ГОСТ 26449.3-85

ОбозначениеГОСТ 26449.3-85
НаименованиеУстановки дистилляционные опреснительные стационарные. Методы химического анализа соленых вод и дистиллята на содержание газов
СтатусДействует
Дата введения01.01.1987
Дата отмены-
Заменен на-
Код ОКС71.040.40, 13.060.50
Текст ГОСТа


ГОСТ 26449.3-85

Группа Л09



МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ



УСТАНОВКИ ДИСТИЛЛЯЦИОННЫЕ ОПРЕСНИТЕЛЬНЫЕ СТАЦИОНАРНЫЕ


Методы химического анализа соленых вод и дистиллята на содержание газов


Stationary distillation desalting units. Methods of saline water and distillate chemical analysis on gas content

MКC 13.060.50; 71.040.40

ОКСТУ 3614

Дата введения 1987-01-01

ВВЕДЕН В ДЕЙСТВИЕ постановлением Государственного комитета СССР по стандартам от 15 ноября 1985 г. N 3612

ПЕРЕИЗДАНИЕ

Настоящий стандарт устанавливает методы химического анализа соленых вод и дистиллята на контролируемые газообразные компоненты.

Подготовка аппаратуры, реактивов, растворов и общие требования к отбору проб и проведению анализа - по ГОСТ 26449.0-85.

1. МЕТОДЫ ОПРЕДЕЛЕНИЯ КИСЛОРОДА

1.1. Колориметрический метод с использованием сафранина

1.1.1. Сущность метода

Кислород, содержащийся в исследуемом растворе, образует с сафранином , восстановленным амальгамированным цинком, окрашенное в красный цвет соединение. Массовую концентрацию кислорода определяют визуально по интенсивности окраски, используя растворы сравнения.

Метод применяют при определении массовой концентрации кислорода от 5 до 30 мкг/дм.

1.1.2. Аппаратура, реактивы и растворы

Сосуд для отбора проб - в соответствии с черт.1 справочного приложения.

Редуктор, представляющий собой бюретку, вместимостью 100 см, с капилляром.

Весы аналитические.

Весы технические.

Колбы мерные вместимостью 100, 250 и 500 см.

Пипетки с делениями вместимостью 5 см.

Пипетки без делений вместимостью 25 см.

Цинк гранулированный.

Кислота азотная, раствор с массовой концентрацией 50 г/дм.

Ртуть азотнокислая, раствор с массовой концентрацией 100 г/дм.

Цинк амальгамированный; готовят следующим образом: цинк промывают раствором азотной кислоты, заливают раствором азотнокислой ртути и перемешивают в течение 20-30 мин до образования на гранулах блестящего слоя амальгамы. Гранулы амальгамированного цинка промывают дистиллированной водой.

Спирт этиловый.

Аммиак, разбавленный 4:1.

Кислота соляная, раствор с молярной концентрацией эквивалента (1 НСl) 0,001 моль/дм.

Сафранин , раствор с массовой концентрацией 1 г/дм; готовят следующим образом: в мерную колбу вместимостью 100 см помещают 0,1 г сафранина , 50 см этилового спирта, 15 см раствора аммиака, объем раствора доводят до метки дистиллированной водой и перемешивают.

Основной имитирующий раствор; готовят следующим образом: в мерную колбу вместимостью 500 см помещают 0,1064 г сафранина , доводят объем раствора до метки раствором соляной кислоты и перемешивают.

Рабочий имитирующий раствор; готовят следующим образом: в мерную колбу вместимостью 250 см помещают 25 см основного имитирующего раствора, доводят объем раствора до метки раствором соляной кислоты и перемешивают. Рабочий имитирующий раствор при тысячекратном разбавлении соответствует по интенсивности окраски исследуемому раствору с массовой концентрацией кислорода 1 мкг/дм, прореагировавшего с восстановленным

сафранином .

1.1.3. Подготовка к анализу

1.1.3.1 В редуктор помещают 25-30 см сафранина , на вместимости - амальгамированный цинк и дополняют раствором сафранина до верхнего деления шкалы. При восстановлении сафранина раствор обесцвечивается.

