" с указанием:

- "стерильный" или "нестерильный";

- даты отбора пробы;

- даты контроля;

- точек отбора проб.

В приложении А приведена форма аналитического отчета о контроле содержания жизнеспособных микробиологических частиц в сжатом воздухе.

Приложение А
(справочное)

Аналитический отчет. Контроль содержания жизнеспособных
микробиологических частиц в сжатом воздухе

После контроля содержания твердых частиц в пробе, отобранной из системы сжатого воздуха в соответствии с ИСО 8573-4, оформляется аналитический отчет в виде таблицы А.1 с данными о количестве частиц, на которых присутствуют жизнеспособные микробиологические колониеобразующие единицы (КОЕ).

Примечание - Сведения об агаровой питательной среде приведены в В.3.

Таблица А.1 - Форма аналитического отчета о контроле содержания жизнеспособных микробиологических частиц в пробе сжатого воздуха

Действительная и средняя величины

Микроорганизм

КОЕ/м при стандартных условиях*

Бактерии

100

Дрожжи

14

Грибы

Не обнаружено

Эндобактерии

50

Давление, при котором проводился контроль

МПа [бар(е)]

Заявление относительно возможности применения (раздел 7)

Дата протокола калибровки

год/месяц/день

* Стандартные условия:

- температура ... 20 °С;

- давление ... 0,1 МПа (1 бар).

В данном применении относительная влажность не оказывает влияния на объем.



Приложение В
(рекомендуемое)

Количественный метод отбора проб

В.1 Отбор проб с использованием щелевого пробоотборника

В.1.1 Принцип отбора проб

Механизм захвата микроорганизмов с использованием щелевого пробоотборника (импактора для анализа воздуха) характеризуется простотой и надежностью. Воздух из установки сжатого воздуха проходит через специально сконструированный переходник и ускоряется при поступлении через узкую щель к влажной поверхности агаровой питательной среды (рисунок 1). Согласно закону инерции микроорганизмы (как более тяжелые) оседают на поверхность среды, а молекулы воздуха отклоняются от нее. При соответствующих условиях инкубации микроорганизмы вырастают в колонии, которые подсчитываются в предположении, что один микроорганизм вырастает в одну колонию.

Щелевой пробоотборник используется для бактерий, дрожжей или грибов; для вирусов и бактериофагов применяются специальные методы отбора проб. Поскольку оседание частиц происходит на большую поверхность агаровой питательной среды в чашке Петри диаметром 140 мм и пробоотборник расположен радиально относительно вращающейся чашки, то может быть подсчитано большее число микроорганизмов.

В.1.2 Методы работы в асептических условиях

Метод отбора проб предусматривает работу в асептических условиях. В качестве дезинфицирующего средства рекомендуется использование 70%-ного этилового спирта. Во время простоя пробоотборника следует принимать меры, ограничивающие рост микроорганизмов. Все операции, связанные с открытием щели, должны проводиться в минимальные сроки, чтобы избежать возможности попадания загрязнений из непосредственного окружения. Должны приниматься меры, исключающие сквозняки.

В.2 Методика отбора проб

Для отбора проб следует применять следующую методику:

a) оборудование, используемое для отбора проб, в т.ч. трубки и шланги, непосредственно перед использованием стерилизуется дезинфицирующим средством;

b) испытуемая проба воздуха пропускается через пробоотборник и соединенные с ним трубки и шланги (без чашки Петри с агаровой питательной средой). Это необходимо для испарения дезинфицирующего средства и настройки щелевого пробоотборника;

c) путем выполнения процедур по перечислениям d)-f) (при выключенном пробоотборнике) до и после контроля проводится "слепое испытание". Используемые при этом чашки Петри диаметром 140 мм, наполненные агаровой питательной средой, не должны показывать роста микроорганизмов;

d) на дне чашки Петри снаружи закрепляется этикетка с информацией о дате и начале испытания, адресе места проведения испытания, коде и т.д. Отмечается начальная позиция и направление вращения;

e) проверяется, что индикатор уровня и крышка в щелевом пробоотборнике для входа воздуха открыты. При открытой крышке проверяется правильность расположения держателя пластины и микропереключателя. Внутренние поверхности пробоотборника протираются дезинфицирующим средством;

