ГОСТ 21948-76

ОбозначениеГОСТ 21948-76
НаименованиеХмель-сырец и хмель прессованный. Методы испытаний
СтатусДействует
Дата введения07.01.1979
Дата отмены-
Заменен на-
Код ОКС67.060
Текст ГОСТа


ГОСТ 21948-76*

Группа С29


МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ



ХМЕЛЬ-СЫРЕЦ И ХМЕЛЬ ПРЕССОВАННЫЙ


Методы испытаний


Raw and pressed hop. Test methods

ОКСТУ 9709

Дата введения 1979-07-01

Постановлением Государственного комитета стандартов Совета Министров СССР от 22 июня 1976 г. N 1497 дата введения установлена с 01.07.79

Ограничение срока действия снято Постановлением Госстандарта от 26.03.92 N 264

ВЗАМЕН ГОСТ 8473-57 в части методов испытаний

* ИЗДАНИЕ (декабрь 2001 г.) с Изменениями N 1, 2, утвержденными в августе 1983 г., в августе 1987 г. (ИУС 12-83, 12-87).

Настоящий стандарт распространяется на хмель-сырец и хмель прессованный и устанавливает методы отбора проб и методы определения качества хмеля.

1. МЕТОДЫ ОТБОРА ПРОБ

1.1 Отбор разовых проб

1.1.1 Мешки с хмелем-сырцом распарывают по шву в трех местах и берут рукой на различной глубине разовые пробы.

Каждый балот с прессованным хмелем, попавший в выборку, распарывают по шву в двух местах. Затем ножом вырезают точечные пробы в виде квадрата и вынимают их щипцами. Масса точечной пробы должна быть не менее 50 г.

1.1.2 Из разовых проб, при осторожном их перемешивании, составляют объединенную пробу. Масса объединенной пробы должна быть не менее 1 кг.

1.1.3 Среднюю пробу выделяют из общей пробы методом квартования. Для этого хмель раскладывают на ровной поверхности в виде квадрата. При помощи линейки квадрат делят на четыре треугольника. Из двух противоположных треугольников хмель собирают вместе для последующего деления до тех пор, пока в двух противоположных треугольниках не останется около 250 г хмеля.

1.1.4 Среднюю пробу упаковывают в полиэтиленовый мешок, завязывают шнуром и снабжают этикеткой с указанием:

наименования и адреса поставщика;

номера и массы партии;

даты взятия пробы.

Пробу передают в лабораторию для анализа в течение суток.

Анализ хмеля должен быть проведен в течение двух дней со дня получения для хмеля-сырца и в течение десяти дней - для прессованного хмеля.

1.1.5 Средние пробы хранят в сухих, неотапливаемых, темных помещениях.

1.1.6 При разногласиях в оценке качества хмеля отбор проб производят по методике, приведенной в пп.1.1.1 и 1.1.3, но масса общей пробы в этом случае должна быть не менее 3 кг. Методом квартования из общей пробы выделяют 750 г хмеля, который упаковывают в три полиэтиленовых мешка по 250 г.

Средние пробы опечатывают и снабжают этикетками с указанием:

наименования и адреса поставщика;

наименования и адреса получателя;

типа упаковки;

даты взятия пробы;

номера и массы партии.

Одну пробу в течение суток отправляют для анализов в нейтральную лабораторию, вторую передают представителю поставщика, а третью оставляют у представителя получателя.

Определение посторонних (нехмелевых) примесей при повторном контроле проводят в местах приемки хмеля.

Анализ хмеля должен быть проведен в течение пяти дней со дня получения для хмеля-сырца и в течение десяти дней - для прессованного хмеля.

2. МЕТОДЫ ИСПЫТАНИЙ

2.1 Определение цвета

2.1.1 Цвет шишек определяют визуально при хорошем дневном освещении, поместив их на лист синей бумаги.

2.2 Определение запаха

2.2.1 Запах хмеля определяют органолептически. Из средней пробы берут горсть шишек и определяют специфический хмелевой запах. Для усиления запаха шишкой хмеля натирают тыльную сторону ладони или шишку разрывают на две половинки и трут их друг о друга. В горсти шишек определяют наличие посторонних запахов - дымного, плесневелого, сырного и валерианового.

2.3 Определение плесени

2.3.1 Аппаратура

Для проведения испытания применяют бинокулярный микроскоп с увеличением 8-10.

2.3.2 Проведение испытания

От средней пробы отбирают подряд 50 целых шишек хмеля и разрывают их на две половинки по стерженьку. Наличие или отсутствие плесени устанавливают при помощи бинокулярного микроскопа с увеличением 8-10.

2.4 Определение массовой доли хмелевых примесей, осыпавшихся лепестков и семянности

2.4.1 Аппаратура и материалы

Для проведения испытания применяют:

весы лабораторные по ГОСТ 24104-2001;

пинцет.