1.1.3.2. Для приготовления растворов сравнения в мерные колбы вместимостью по 100 см помещают 0,5; 1,0; 1,5; 2,0; 2,5; 3,0 см рабочего имитирующего раствора, 1,5 см этилового спирта, объемы растворов доводят до метки раствором соляной кислоты и перемешивают. Интенсивность окраски растворов сравнения соответствует массовой концентрации кислорода 5, 10, 15, 20, 25, 30 мкг/дм.

1.1.4. Проведение анализа

В сосуд для отбора проб, заполненный исследуемым раствором, вводят через капилляр редуктора 4 см раствора восстановленного сафранина (верхний кран сосуда закрыт). Через 8 мин сравнивают окраску раствора с окраской растворов сравнения.

1.1.5. Обработка результатов

Допускаемые расхождения результатов двух параллельных определений не должны превышать 5 мкг/дм.

1.2. Фотоколориметрический метод с использованием метиленового голубого

1.2.1. Сущность метода

Кислород, содержащийся в исследуемом растворе, образует с метиленовым голубым, восстановленным глюкозой, окрашенное в синий цвет соединение. Интенсивность окраски раствора измеряют на фотоэлектроколориметре.

Метод применяют при определении массовой концентрации кислорода от 0 до 100 мг/дм.

1.2.2. Аппаратура, реактивы и растворы

Фотоэлектроколориметр.

Кювета с крышкой, снабженной двумя штуцерами. Натекание воздуха не должно превышать 2,9·10 м·Па/с.

Весы аналитические.

Весы технические.

Шприц медицинский.

Цилиндр вместимостью 50 см с притертой пробкой.

Колбы мерные вместимостью 50, 100, 250 и 1000 см.

Мензурка вместимостью 500 см.

Пипетки с делениями вместимостью 1 и 5 см.

-глюкоза.

Глицерин.

Спирт этиловый.

Калия гидроокись, раствор с массовой концентрацией 400 мкг/дм.

Метиленовый голубой.

Основной раствор метиленового голубого; готовят следующим образом: в мерную колбу вместимостью 1000 см помещают 0,3 г метиленового голубого, 1,2 г глюкозы, 70 см дистиллированной воды, доводят объем раствора до метки глицерином и перемешивают.

Рабочий раствор метиленового голубого; готовят следующим образом: в цилиндр помещают 39 см основного раствора метиленового голубого и 1 см раствора гидроокиси калия. При восстановлении метиленового голубого раствор обесцвечивается. Раствор хранят при температуре (20±5) °С не более 24 ч, исключая попадание прямых солнечных лучей.

Основной имитирующий раствор; готовят следующим образом: в мерную колбу вместимостью 1000 см помещают 0,2460 г метиленового голубого, добавляют 500 см этилового спирта, доводят объем раствора до метки дистиллированной водой и перемешивают.

Рабочий имитирующий раствор; готовят следующим образом: в мерную колбу вместимостью 250 см помещают 47,5 см основного имитирующего раствора, доводят объем раствора до метки дистиллированной водой и перемешивают.

Рабочий имитирующий раствор при двухсоткратном разбавлении соответствует по интенсивности окраски исследуемому раствору с массовой концентрацией кислорода 10 мкг/дм, прореагировавшего с восстановленным метиленов

ым голубым.

1.2.3. Проведение анализа

В кювету с исследуемым раствором с помощью шприца вводят 1 см рабочего раствора метиленового голубого, перемешивают и через 1 мин измеряют оптическую плотность раствора на фотоэлектроколориметре с красным светофильтром (длина волны =650 нм) в кювете с толщиной поглощающего свет слоя 50 мм.

В качестве раствора сравнения используют исследуемый раствор.

1.2.4. Построение градуировочного графика

В мерные колбы вместимостью по 100 см помещают 1, 2, 3, 4 и 5 см рабочего имитирующего раствора и доводят объемы раствора до метки дистиллированной водой. Интенсивность окраски растворов соответствует массовой концентрации кислорода 20, 40, 60, 80 и 100 мкг/дм. Оптическую плотность растворов измеряют на фотоэлектроколориметре с красным светофильтром (длина волны =650 нм) в кювете с толщиной поглощающего свет слоя 50 мм. В качестве раствора сравнения используют дистиллированную воду.

По найденным значениям оптической плотности и соответствующим им значениям массовой концентрации кислорода строят градуировочный график.