f) чашка Петри вставляется в щелевой пробоотборник таким образом, чтобы ее радиус располагался вертикально под щелью для поступления воздуха. Крышка чашки Петри снимается и помещается в стерильный пластиковый пакет;

g) после снятия крышки чашки Петри крышка щелевого пробоотборника возвращается в исходное положение;

h) освобождается индикатор уровня и осторожно опускается к поверхности агаровой питательной среды. Крышка щелевого пробоотборника для входа воздуха опускается так, чтобы индикаторная стрелка указывала на нижний край направляющего желоба. Индикатор уровня пробоотборника возвращается в верхнюю позицию и закрепляется;

i) после нажатия клавиши "старт" начинается автоматический отбор пробы. Отмечается время начала и продолжительность отбора пробы, наименование и размещение испытательного оборудования и другие условия или явления, которые могут повлиять на результаты контроля;

j) отбор пробы завершается при выключении индикаторной лампы. При выключенной клавише "старт/стоп" поднимается крышка для входа воздуха;

k) крышка щелевого пробоотборника освобождается и осторожно сдвигается с одновременным извлечением крышки чашки Петри из стерильного пластикового пакета для последующего закрытия чашки Петри. Такие действия проводятся осторожно, чтобы не повредить агаровую питательную среду с пробой сжатого воздуха;

I) чашка Петри извлекается из пробоотборника, закрывается крышкой, заклеивается лентой и помещается в стерильный пакет, который также заклеивается;

m) чашки Петри инкубируются при комнатной температуре и через соответствующий период времени осматриваются (В.3). В центре и на внешнем крае поверхности агаровой питательной среды колониеобразующие единицы должны отсутствовать.

Примечание - Линия "старт/финиш" может содержать "дополнительные" колонии;

n) ручка активации держателя чашки передвигается и микропереключатель переводится в другую стартовую позицию;

o) внутренние поверхности щелевого пробоотборника протираются дезинфицирующим средством и закрываются крышкой;

p) для следующего отбора пробы приведенные действия повторяются.

Следует контролировать условия транспортирования чашек Петри от производителя, наполнившего их агаровой питательной средой, до места отбора пробы в лаборатории на предмет возможного загрязнения чашек при транспортировании. Чашки Петри после транспортирования не должны показывать роста микроорганизмов.

В.3 Инкубация загрязняющих жизнеспособных микроорганизмов

Наиболее подходящей температурой инкубации микроорганизмов в общем случае является температура окружающей среды, в которой они находились до отбора проб. Мезофильные бактерии или грибы культивируются при температуре от 20 °С до 30 °С. Для некоторых термочувствительных бактерий могут потребоваться другие температуры инкубации. Период инкубации обычно составляет для грибов 14 сут, для мезофильных бактерий - от 2 до 14 сут. Возможны и другие температуры инкубации микроорганизмов.

Для выделения отдельных видов бактерий (например грамм-отрицательных энтеробактерий) могут использоваться селективные среды (агаровые питательные). Число колониеобразующих единиц подсчитывается через заданный период времени (например 24 ч).

В.4 Подсчет колониеобразующих единиц (КОЕ)

Неселективные среды анализируются на наличие роста колониеобразующих единиц, начиная с 24 ч после начала инкубации, с повторным подсчетом колоний каждые 24 ч в течение 14 сут. Для предотвращения неопределенности измерений при инкубации следует проводить регулярные наблюдения и подсчет колоний по мере их выявления и с учетом возможности перерастания.

Приложение С
(справочное)

Отбор проб на эндотоксины

С.1 Общие положения

Отбор проб сжатого воздуха на эндотоксины является сложным процессом, требующим неиспользованных ранее пластиковых трубок и стеклянных флаконов, а также персонала, обученного методам отбора проб. Наличие эндотоксинов в сжатом воздухе подтверждается после подсчета количества грамм-отрицательных энтеробактерий в конденсате сжатого воздуха и дополнительных измерений содержания бактерий, грибов и дрожжей.