2.4.2 Определение массовой доли хмелевых примесей

2.4.2.1 Проведение испытания

Навеску хмеля массой 50 г высыпают на лист бумаги и пинцетом отбирают свободные стебли, черешки и листья. Полностью до основания шишек удаляют черешки. Навеску и примеси взвешивают до сотых долей грамма.

2.4.2.2 Обработка результатов

Массовую долю хмелевых примесей , %, вычисляют по формуле

,

где - масса примеси, г;

1,5 - поправка на массу черешков длиной до 2 см.

Вычисление производят до десятых долей процента.

Расхождения между результатами двух параллельных определений и между результатами определений, проведенных в двух лабораториях, не должны превышать 0,5%.

2.4.3 Определение массовой доли осыпавшихся лепестков

2.4.3.1 Проведение испытания

Навеску хмеля массой 50 г высыпают на лист бумаги и пинцетом выбирают свободно осыпавшиеся лепестки. Навеску и осыпавшиеся лепестки взвешивают до десятых долей грамма.

2.4.3.2 Обработка результатов

Массовую долю осыпавшихся лепестков , %, вычисляют по формуле

,

где - масса осыпавшихся лепестков, г.

Расхождения между результатами двух параллельных определений и между результатами определений, проведенных в двух лабораториях, не должны превышать 1,0%.

2.4.4 Определение семянности

2.4.4.1 Проведение испытания

Из средней пробы берут навеску массой 25 г, от навески отбирают целые шишки и взвешивают их. Затем каждую шишку осторожно разламывают и выбирают из нее семена. Семена очищают от оболочек, перетирая их между пальцами, и взвешивают.

Все взвешивания производят до сотых долей грамма.

2.4.4.2 Обработка результатов

Массовую долю семян хмеля , %, вычисляют по формуле

,

где - масса семян, г;

- масса целых шишек, из которых отобраны семена, г.

Вычисление производят до десятых долей процента.

Расхождения между результатами двух параллельных определений и между результатами определений, проведенных в двух лабораториях, не должны превышать 0,5%.

2.5 Определение массовой доли влаги

2.5.1 Аппаратура, материалы и реактивы

Для проведения испытания применяют:

шкаф сушильный лабораторный;

весы лабораторные по ГОСТ 24104-2001;

электромельницу;

эксикатор по ГОСТ 25336-82;

бюксы по ГОСТ 25336-82;

щипцы тигельные;

вазелин технический;

кальций хлористый плавленый.

2.5.2 Подготовка к испытанию

Шишки хмеля измельчают электромельницей до размера частиц не менее 3 мм (3-7 мм) в поперечнике, берут две навески массой по 3 г каждая, взвешенные с погрешностью не более 0,0002 г. Каждую навеску помещают в предварительно взвешенные вместе с крышками и пронумерованные бюксы.

2.5.3 Проведение испытания

В сушильный шкаф, нагретый до 100-105 °С, быстро помещают подготовленные бюксы с навесками вместе со снятыми крышками. Температура в шкафу в зоне размещения бюкс должна поддерживаться постоянной и устанавливаться по термометру, термобаллончик которого располагают на одном уровне с высушиваемым в бюксах хмелем. В многополочных шкафах бюксы с хмелем помещают только в средней части шкафа на одной полке. Высушивание ведут в течение 3 ч. Время, в течение которого сырье должно сушиться, отсчитывают с момента, когда температура в шкафу с помещенными туда бюксами достигнет 100-105 °С. Затем бюксы вновь накрывают крышками, 30 мин охлаждают в эксикаторе и взвешивают.

Для каждой партии хмеля проводят два параллельных определения.

2.5.4 Обработка результатов

Массовую долю влаги , %, вычисляют по формуле

,

где - масса бюксы с навеской хмеля до высушивания, г;

- масса бюксы с навеской после высушивания, г;

- масса пустой бюксы, г.

За окончательный результат испытания принимают среднеарифметическое результатов двух параллельных определений.

Вычисление проводят до 0,01% с последующим округлением до 0,1%.

Расхождение между результатами двух параллельных определений не должно превышать 0,3%, а расхождение между результатами определений, проведенных в двух лабораториях, - 0,5%.

2.6 Определение массовой доли золы

2.6.1 Аппаратура

Для проведения испытания применяют:

печь муфельную;

весы аналитические по ГОСТ 24104-2001;

тигли фарфоровые по ГОСТ 9147-80;

эксикатор по ГОСТ 25336-82;

электромельницу.

2.6.2 Подготовка к испытанию

Хмель измельчают. Две навески хмеля массой по 3 г каждая взвешивают на аналитических весах с погрешностью не более 0,0002 г и помещают в предварительно прокаленные до постоянной массы и взвешенные тигли.

2.6.3 Проведение испытания

Навески в тиглях сжигают в муфельной печи. Прокаливание ведут до тех пор, пока цвет золы не станет белым или слегка сероватым.