1.2.5. Обработка результатов

1.2.5.1. Массовую концентрацию кислорода находят по градуировочному графику.

1.2.5.2. Допускаемые расхождения результатов двух параллельных определений не должны превышать значений, приведенных в табл.1.

Таблица 1

Массовая концентрация кислорода, мкг/дм

Допускаемое расхождение

в абсолютных единицах, мкг/дм

в относительных единицах, %

10

7,5

75

20

8,2

41

30

8,7

29

40

9,2

23

50

9,5

19

70

11,1

16

100

13,0

13

1.3. Колориметрический метод определения кислорода в интервале массовых концентраций 10-100 мкг/дм

1.3.1. Сущность метода

Кислород, содержащийся в исследуемом растворе, образует с метиленовым голубым, восстановленным амальгамированным цинком, окрашенное в синий цвет соединение. Массовую концентрацию кислорода определяют по интенсивности окраски, используя растворы сравнения.

1.3.2. Аппаратура, реактивы и растворы

Сосуд для отбора проб - в соответствии с черт.1 справочного приложения.

Редуктор, представляющий собой бюретку, вместимостью 100 см, с капилляром.

Весы аналитические.

Весы технические.

Колбы мерные вместимостью 50, 100, 250 и 1000 см.

Пипетки с делениями вместимостью 5 см.

Цинк амальгамированный; готовят, как указано в п.1.1.2.

Спирт этиловый.

Метиленовый голубой.

Метиленовый голубой, раствор; готовят следующим образом: в мерную колбу вместимостью 1000 см помещают 0,2460 г метиленового голубого, растворяют в 500 см этилового спирта и доводят объем раствора до метки дистиллированной водой.

Имитирующий раствор; готовят следующим образом: в мерную колбу вместимостью 250 см помещают 47,5 см раствора метиленового голубого, доводят объем раствора до метки дистиллированной водой и перемешивают.

Имитирующий раствор при двухсоткратном разбавлении соответствует по интенсивности исследуемому раствору с массовой концентрацией кислорода 10 мкг/дм, прореагировавшего с восстановленным метиленовым голубы

м.

1.3.3. Подготовка к анализу

1.3.3.1 В редуктор помещают 25-30 см раствора метиленового голубого, на вместимости - амальгамированный цинк, дополняют раствором метиленового голубого до верхнего деления шкалы. При восстановлении метиленового голубого раствор обесцвечивается.

1.3.3.2. Для приготовления растворов сравнения в мерные колбы вместимостью по 100 см помещают 0,5; 1,0; 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 4,5; 5,0 см имитирующего раствора, доводят объемы растворов до метки дистиллированной водой и перемешивают. Интенсивность окраски растворов сравнения соответствует массовой концентрации кислорода 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 мкг/дм.

1.3.4. Проведение анализа

В сосуд для отбора проб, заполненный исследуемым раствором, вводят через капилляр редуктора 2 см раствора восстановленного метиленового голубого (верхний кран сосуда закрыт). Через 5 мин сравнивают окраску раствора с окраской растворов сравнения.

1.3.5. Обработка результатов

Допускаемые расхождения результатов двух параллельных определений не должны превышать 10 мкг/дм.

1.4. Колориметрический метод определения кислорода в интервале массовых концентраций 50-500 мкг/дм

1.4.1. Сущность метода - по п.1.3.1.

1.4.2. Аппаратура, реактивы и растворы - по п.1.3.2.

1.4.3. Подготовка к анализу

1.4.3.1. Подготовка редуктора - по п.1.3.3.1.

1.4.3.2. Для приготовления растворов сравнения в мерные колбы вместимостью по 100 см помещают 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 17,5; 20,0; 22,5; 25,0 см имитирующего раствора, доводят объемы растворов до метки дистиллированной водой и перемешивают. Интенсивность окраски растворов сравнения соответствует массовой концентрации кислорода 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 мкг/дм.

1.4.4. Проведение анализа

В сосуд для отбора проб, заполненный исследуемым раствором, вводят через капилляр редуктора 5 см раствора восстановленного метиленового голубого (верхний кран сосуда закрыт). Через 5 мин сравнивают окраску раствора с окраской растворов сравнения.

1.4.5. Обработка результатов

Допускаемые расхождения результатов двух параллельных определений не должны превышать 50 мкг/дм.