С.2 Методика отбора проб

Примечание - Содержание в сжатом воздухе всего нескольких нанограмм эндотоксинов (продуктов метаболизма грамм-отрицательных бактерий) может вызвать заболевание.

Испытания следует проводить в стерильных условиях с применением пластины с соответствующей агаровой средой. Точки отбора проб в системе сжатого воздуха выбираются в местах, удобных для сбора конденсата. Для подсчета количества грамм-отрицательных бактерий в конденсате используется следующая методика:

a) непосредственно перед испытанием точки отбора пробы дезинфицируются 70%-ным этиловым спиртом;

b) с флакона с агаровой питательной средой снимается крышка с прикрепленной к ней пластиной;

c) из точки отбора пробы конденсат отбирается в стерильный флакон;

d) прикрепленная к крышке флакона пластина вводится в отобранный конденсат на 10 с. Обе поверхности (пластины и конденсата) должны контактировать;

e) пластина медленно (примерно за 3 с) извлекается из конденсата;

f) содержимое флакона выливается;

g) после инокуляции пластина вновь помещается во флакон. На этой стадии флакон с пластиной может храниться или транспортироваться в течение нескольких часов, что не влияет на результат. Флакон с испытуемой пластиной не допускается замораживать;

h) пластины инкубируются при 27 °С в течение 14 сут. При медленном росте микроорганизмов период инкубации продлевается до 1 мес;

i) после инкубации пластина из флакона осторожно удаляется. Рост колоний анализируется и проводятся реакции на изменение цвета по инструкциям производителей.

Приемлемый уровень бактерий, дрожжей и грибов в конденсате, как правило, составляет 10000 КОЕ/мл. При обнаружении одной грамм-отрицательной бактерии считается, что в сжатом воздухе присутствуют эндотоксины и, следовательно, влажные детали установки следует очистить и продезинфицировать.

Приложение D
(справочное)

Подготовка чашек Петри с питательной средой

Методика применима к агаровой питательной среде, используемой для подсчета колоний, и среде Сабуро с 4%-ной декстрозой.

Методика включает в себя следующие действия:

a) питательная среда в количестве, указанном производителем, взвешивается и растворяется в воде;

b) питательная среда стерилизуется в автоклаве при температуре 121 °С в течение 15 мин;

c) после охлаждения до 50 °С измеряется рН среды, который при необходимости доводится до заданного значения с использованием соляной кислоты или щелочи натрия;

d) на каждую стерильную чашку Петри диаметром 140 мм наносится по 65 мл питательной среды;

e) после остывания и затвердения среды каждая чашка Петри упаковывается в два стерильных пластиковых пакета:

1) первый пакет закрывается простой двусторонней круговой пломбой,

2) второй пакет герметично укупоривается с запайкой краев;

f) пакеты с чашками маркируются с указанием даты, содержимого и номера серии.

Приложение Е
(справочное)

Сведения о соответствии национальных стандартов Российской Федерации
ссылочным международным (региональным) стандартам

Таблица E.1

Обозначение ссылочного международного стандарта

Обозначение и наименование соответствующего национального стандарта

ИСО 8573-1:2001

ГОСТ Р ИСО 8573-1-2005 Сжатый воздух. Часть 1. Загрязнения и классы чистоты (IDT)

ИСО 8573-4:2001

ГОСТ Р ИСО 8573-4-2005 Сжатый воздух. Часть 4. Методы контроля содержания твердых частиц (IDT)

Текст документа сверен по:

, 2005

Другие госты в подкатегории

    ГОСТ 10834-76

    ГОСТ 10898.1-84

    ГОСТ 10898.2-74

    ГОСТ 11131-65

    ГОСТ 10887-75

    ГОСТ 11066-74

    ГОСТ 12596-67

    ГОСТ 10957-74

    ГОСТ 10898.4-84

    ГОСТ 12597-67

    ГОСТ 13583.10-93

    ГОСТ 12696-77

    ГОСТ 13583.9-93

    ГОСТ 10916-74

    ГОСТ 14618.1-78

    ГОСТ 14618.0-78

    ГОСТ 14618.11-78

    ГОСТ 10900-84

    ГОСТ 14618.12-78

    ГОСТ 14618.3-78

    ГОСТ 14618.2-78

    ГОСТ 14618.4-78

    ГОСТ 14618.6-78

    ГОСТ 14618.5-78

    ГОСТ 14618.7-78

    ГОСТ 14618.9-78

    ГОСТ 14618.8-78

    ГОСТ 14839.0-91

    ГОСТ 13583.5-93

    ГОСТ 1028-79

    ГОСТ 14618.10-78

    ГОСТ 14361-78

    ГОСТ 14839.13-69

    ГОСТ 10898.5-84

    ГОСТ 14839.11-69

    ГОСТ 14839.15-69

    ГОСТ 14839.16-69

    ГОСТ 13004-77

    ГОСТ 14839.17-69

    ГОСТ 14839.12-69

    ГОСТ 14839.20-77

    ГОСТ 14839.14-69

    ГОСТ 14839.2-69

    ГОСТ 14839.19-69

    ГОСТ 14201-83

    ГОСТ 14839.5-69

    ГОСТ 14839.8-69

    ГОСТ 14839.9-69

    ГОСТ 14839.4-69

    ГОСТ 14839.6-69

    ГОСТ 14839.7-69

    ГОСТ 15039-76

    ГОСТ 15081-78

    ГОСТ 13032-77

    ГОСТ 14839.3-69

    ГОСТ 15866-70

    ГОСТ 14839.1-69

    ГОСТ 16189-70

    ГОСТ 16187-70

    ГОСТ 15975-70

    ГОСТ 16188-70

    ГОСТ 12868-77

    ГОСТ 14845-79

    ГОСТ 16190-70

    ГОСТ 14839.18-69

    ГОСТ 17082.4-88

    ГОСТ 14839.10-69

    ГОСТ 17082.1-93

    ГОСТ 17082.3-95

    ГОСТ 17237-93

    ГОСТ 17082.2-95

    ГОСТ 16399-70

    ГОСТ 13208-78

    ГОСТ 14839.13-2013

    ГОСТ 17553-72

    ГОСТ 17219-71

    ГОСТ 17554-72

    ГОСТ 14839.18-2013

    ГОСТ 13583.11-93

    ГОСТ 16363-98

    ГОСТ 17218-71

    ГОСТ 16508-70

    ГОСТ 18995.2-73

    ГОСТ 16712-95

    ГОСТ 18375-73

    ГОСТ 17310-86

    ГОСТ 20022.0-2016

    ГОСТ 17823.1-72

    ГОСТ 17823.3-80

    ГОСТ 20022.0-93

    ГОСТ 19180-73

    ГОСТ 10896-78

    ГОСТ 20841.1-75

    ГОСТ 18613-88

    ГОСТ 20841.3-75

    ГОСТ 17338-88

    ГОСТ 20464-75

    ГОСТ 15615-79

    ГОСТ 18261-72

    ГОСТ 17082.5-88

    ГОСТ 19783-74

    ГОСТ 18995.1-73

    ГОСТ 21533-76

    ГОСТ 15155-99

    ГОСТ 20841.4-75

    ГОСТ 20022.2-2018

    ГОСТ 21983-76

    ГОСТ 21984-76

    ГОСТ 20841.6-75

    ГОСТ 21986-76

    ГОСТ 17552-72

    ГОСТ 22567.1-77

    ГОСТ 20841.5-75

    ГОСТ 22567.11-82

    ГОСТ 19113-84

    ГОСТ 17823.2-72

    ГОСТ 22567.13-82