После охлаждения в эксикаторе тигли взвешивают, затем вторично прокаливают в течение 20 мин. Если масса тиглей не изменится, озоление считают законченным. Если масса после повторного прокаливания уменьшится более чем на 0,0002 г, то прокаливание повторяют. Для каждой партии хмеля проводят два параллельных определения.

2.6.4 Обработка результатов

Массовую долю золы , %, в пересчете на абсолютно сухое вещество вычисляют по формуле

,

где - масса навески хмеля, г;

- масса золы, г;

- влажность хмеля, %.

За окончательный результат испытания принимают среднеарифметическое результатов двух параллельных определений.

Вычисление проводят до 0,01% с последующим округлением до 0,1%.

Расхождение между результатами двух параллельных определений не должно превышать 0,5%, а между результатами определений, проведенных в двух лабораториях, - 1,0%.

2.7 Определение массовой доли альфа-кислот

Определение массовой доли альфа-кислот проводят кондуктометрическим методом путем измерения силы тока, проходящего через экстракт горьких веществ в процессе титрования его уксуснокислым свинцом.

2.7.1 Аппаратура, материалы и реактивы

Для проведения испытания применяют:

кондуктометр для определения альфа-кислот;

мешалку магнитного типа ЗМА;

микроизмельчитель тканей типа РТ-2;

электромельницу;

автотрансформатор лабораторный ЛАТР;

весы лабораторные по ГОСТ 24104-2001;

шкаф сушильный лабораторный;

колбы конические вместимостью 50-100 см с притертой пробкой по ГОСТ 25336-82;

пипетки вместимостью 10 см по ГОСТ 29227-91;

микробюретки вместимостью 5 см по ГОСТ 29227-91;

стаканы стеклянные вместимостью 100 см по ГОСТ 25336-82;

колбы экстракционные;

воронки стеклянные по ГОСТ 25336-82;

аспиратор;

пестик фарфоровый;

бумагу фильтровальную по ГОСТ 12026-76;

петролейный эфир, ч.д.а.;

глицерин по ГОСТ 6259-75;

свинец уксуснокислый кристаллический по ГОСТ 1027-67, ч.д.а.;

спирт этиловый по ГОСТ 18300-87;

н-гексан.

(Измененная редакция, Изм. N 2).

2.7.2 Подготовка к испытанию

2.7.2.1 Для приготовления 5%-ного спиртового раствора глицерина 5 см глицерина растворяют в 95 см этилового спирта.

2.7.2.2 Для приготовления 4%-ного раствора уксуснокислого свинца 4 г уксуснокислого свинца Рb(СНСООН)·3НО отвешивают на аналитических весах и растворяют в 25%-ном спиртовом растворе глицерина (75 см этилового спирта + 25 см глицерина).

После приготовления 4%-ного раствора уксуснокислого свинца определяют титр раствора. Для этого при помощи аспиратора отбирают пипеткой 5 см 0,1 н. раствора серной кислоты, переносят в химический стакан вместимостью 100 см и приливают 45 см 5%-ного раствора глицерина. В стакан опускают якорь магнитной мешалки. Стакан вставляют в гнездо магнитной мешалки, на штативе которой закрепляют микробюретку с 4%-ным раствором уксуснокислого свинца в 25%-ном спиртовом растворе глицерина и датчик кондуктометра. В стакан с титруемой жидкостью опускают кондуктометрическую ячейку и определяют начальную точку. Затем раствор уксуснокислого свинца приливают по 0,3 см, постоянно размешивая, и после каждой порции определяют на кондуктометре значение силы тока, проходящего через раствор. Как только сила тока начнет увеличиваться, приливают еще 4-5 порций раствора уксуснокислого свинца. Результаты титрования записывают в специальном журнале.

Из полученных значений силы тока строят график титрования (см. чертеж). По оси абсцисс откладывают количество уксуснокислого свинца, израсходованное на титрование, в кубических сантиметрах, а по оси ординат - силу тока, проходящего через раствор. Точки соединяют прямыми линиями, из пересечения которых на ось абсцисс опускают перпендикуляр и находят точку эквивалентности "", соответствующую количеству уксуснокислого свинца, израсходованного на титрование.

График титрования

Титр уксуснокислого свинца вычисляют по формуле

,

где - количество 4%-ного раствора уксуснокислого свинца, израсходованного на титрование 5 см 0,1 н. раствора серной кислоты, см

.

2.7.3 Проведение испытания

Пробу хмеля, предназначенную для определения альфа-кислоты, необходимо размолоть на электромельнице.

Взвешивают 7,5 г предварительно размолотого хмеля с погрешностью не более 0,01 г. Навеску переносят в экстракционную колбу, приливают 50 см смеси этилового спирта и н-гексана в соотношении 1:9 и экстрагируют в течение 5 мин в микроизмельчителе. Содержимое экстракционной колбы переносят на складчатый фильтр и отфильтровывают в коническую колбу вместимостью 100 см, остаток экстракта выдавливают фарфоровым пестиком.