1.5. Колориметрический метод определения кислорода в интервале массовых концентраций 10-100 мкг/дм в присутствии затравки

1.5.1. Сущность метода - по п.1.3.1.

Влияние затравки, представляющей собой суспензию углекислого кальция с массовой концентрацией 50-100 г/дм, учитывают использованием растворов сравнения, приготовленных на фоне исследуемого раствора, содержащего затравку.

1.5.2. Аппаратура, реактивы и растворы - по п.1.3.2.

1.5.3. Подготовка к анализу

1.5.3.1. Подготовка редуктора - по п.1.3.3.1.

1.5.3.2. Для приготовления растворов сравнения в мерные колбы вместимостью по 100 см помещают 0,5; 1,0; 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 4,5; 5,0 см имитирующего раствора, доводят объемы растворов до метки исследуемым раствором и перемешивают. Интенсивность окраски растворов сравнения соответствует массовой концентрации кислорода 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 мкг/дм.

1.5.4. Проведение анализа - по п.1.3.4.

1.5.5. Обработка результатов

Допускаемые расхождения результатов двух параллельных определений не должны превышать 10 мкг/дм.

1.6. Колориметрический метод определения кислорода в интервале массовых концентраций 50-500 мкг/дм в присутствии затравки

1.6.1. Сущность метода - по п.1.5.1.

1.6.2. Аппаратура, реактивы и растворы - по п.1.3.2.

1.6.3. Подготовка к анализу

1.6.3.1. Подготовка редуктора - по п.1.3.3.1.

1.6.3.2. Для приготовления растворов сравнения в мерные колбы вместимостью по 100 см помещают 2,5; 5,0; 7,5; 10,0; 12,5; 15,0; 17,5; 20,0; 22,5; 25,0 см имитирующего раствора, доводят объемы растворов до метки исследуемым раствором и перемешивают. Интенсивность окраски растворов сравнения соответствует массовой концентрации кислорода 50, 100, 150, 200, 250, 300, 350, 400, 450, 500 мкг/дм.

1.6.4. Проведение анализа - по п.1.4.4.

1.6.5. Обработка результатов

Допускаемые расхождения результатов двух параллельных определений не должны превышать 50 мкг/дм.

1.7. Титриметрический метод определения кислорода в интервале массовых концентраций 0,2-4,0 мг/дм

1.7.1. Сущность метода

Кислород, содержащийся в исследуемом растворе, окисляет марганец (II) в щелочной среде до марганца (IV). В кислой среде марганец (IV) восстанавливается до марганца (II), окисляя йод в количестве, эквивалентном связанному кислороду. Выделившийся йод титруют раствором серноватистокислого натрия.

Влияние окислителей и восстановителей, содержащихся в исследуемом растворе, учитывают изменением порядка введения реактивов в две одновременно взятые пробы.

1.7.2. Аппаратура, реактивы и растворы

Сосуд для отбора проб вместимостью 100-200 см - в соответствии с черт.2 приложения. Вместимость сосуда определяют по п.5.1 приложения.

Весы технические.

Воронки лабораторные диаметром 50-100 мм.

Фильтры ФОС по ГОСТ 12026-76.

Пипетки с делениями вместимостью 1 и 5 см с капиллярами.

Пипетки без делений вместимостью 1 см.

Колбы конические вместимостью 500 см.

Мензурка вместимостью 100 см.

Натрий серноватистокислый, стандарт-титр.

Натрий серноватистокислый, раствор с молярной концентрацией эквивалента (NaSO·5НО) 0,002 моль/дм; готовят разведением раствора, приготовленного из стандарт-титра.

Кислота серная.

Марганец хлористый, раствор; готовят следующим образом: 45 г хлористого марганца растворяют в 100 см дистиллированной воды, фильтруют, добавляют 1 см серной кислоты.

Натрия гидроокись.

Калий йодистый.

Калий йодноватокислый.

Смесь йодид-йодатная; готовят следующим образом: в 100 см дистиллированной воды растворяют 36 г гидроокиси натрия, 20 г йодистого калия и 0,05 г йодноватокислого калия.

Крахмал, раствор с массовой концентрацией 10 г/дм; готовят по ГОСТ 4517-87.

Кислота ортофосфорная, разбавл

енная 1:1.