    ГОСТ 21985-76

    ГОСТ 22567.2-77

    ГОСТ 22567.3-77

    ГОСТ 22567.4-77

    ГОСТ 20841.8-79

    ГОСТ 22567.5-93

    ГОСТ 20841.7-75

    ГОСТ 21982-76

    ГОСТ 22567.8-77

    ГОСТ 194-80

    ГОСТ 22567.12-82

    ГОСТ 21987-76

    ГОСТ 20022.6-93

    ГОСТ 23201.3-94

    ГОСТ 23361-78

    ГОСТ 20841.2-75

    ГОСТ 16713-71

    ГОСТ 23201.1-78

    ГОСТ 23787.8-2019

    ГОСТ 22781-77

    ГОСТ 21988-76

    ГОСТ 23787.8-80

    ГОСТ 23787.7-79

    ГОСТ 23201.0-78

    ГОСТ 23907-79

    ГОСТ 23863-79

    ГОСТ 22567.15-95

    ГОСТ 23787.12-81

    ГОСТ 2154-77

    ГОСТ 23998-80

    ГОСТ 23787.9-2019

    ГОСТ 21806-76

    ГОСТ 24455-80

    ГОСТ 24456-80

    ГОСТ 24579-81

    ГОСТ 24211-2003

    ГОСТ 25162-82

    ГОСТ 24008-80

    ГОСТ 23201.2-78

    ГОСТ 25389-93

    ГОСТ 22567.10-93

    ГОСТ 21802-84

    ГОСТ 24211-2008

    ГОСТ 23951-80

    ГОСТ 24617-81

    ГОСТ 22567.14-93

    ГОСТ 22567.9-87

    ГОСТ 25469-93

    ГОСТ 25644-88

    ГОСТ 25542.0-93

    ГОСТ 25659-83

    ГОСТ 23787.9-84

    ГОСТ 25542.1-93

    ГОСТ 25734-83

    ГОСТ 25644-96

    ГОСТ 22567.7-87

    ГОСТ 25857-83

    ГОСТ 25149-82

    ГОСТ 25734-96

    ГОСТ 23787.1-84

    ГОСТ 27014-2021

    ГОСТ 26460-85

    ГОСТ 22989-78

    ГОСТ 26910-86

    ГОСТ 26878-86

    ГОСТ 20255.1-89

    ГОСТ 27076-86

    ГОСТ 26544-85

    ГОСТ 25163-82

    ГОСТ 27429-87

    ГОСТ 27798-93

    ГОСТ 2770-74

    ГОСТ 27799-93

    ГОСТ 27404-87

    ГОСТ 27429-2017

    ГОСТ 25542.4-93

    ГОСТ 22567.6-87

    ГОСТ 27802-93

    ГОСТ 28303-89

    ГОСТ 27801-93

    ГОСТ 27475-87

    ГОСТ 27700-88

    ГОСТ 27800-93

    ГОСТ 27014-86

    ГОСТ 25390-93

    ГОСТ 28508-90

    ГОСТ 28303-2017

    ГОСТ 25733-83

    ГОСТ 28670-90

    ГОСТ 26371-84

    ГОСТ 2407-83

    ГОСТ 28546-90

    ГОСТ 25542.6-93

    ГОСТ 25542.3-93

    ГОСТ 28546-2002

    ГОСТ 28815-90

    ГОСТ 28954-91

    ГОСТ 28326.2-89

    ГОСТ 24614-81

    ГОСТ 29188.1-91

    ГОСТ 29188.0-91

    ГОСТ 29188.2-91

    ГОСТ 28326.3-89

    ГОСТ 29188.3-91

    ГОСТ 29188.4-91

    ГОСТ 28768-90

    ГОСТ 29188.2-2014

    ГОСТ 28326.4-89

    ГОСТ 28326.5-89

    ГОСТ 29289-92

    ГОСТ 17823.4-80

    ГОСТ 30024-93

    ГОСТ 28995-91

    ГОСТ 29190-91

    ГОСТ 30028.3-2022

    ГОСТ 29189-91

    ГОСТ 30028.4-2022

    ГОСТ 28326.7-89

    ГОСТ 25542.2-93

    ГОСТ 30159-94

    ГОСТ 29232-91

    ГОСТ 30266-2017