Допускается использование петролейного эфира (фракция 70-100) взамен н-гексана до 01.07.89.

С помощью аспиратора отбирают пипеткой 10 см экстракта, переносят в химический стакан вместимостью 100 см и приливают 40 см 5%-ного раствора глицерина. В стакан опускают якорь магнитной мешалки. Стакан вставляют в гнездо магнитной мешалки, на штативе которой закрепляют микробюретку с раствором уксуснокислого свинца и датчик кондуктометра. В стакан с титруемой жидкостью опускают кондуктометрическую ячейку и определяют начальную точку. Начинают титровать: раствор уксуснокислого свинца приливают по 0,1-0,2 см, постоянно размешивая, и после каждой порции определяют на кондуктометре значение силы тока, проходящего через раствор. Как только сила тока начнет значительно увеличиваться, приливают еще 4-5 порций уксуснокислого свинца. Результаты титрования записывают в специальном журнале.

Из полученных значений силы тока строят график титрования в соответствии с п.2.7.2.2, по которому определяют количество уксуснокислого свинца, израсходованного на титрование альфа-кислот, в кубических сантиметрах.

Для каждой партии хмеля проводят два параллельных определения в экстракте, полученном из одной навески.

2.7.4 Обработка результатов

Массовую долю альфа-кислот , %, в пересчете на абсолютно сухое вещество вычисляют по формуле

,

где - количество 4%-ного раствора уксуснокислого свинца, израсходованное на титрование до точки эквивалентности, см;

- влажность хмеля, %;

2,54 - постоянный коэффициент;

- поправка на концентрацию уксуснокислого свинца (титр).

Вычисление проводят до 0,01% с последующим округлением до 0,1%.

За окончательный результат испытания принимают среднеарифметическое результатов двух параллельных определений.

Расхождение между результатами двух параллельных определений не должно превышать 0,1%, а между результатами определений, проведенных в двух лабораториях, - 0,3%.

2.7.2.2-2.7.4 (Измененная редакция, Изм. N 1).

2.8 Определение массовой доли сернистого ангидрида

Определение массовой доли сернистого ангидрида в хмеле проводят йодометрическим методом.

2.8.1 Аппаратура, материалы и реактивы

Для проведения испытания применяют:

весы лабораторные по ГОСТ 24104-2001;

ареометр;

колбы конические вместимостью 100 и 250 см по ГОСТ 25336-82;

колбы мерные вместимостью 1000 см по ГОСТ 1770-74;

пипетки вместимостью 2; 10 и 25 см по ГОСТ 29227-91;

бюретку вместимостью 25 см по ГОСТ 29227-91;

воронки стеклянные диаметром 100 мм по ГОСТ 25336-82;

фильтры ватные;

натрий фосфорнокислый двузамещенный по ГОСТ 4172-76, ч.д.а.;

калий фосфорнокислый однозамещенный по ГОСТ 4198-75, ч.д.а.;

фиксанал йода (0,1 н. раствора йода);

формалин технический по ГОСТ 1625-89;

крахмал растворимый по ГОСТ 10163-76;

натрий хлористый по ГОСТ 4233-77, х.ч.;

натрия гидрат окиси (натр едкий) по ГОСТ 4328-77, х.ч.;

кислоту лимонную по ГОСТ 3652-69;

кислоту соляную по ГОСТ 3118-77, х.ч.;

воду дистиллированную по ГОСТ 6709-72.

2.8.2 Подготовка к испытанию

2.8.2.1 Приготовление буферного раствора с рН 4,2-4,6

Готовят 0,07 М раствор фосфорнокислого двузамещенного натрия. Для этого 11,87 г реактива переносят в мерную колбу вместимостью 1000 см, растворяют в дистиллированной воде, доводят до метки и хорошо перемешивают. Затем готовят 0,07 М раствор фосфорнокислого однозамещенного калия, для чего 9,078 г реактива переносят в мерную колбу вместимостью 1000 см, растворяют в дистиллированной воде, доводят до метки и хорошо перемешивают.

Для приготовления 1000 см буферного раствора смешивают 10 см 0,07 М раствора фосфорнокислого двузамещенного натрия и 990 см 0,07 М раствора фосфорнокислого однозамещенного калия.

Кроме чисто фосфатного, допускается применять фосфатнолимоннокислый буферный раствор. Для приготовления этого раствора сначала готовят 0,1 М раствор лимонной кислоты (21,008 г в 1000 см раствора) и 0,2 М раствор фосфорнокислого натрия (71,642 NaHPО·12НО или 35,617 г NaHPО·2НО в 1000 см раствора).

Для получения 20 частей буферного раствора смешивают 9,35 частей раствора фосфорнокислого натрия и 10,65 частей раствора лимонной к

ислоты.