    ГОСТ 28478-90

    ГОСТ 28767-90

    ГОСТ 28184-89

    ГОСТ 30495-2006

    ГОСТ 30495-97

    ГОСТ 28326.1-89

    ГОСТ 25542.5-93

    ГОСТ 29188.6-91

    ГОСТ 31460-2012

    ГОСТ 30028.4-93

    ГОСТ 31340-2022

    ГОСТ 30028.4-2006

    ГОСТ 29264-91

    ГОСТ 29188.5-91

    ГОСТ 30558-98

    ГОСТ 30028.2-93

    ГОСТ 31695-2012

    ГОСТ 31696-2012

    ГОСТ 30357-96

    ГОСТ 32117-2013

    ГОСТ 31697-2012

    ГОСТ 30028.3-93

    ГОСТ 32162-2013

    ГОСТ 30028.1-93

    ГОСТ 32373-2013

    ГОСТ 32375-2013

    ГОСТ 30266-95

    ГОСТ 30268-95

    ГОСТ 32296-2013

    ГОСТ 32380-2013

    ГОСТ 32376-2013

    ГОСТ 31698-2013

    ГОСТ 32383-2013

    ГОСТ 30704-2001

    ГОСТ 32379-2013

    ГОСТ 31693-2012

    ГОСТ 30037-93

    ГОСТ 32378-2013

    ГОСТ 32437-2013

    ГОСТ 32385-2013

    ГОСТ 31679-2012

    ГОСТ 32478-2013

    ГОСТ 32479-2013

    ГОСТ 31649-2012

    ГОСТ 32519-2013

    ГОСТ 20255.2-89

    ГОСТ 29263-91

    ГОСТ 31677-2012

    ГОСТ 32851-2014

    ГОСТ 32852-2014

    ГОСТ 32853-2014

    ГОСТ 32854-2014

    ГОСТ 32837-2014

    ГОСТ 32480-2013

    ГОСТ 32524-2013

    ГОСТ 32850-2014

    ГОСТ 31678-2012

    ГОСТ 33488-2015

    ГОСТ 28326.6-89

    ГОСТ 31692-2012

    ГОСТ 33732-2016

    ГОСТ 32534-2013

    ГОСТ 33950-2016

    ГОСТ 33487-2015

    ГОСТ 33489-2015

    ГОСТ 34295-2017

    ГОСТ 34001-2016

    ГОСТ 34297-2017

    ГОСТ 34864-2022

    ГОСТ 34000-2016

    ГОСТ 34296-2017

    ГОСТ 3902-82

    ГОСТ 32893-2014

    ГОСТ 33164.3-2014

    ГОСТ 4225-76

    ГОСТ 32425-2013

    ГОСТ 32481-2013

    ГОСТ 32411-2013

    ГОСТ 3864-75

    ГОСТ 4545-88

    ГОСТ 5984-80

    ГОСТ 32542-2013

    ГОСТ 32382-2013

    ГОСТ 4546-81

    ГОСТ 32433-2013

    ГОСТ 32421-2013

    ГОСТ 6912-87

    ГОСТ 6912.1-93

    ГОСТ 6254-85

    ГОСТ 7102-80

    ГОСТ 7140-81

    ГОСТ 33506-2015

    ГОСТ 7574-71

    ГОСТ 32477-2013

    ГОСТ 31676-2012

    ГОСТ 797-55

    ГОСТ 4117-78

    ГОСТ 797-64

    ГОСТ 7140-98

    ГОСТ 8063-72

    ГОСТ 6912.2-93

    ГОСТ 32369-2013

    ГОСТ 5696-74

    ГОСТ 8502-88

    ГОСТ 8064-72

    ГОСТ 8065-72

    ГОСТ 5984-99

    ГОСТ 9069-73

    ГОСТ 8067-72

    ГОСТ 6217-74

    ГОСТ 9089-75

    ГОСТ ISO/TR 14735-2015

    ГОСТ ISO/TR 24475-2013

    ГОСТ ISO/TR 21092-2015

    ГОСТ ISO 1041-2015

    ГОСТ 28815-2018

    ГОСТ 8062-72

    ГОСТ 33778-2016

    ГОСТ 5234-78

    ГОСТ ISO 11024-2-2015

    ГОСТ 8061-72

    ГОСТ 7657-84

    ГОСТ 6221-90

    ГОСТ ISO/TR 11018-2015

    ГОСТ ISO 16212-2020

    ГОСТ ISO 1242-2014

    ГОСТ 8703-74

    ГОСТ ISO 22716-2013

    ГОСТ ISO 212-2014

    ГОСТ 595-79

    ГОСТ 6755-88

    ГОСТ ISO 12787-2016

    ГОСТ ISO 10869-2015

    ГОСТ ISO 1272-2016

    ГОСТ 32936-2014

    ГОСТ ISO 11021-2016

    ГОСТ ISO 356-2014

    ГОСТ ISO 279-2014

    ГОСТ ISO 280-2014

    ГОСТ ISO 1241-2016

    ГОСТ 5972-77

    ГОСТ ISO 4715-2015

    ГОСТ ISO 22972-2014

    ГОСТ ISO 4735-2015

    ГОСТ ISO 1279-2015

    ГОСТ ISO 1271-2014

    ГОСТ 4453-74

    ГОСТ ISO 592-2014

    ГОСТ ISO 3518-2014

    ГОСТ ISO 4724-2015

    ГОСТ ISO 3044-2017

    ГОСТ ISO 3794-2015

    ГОСТ ISO 709-2014

    ГОСТ ISO 3520-2014

    ГОСТ 32937-2014

    ГОСТ Р 22.2.07-94

    ГОСТ ИСО 8573-5-2006

    ГОСТ ISO 3516-2018

    ГОСТ ISO 11024-1-2014

    ГОСТ Р 50137-92

    ГОСТ Р 50138-92

    ГОСТ Р 50151-92

    ГОСТ Р 50152-92

    ГОСТ Р 50153-92

    ГОСТ ИСО 8573-3-2006

    ГОСТ ISO 7358-2015

    ГОСТ Р 50332.13-92

    ГОСТ ISO 4731-2014

    ГОСТ ISO 875-2014

    ГОСТ ISO 8897-2017

    ГОСТ Р 50003-92

    ГОСТ Р 50241-2021

    ГОСТ Р 50550-93

    ГОСТ Р 50050-92

    ГОСТ ISO 9842-2017

    ГОСТ ISO 7609-2014

    ГОСТ Р 50843-95

    ГОСТ Р 50332.1-92

    ГОСТ Р 50346-92

    ГОСТ 790-89

    ГОСТ Р 51020-97

    ГОСТ Р 50482-93

    ГОСТ ISO 817-2014

    ГОСТ Р 50378-92

    ГОСТ 28815-96

    ГОСТ Р 50672-94

    ГОСТ Р 50061-92

    ГОСТ Р 51391-99

    ГОСТ ISO 7359-2016

    ГОСТ Р 51615-2000

    ГОСТ Р 51270-99

    ГОСТ Р 50097-92

    ГОСТ Р 51696-2000

    ГОСТ Р 52035-2003

    ГОСТ ISO/TR 26369-2015

    ГОСТ Р 52341-2005

    ГОСТ Р 52343-2005

    ГОСТ Р 51673-2000

    ГОСТ Р 50551-93

    ГОСТ Р 51579-2000

    ГОСТ Р 52345-2005

    ГОСТ Р 52036-2003

    ГОСТ Р 52488-2005

    ГОСТ Р 52952-2008

    ГОСТ Р 52344-2005

    ГОСТ Р 51019-97

    ГОСТ Р 50001-92

    ГОСТ Р 54252-2010

    ГОСТ Р 54952-2012

    ГОСТ Р 50002-92

    ГОСТ Р 50472-93

    ГОСТ Р 55590-2013

    ГОСТ Р 52701-2006

    ГОСТ Р 55778-2013

    ГОСТ ISO 24444-2013

    ГОСТ Р 55780-2013

    ГОСТ Р 50673-94

    ГОСТ Р 55782-2013

    ГОСТ Р 55781-2013

    ГОСТ Р 55777-2013

    ГОСТ Р 52904-2007

    ГОСТ Р 51697-2000

    ГОСТ Р 55784-2013

    ГОСТ Р 57443-2017

    ГОСТ Р 51018-97

    ГОСТ Р 55783-2013