2.8.2.2 Приготовление 20%-ного раствора хлористого натрия

200 г хлористого натрия переносят в мерную колбу вместимостью 1000 см, растворяют в дистиллированной воде, доводят до метки и хорошо перемешивают.

2.8.2.3 Приготовление 6 н. раствора соляной кислоты

Ареометром определяют плотность концентрированной кислоты и по таблице находят содержание НСl в граммах на 1 дм раствора (концентрацию раствора). Затем вычисляют количество миллилитров исходной кислоты, необходимое для приготовления заданного количества 6 н. раствора соляной кислоты.

Плотность и концентрация растворов соляной кислоты (при 15 и 20 °С)

Плотность раствора, г/см

Содержание НСl, г/дм

при 15 °С

при 20 °С

1,160

365,6

372,8

1,165

378,5

386,3

1,170

391,5

399,9

1,175

404,4

413,8

1,180

417,5

427,7

1,185

430,3

441,8

1,190

443,1

455,8

1,195

456,2

470,4

1,198

479,1

Пример. Нужно приготовить 1000 см 6 н. раствора соляной кислоты. Молекулярная масса соляной кислоты - 36,465, грамм-эквивалент соляной кислоты - 36,465.

Плотность исходной кислоты, согласно определению ареометром, при 20 °С - 1,119 г/см. По таблице находим, что соляная кислота плотностью 1,19 г/см при 20 °С содержит 455,8 г/дм НСl.

Для приготовления 1000 см 6 н. кислоты требуется 36,465х6=218,790 г НСl.

В 1000 см исходной кислоты содержится - 455,8 г НСl.

Находим количество исходной соляной кислоты , мл, необходимое для приготовления 1000 см 6 н. раствора соляной кислоты

см.

Следовательно, чтобы приготовить 1000 см 6 н. раствора соляной кислоты нужно 480,0 см соляной кислоты плотностью 1,19 г/см разбавить дистиллированной водой до 1000 см. После разбавления раствор тщательно перемешивают.

2.8.2.4 Приготовление 1 н. раствора едкого натра

40 г едкого натра переносят в мерную колбу вместимостью 1000 см, растворяют в дистиллированной воде, доводят водой до метки и хорошо перемешивают.

2.8.2.5 Приготовление 0,01 н. раствора йода без поправочного коэффициента

Содержимое ампулы 0,1 н. раствора йода количественно переносят в мерную колбу вместимостью 1000 см и разбавляют дистиллированной водой до метки, хорошо перемешивают. 100 см полученного раствора переносят в чистую мерную колбу вместимостью 1000 см и опять разбавляют дистиллированной водой до метки и хорошо перемешивают.

2.8.2.6 Приготовление 1%-ного раствора крахмала

1 г растворимого крахмала тщательно растворяют с несколькими миллилитрами холодной воды. Полученную пасту вливают в 100 см кипящей воды, кипятят еще около 2 мин, пока раствор не станет прозрачным, затем раствор фильтруют горячим. Вместо фильтрования можно дать крахмалу осесть на дно сосуда и при титровании пользоваться только верхним слоем совершенно отстоявшейся жидкости. Раствор готовят в день анализа.

С двумя каплями 0,01 н. раствора йода, прибавленными к 50 см воды, 1-2 см крахмала должны давать синюю окраску. Фиолетовая или буроватая окраска указывает на порчу крахмала и на непригодность его в качестве индикатора.

2.8.3 Проведение испытания

6 г сульфитированных шишек хмеля переносят в коническую колбу вместимостью 250 см и заливают 145 см 20%-ного раствора хлористого натрия и 5 см буферного раствора. Содержимое хорошо перемешивают, закрывают колбу пробкой и оставляют на 30 мин. Затем полученный раствор фильтруют через ватный фильтр. В коническую колбу вместимостью 100 см приливают 25 смфильтрата, добавляют 2 см 1 н. раствора едкого натра, закрывают пробкой и оставляют на 2 мин. После этого в колбу добавляют 2 см 6 н. раствора соляной кислоты. Содержимое колбы тотчас же титруют 0,01 н. раствором йода до появления синей окраски, применяя в качестве индикатора 0,5 см 1%-ного раствора крахмала.

Для определения окисляющихся или вообще реагирующих с йодом веществ параллельно проводят контрольный опыт. Для этого в колбу вместимостью 100 см приливают 25 см исходного фильтрата, добавляют 2 см 1 н. раствора едкого натра, 2 см 6 н. соляной кислоты и 1 см 40%-ного раствора формалина и оставляют на 10 мин для полноты реакции с сернистой кислотой. Затем титруют 0,01 н. раствором йода в присутствии крахмала.

Для каждой партии хмеля проводят два параллельных определения в фильтрате, полученном из одной н

авески.

2.8.4 Обработка результатов

Массовую долю сернистого газа , %, в пересчете на абсолютно сухое вещество, вычисляют по формуле

,

где - разность между количеством 0,01 н. йодного раствора, израсходованного при первом и втором титровании, см;

- поправочный коэффициент пересчета на точно 0,01 н. раствор йода;

- масса навески хмеля, соответствующая взятому для титрования объему фильтрата, г;

- влажность хмеля, %.

За окончательный результат испытания принимают среднеарифметическое результатов двух параллельных определений, вычисленное до сотых долей процента, с последующим округлением до десятых долей процента.

Расхождение между результатами двух параллельных определений не должно превышать 0,03%, а между результатами определений, проведенных в двух лабораториях, - 0,05%.

(Измененная редакция, Изм. N 1).

Текст документа сверен по:

Хмель-сырец и хмель прессованный.

Методы испытаний: Сб. ГОСТов. -

М.: ИПК Издательство стандартов, 2002

Другие госты в подкатегории

    ГОСТ 10417-88

    ГОСТ 10418-88

    ГОСТ 10840-64

    ГОСТ 10114-80

    ГОСТ 10843-76

    ГОСТ 10845-76

    ГОСТ 10842-89

    ГОСТ 10844-74

    ГОСТ 10840-2017

    ГОСТ 10940-64

    ГОСТ 10967-2019

    ГОСТ 10845-98

    ГОСТ 10967-90

    ГОСТ 10968-88

    ГОСТ 10987-76

    ГОСТ 12094-76

    ГОСТ 12095-76

    ГОСТ 12096-76

    ГОСТ 12097-76

    ГОСТ 11225-76

    ГОСТ 12098-76

    ГОСТ 10847-74

    ГОСТ 12183-66

    ГОСТ 12306-66

    ГОСТ 11270-88

    ГОСТ 12307-66

    ГОСТ 12583-67

    ГОСТ 12584-67

    ГОСТ 12582-67

    ГОСТ 13213-77

    ГОСТ 12183-2018

    ГОСТ 13586.1-68

    ГОСТ 13496.11-74

    ГОСТ 13586.3-2015

    ГОСТ 12136-77

    ГОСТ 13586.3-83

    ГОСТ 13586.4-83

    ГОСТ 13634-90

    ГОСТ 13657-68

    ГОСТ 14031-2014

    ГОСТ 13586.5-93

    ГОСТ 14032-68

    ГОСТ 14032-2017

    ГОСТ 14033-96

    ГОСТ 14033-2015

    ГОСТ 14176-69

    ГОСТ 14621-78

    ГОСТ 14121-69

    ГОСТ 14849-89

    ГОСТ 10846-91

    ГОСТ 15052-96

    ГОСТ 16439-70

    ГОСТ 15810-96

    ГОСТ 16990-88

    ГОСТ 16991-71

    ГОСТ 15052-2014

    ГОСТ 17109-88

    ГОСТ 17110-71

    ГОСТ 18271-72

    ГОСТ 18488-73

    ГОСТ 19092-2021

    ГОСТ 18488-2000

    ГОСТ 19093-73

    ГОСТ 13586.5-2015

    ГОСТ 14031-68

    ГОСТ 13586.6-93

    ГОСТ 20239-74

    ГОСТ 21149-2022

    ГОСТ 16990-2017

    ГОСТ 21149-93

    ГОСТ 21831-76

    ГОСТ 2077-84

    ГОСТ 21094-75

    ГОСТ 19092-92

    ГОСТ 19327-84

    ГОСТ 22165-76

    ГОСТ 10847-2019

    ГОСТ 23843-79

    ГОСТ 24298-80

    ГОСТ 22983-88

    ГОСТ 22983-2016

    ГОСТ 22164-76

    ГОСТ 24901-89

    ГОСТ 24508-80

    ГОСТ 26312.1-84

    ГОСТ 24901-2014

    ГОСТ 26312.3-84

    ГОСТ 24557-89

    ГОСТ 26312.4-84

    ГОСТ 15810-2014

    ГОСТ 26361-84

    ГОСТ 26312.2-84

    ГОСТ 26574-2017

    ГОСТ 26312.5-84

    ГОСТ 26312.7-88

    ГОСТ 26982-86

    ГОСТ 26791-2018

    ГОСТ 26574-85

    ГОСТ 26983-86

    ГОСТ 26984-86