    ГОСТ Р 56592-2015

    ГОСТ Р 57835-2017

    ГОСТ Р 58023-2017

    ГОСТ Р 55785-2013

    ГОСТ Р 57444-2017

    ГОСТ ISO 3515-2017

    ГОСТ Р 57836-2017

    ГОСТ Р 57886-2017

    ГОСТ Р 54848-2011

    ГОСТ Р 58473-2019

    ГОСТ Р 59569-2021

    ГОСТ Р 59568-2021

    ГОСТ Р 70106-2022

    ГОСТ Р 58060-2018

    ГОСТ Р 59414-2021

    ГОСТ Р 55779-2013

    ГОСТ Р ИСО 11412-2014

    ГОСТ Р 51021-97

    ГОСТ Р 52342-2005

    ГОСТ Р 57822-2017

    ГОСТ Р ИСО 10236-2016

    ГОСТ Р ИСО 12984-2015

    ГОСТ Р ИСО 10143-2016

    ГОСТ Р ИСО 10237-2016

    ГОСТ Р 51578-2000

    ГОСТ Р ИСО 10238-2015

    ГОСТ Р ИСО 10142-2016

    ГОСТ Р ИСО 12981-1-2014

    ГОСТ Р 53427-2009

    ГОСТ Р 53426-2009

    ГОСТ Р 58059-2018

    ГОСТ Р ИСО 11713-2014

    ГОСТ Р ИСО 12985-2-2014

    ГОСТ Р ИСО 12985-1-2014

    ГОСТ Р ИСО 14422-2017

    ГОСТ Р 51023-97

    ГОСТ Р ИСО 12986-1-2014

    ГОСТ Р ИСО 14427-2016

    ГОСТ Р ИСО 12987-2014

    ГОСТ Р 51022-97

    ГОСТ Р ИСО 16128-1-2022

    ГОСТ Р ИСО 12989-1-2017

    ГОСТ Р ИСО 16128-2-2022

    ГОСТ Р 56248-2014

    ГОСТ Р 55466-2013

    ГОСТ Р ИСО 18321-2022

    ГОСТ Р ИСО 12988-1-2017

    ГОСТ Р ИСО 11400-2016

    ГОСТ Р ИСО 13985-2013

    ГОСТ Р ИСО 15906-2016

    ГОСТ Р ИСО 15379-2-2014

    ГОСТ Р ИСО 15379-1-2015

    ГОСТ Р ИСО 14420-2014

    ГОСТ Р ИСО 22734-1-2013

    ГОСТ Р ИСО 20202-2016

    ГОСТ Р ИСО 12986-2-2015

    ГОСТ Р ИСО 14687-1-2012

    ГОСТ Р ИСО 14428-2016

    ГОСТ Р ИСО 22734-2-2014

    ГОСТ Р ИСО 14435-2017

    ГОСТ Р ИСО 6257-2015

    ГОСТ Р ИСО 18515-2014

    ГОСТ Р ИСО 6998-2017

    ГОСТ Р ИСО 6375-2015

    ГОСТ Р ИСО 8005-2014

    ГОСТ Р ИСО 8007-3-2014

    ГОСТ ISO 11930-2014

    ГОСТ Р ИСО 17499-2016

    ГОСТ Р ИСО 8007-2-2014

    ГОСТ Р ИСО 20203-2017

    ГОСТ Р ИСО 8658-2017

    ГОСТ Р ИСО 3857-4-2017

    ГОСТ Р ИСО 17544-2017

    ГОСТ Р ИСО 8723-2015

    ГОСТ Р ИСО 21148-2011

    ГОСТ Р ИСО 12980-2017

    ГОСТ Р ИСО 8573-4-2005

    ГОСТ Р ИСО 8573-9-2007

    ГОСТ Р ИСО 8573-1-2005

    ГОСТ Р ИСО 21687-2014

    ГОСТ Р ИСО 9088-2014

    ГОСТ Р ИСО 12988-2-2017

    ГОСТ Р ИСО 4327-94

    ГОСТ Р ИСО 12989-2-2017

    ГОСТ Р ИСО 8573-8-2007

    ГОСТ Р ИСО 8573-1-2016

    ГОСТ Р 52621-2006

    ГОСТ Р ИСО 8573-6-2005

    ГОСТ Р ИСО 8573-2-2005

    ГОСТ Р ИСО 6388-93

    ГОСТ Р ИСО 7183-2017

    ГОСТ Р 50595-93

    ГОСТ Р 51271-99

    ГОСТ Р ИСО 17584-2015