    ГОСТ 22162-76

    ГОСТ 26986-86

    ГОСТ 26983-2015

    ГОСТ 26987-86

    ГОСТ 22163-76

    ГОСТ 27558-87

    ГОСТ 27559-87

    ГОСТ 26985-86

    ГОСТ 26312.6-84

    ГОСТ 276-60

    ГОСТ 276-2021

    ГОСТ 27560-87

    ГОСТ 27168-86

    ГОСТ 27668-88

    ГОСТ 27676-88

    ГОСТ 26791-89

    ГОСТ 27495-87

    ГОСТ 27850-88

    ГОСТ 28402-89

    ГОСТ 28418-89

    ГОСТ 28419-89

    ГОСТ 27842-88

    ГОСТ 28620-90

    ГОСТ 27844-88

    ГОСТ 28666.1-90

    ГОСТ 28666.3-90

    ГОСТ 27493-87

    ГОСТ 27494-87

    ГОСТ 28666.2-90

    ГОСТ 28673-90

    ГОСТ 28672-2019

    ГОСТ 28674-2019

    ГОСТ 27670-88

    ГОСТ 28674-90

    ГОСТ 28795-90

    ГОСТ 28807-90

    ГОСТ 28808-90

    ГОСТ 28809-90

    ГОСТ 28797-90

    ГОСТ 28673-2019

    ГОСТ 26361-2013

    ГОСТ 28881-90

    ГОСТ 28796-90

    ГОСТ 27839-88

    ГОСТ 2929-75

    ГОСТ 30043-93

    ГОСТ 29143-91

    ГОСТ 29033-91

    ГОСТ 28419-97

    ГОСТ 3034-2021

    ГОСТ 27494-2016

    ГОСТ 29144-91

    ГОСТ 27669-88

    ГОСТ 3034-75

    ГОСТ 31491-2012

    ГОСТ 31463-2012

    ГОСТ 30317-95

    ГОСТ 3040-55

    ГОСТ 30044-93

    ГОСТ 30354-96

    ГОСТ 27839-2013

    ГОСТ 31645-2012

    ГОСТ 31646-2012

    ГОСТ 30498-97

    ГОСТ 31743-2017

    ГОСТ 29305-92

    ГОСТ 31743-2012

    ГОСТ 31752-2012

    ГОСТ 30046-93

    ГОСТ 31751-2012

    ГОСТ 31806-2012

    ГОСТ 31805-2012

    ГОСТ 31808-2012

    ГОСТ 31807-2012

    ГОСТ 31699-2012

    ГОСТ 25832-89

    ГОСТ 32677-2014

    ГОСТ 31805-2018

    ГОСТ 33525-2015

    ГОСТ 32908-2014

    ГОСТ 32124-2013

    ГОСТ 31700-2012

    ГОСТ 34023-2016

    ГОСТ 29138-91

    ГОСТ 31807-2018

    ГОСТ 34142-2017

    ГОСТ 28666.4-90

    ГОСТ 34816-2021

    ГОСТ 31749-2012

    ГОСТ 34817-2021

    ГОСТ 3898-56

    ГОСТ 5060-86

    ГОСТ 5060-2021

    ГОСТ 5311-50

    ГОСТ 5550-2021

    ГОСТ 29139-91

    ГОСТ 5668-2022

    ГОСТ 5550-74

    ГОСТ 32196-2013

    ГОСТ 5672-2022

    ГОСТ 34143-2017

    ГОСТ 29177-91

    ГОСТ 5698-2022

    ГОСТ 572-60

    ГОСТ 5784-60

    ГОСТ 5901-2014

    ГОСТ 6002-69

    ГОСТ 32197-2013

    ГОСТ 6201-2020

    ГОСТ 6201-68

    ГОСТ 34702-2020

    ГОСТ 6378-84

    ГОСТ 6293-90

    ГОСТ 7022-2019

    ГОСТ 7022-54

    ГОСТ 7022-97

    ГОСТ 6292-93

    ГОСТ 7045-90

    ГОСТ 572-2016

    ГОСТ 7066-2019

    ГОСТ 29140-91

    ГОСТ 7067-88

    ГОСТ 7128-91

    ГОСТ 7066-77

    ГОСТ 7169-66

    ГОСТ 7170-66

    ГОСТ 7757-71

    ГОСТ 7045-2017

    ГОСТ 7758-75

    ГОСТ 7758-2020

    ГОСТ 8227-2022

    ГОСТ 8227-56

    ГОСТ 34165-2017

    ГОСТ 875-92

    ГОСТ 8758-76

    ГОСТ 8759-92

    ГОСТ 31964-2012

    ГОСТ 9353-90

    ГОСТ 7169-2017

    ГОСТ 7170-2017

    ГОСТ 5312-90

    ГОСТ 26811-2014

    ГОСТ 8494-96

    ГОСТ 686-83

    ГОСТ 5900-2014

    ГОСТ 9831-61

    ГОСТ 9511-80

    ГОСТ 9404-88

    ГОСТ 9712-61

    ГОСТ 9713-95

    ГОСТ 9906-61

    ГОСТ 9353-2016

    ГОСТ 9846-88

    ГОСТ ISO 16002-2013

    ГОСТ 9903-61

    ГОСТ 5670-96

    ГОСТ 33839-2016

    ГОСТ ИСО 2170-97

    ГОСТ 33838-2016

    ГОСТ ISO 24333-2017

    ГОСТ ISO 11050-2013

    ГОСТ ISO 21415-2-2019

    ГОСТ 31691-2012

    ГОСТ ISO 2171-2016

    ГОСТ ISO 11746-2014

    ГОСТ ISO 24557-2015

    ГОСТ ИСО 6644-97

    ГОСТ ISO 5506-2013

    ГОСТ ISO 605-2013

    ГОСТ 34150-2017

    ГОСТ ISO 17715-2015

    ГОСТ ISO 520-2014

    ГОСТ ISO 7971-1-2022

    ГОСТ ISO 6646-2013

    ГОСТ ISO 3093-2016

    ГОСТ ISO 7971-3-2021

    ГОСТ ИСО 7304-94

    ГОСТ Р 50228-92

    ГОСТ Р 50365-92

    ГОСТ ISO 5530-2-2014

    ГОСТ Р 50366-92

    ГОСТ ISO 5530-1-2013

    ГОСТ Р 50436-92

    ГОСТ Р 50439-92

    ГОСТ Р 50437-92

    ГОСТ ISO 7973-2013

    ГОСТ Р 50524-93

    ГОСТ 5672-68

    ГОСТ Р 50438-92

    ГОСТ Р 50847-96

    ГОСТ ISO 5529-2013

    ГОСТ ISO 9648-2013

    ГОСТ ISO 6647-2-2015

    ГОСТ ISO 7971-3-2013

    ГОСТ Р 51172-98

    ГОСТ Р 51403-99

    ГОСТ Р 51550-2000

    ГОСТ Р 51411-99

    ГОСТ Р 51865-2010

    ГОСТ 31750-2012

    ГОСТ Р 51409-99

    ГОСТ Р 52189-2003

    ГОСТ ISO 6647-1-2015

    ГОСТ Р 51916-2002

    ГОСТ Р 52462-2005

    ГОСТ Р 51404-99

    ГОСТ EN 14352-2013

    ГОСТ Р 52668-2006

    ГОСТ Р 52554-2006

    ГОСТ Р 51412-99

    ГОСТ Р 51414-99

    ГОСТ Р 52697-2006

    ГОСТ Р 52809-2007

    ГОСТ Р 51865-2002

    ГОСТ Р 53048-2008

    ГОСТ Р 52811-2007

    ГОСТ Р 53049-2008

    ГОСТ Р 52961-2008

    ГОСТ Р 51181-98

    ГОСТ Р 53085-2008

    ГОСТ ISO 712-2015

    ГОСТ Р 51413-99

    ГОСТ Р 53072-2008

    ГОСТ EN 15891-2013

    ГОСТ Р 53495-2009

    ГОСТ Р 52405-2005

    ГОСТ Р 52378-2005

    ГОСТ Р 54656-2011

    ГОСТ ISO 5526-2015

    ГОСТ Р 55289-2012

    ГОСТ Р 53882-2010

    ГОСТ Р 53494-2009

    ГОСТ Р 55295-2012

    ГОСТ EN 13585-2013

    ГОСТ Р 55972-2014

    ГОСТ Р 53020-2008

    ГОСТ Р 54895-2012

    ГОСТ Р 53496-2009

    ГОСТ Р 52466-2005

    ГОСТ ISO 17718-2015

    ГОСТ Р 57607-2017

    ГОСТ Р 56575-2015

    ГОСТ Р 57609-2017

    ГОСТ Р 54645-2011

    ГОСТ Р 55290-2012

    ГОСТ Р 57610-2017

    ГОСТ ISO 7301-2013

    ГОСТ Р 56630-2015

    ГОСТ Р 57935-2017

    ГОСТ Р 56631-2015

    ГОСТ Р 58434-2019

    ГОСТ Р 58390-2019

    ГОСТ Р 58233-2018

    ГОСТ Р 57936-2017

    ГОСТ Р 58449-2019

    ГОСТ Р 57937-2017

    ГОСТ Р 56105-2014

    ГОСТ Р 58441-2019

    ГОСТ Р 59716-2021

    ГОСТ Р 59717-2021

    ГОСТ Р ИСО 6820-2021

    ГОСТ Р 70085-2022

    ГОСТ Р ИСО 11051-2021

    ГОСТ EN 15851-2013

    ГОСТ Р 52377-2005

    ГОСТ Р 58161-2018

    ГОСТ Р ИСО 7971-2-99

    ГОСТ Р 56632-2015

    ГОСТ 31748-2012

    ГОСТ Р 55296-2012

    ГОСТ 32587-2013

    ГОСТ Р ИСО 11050-99

    ГОСТ Р 51415-99

    ГОСТ Р 56576-2015

    ГОСТ Р ИСО 24333-2011

    ГОСТ Р 54478-2011

    ГОСТ Р 53093-2008

    ГОСТ Р 54498-2011

    ГОСТ Р 52810-2007

    ГОСТ Р 53162-2008