1.7.3. Проведение анализа

Исследуемый раствор отбирают в два сосуда для отбора проб.

В первый сосуд добавляют 1 см раствора хлористого марганца, 3 см йодид-йодатной смеси, перемешивают и после отстаивания раствора добавляют 5 см раствора ортофосфорной кислоты.

Во второй сосуд вводят 5 см раствора ортофосфорной кислоты, 3 см йодид-йодатной смеси и 1 см раствора хлористого марганца, перемешивая содержимое сосуда после добавления каждого реактива.

Растворы из сосудов помещают в конические колбы и титруют раствором серноватистокислого натрия до светло-желтой окраски, добавляют 1 см раствора крахмала и титруют до обесцвечивания

.

1.7.4. Обработка результатов

1.7.4.1. Массовую концентрацию кислорода , мг/дм, вычисляют по формуле

,

где - объем раствора серноватистокислого натрия, израсходованный на титрование раствора из первого сосуда, см;

- вместимость первого сосуда, см;

- объем раствора серноватистокислого натрия, израсходованный на титрование раствора из второго сосуда, см;

- вместимость второго сосуда, см;

0,016 - масса кислорода, эквивалентная массе серноватистокислого натрия в 1 см раствора с молярной концентрацией эквивалента 0,002 моль/дм,

мг.

1.7.4.2. Допускаемые расхождения результатов двух параллельных определений не должны превышать значений, приведенных в табл.2.

Таблица 2

Массовая концентрация кислорода, мг/дм

Допускаемое расхождение

в абсолютных единицах, мг/дм

в относительных единицах, %

0,14

0,10

71

0,20

0,10

50

0,30

0,10

33

0,40

0,10

25

0,50

0,10

20

0,60

0,10

17

0,70

0,10

14

0,80

0,10

13

0,90

0,10

11

1,00

0,10

10

1,20

0,11

9

1,40

0,11

8

1,60

0,11

7

1,80

0,11

6

2,00

0,12

6

2,50

0,13

5

3,00

0,13

4

4,00

0,15

4

1.8. Титриметрический метод определения кислорода в интервале массовых концентраций 1-10 мг/дм

1.8.1. Сущность метода - по п.1.7.1.

1.8.2. Аппаратура, реактивы и растворы - по п.1.7.2 (кроме раствора натрия серноватистокислого)

Натрий серноватистокислый, раствор с молярной концентрацией эквивалента (NaSO·5НО) 0,01 моль/дм; готовят разведением раствора, приготовленного из стандарт-титра

.

1.8.3. Проведение анализа - по п.1.7.3.

1.8.4. Обработка результатов

1.8.4.1. Массовую концентрацию кислорода , мг/дм, вычисляют по формуле

,

где - объем раствора серноватистокислого натрия, израсходованный на титрование раствора из первого сосуда, см;

- вместимость первого сосуда, см;

- объем раствора серноватистокислого натрия, израсходованный на титрование раствора из второго сосуда, см;

- вместимость второго сосуда, см;

0,08 - масса кислорода, эквивалентная массе серноватистокислого натрия в 1 см раствора с молярной концентрацией эквивалента 0,01 моль/дм,

мг.

1.8.4.2. Допускаемые расхождения результатов двух параллельных определений не должны превышать значений, приведенных в табл.3.

Таблица 3

Массовая концентрация кислорода, мг/дм

Допускаемое расхождение

в абсолютных единицах, мг/дм

в относительных единицах, %

0,4

0,30

75

0,5

0,30

60

1,0

0,30

30

2,0

0,30

15

3,0

0,32

10

4,0

0,34

8

5,0

0,36

7

6,0

0,38

6

7,0

0,40

6

8,0

0,41

5

9,0

0,42

5

10,0

0,45

5

1.9. Титриметрический метод определения кислорода в интервале массовых концентраций 1-10 мг/дм в присутствии затравки

1.9.1. Сущность метода - по п.1.7.1.

Влияние затравки устраняют отстаиванием исследуемого раствора.

1.9.2. Аппаратура, реактивы и растворы - по п.1.7.2 (кроме сосудов для отбора проб и раствора серноватистокислого натрия).

Сосуды для отбора проб - в соответствии с черт.3 приложения.

Натрий серноватистокислый, раствор с молярной концентрацией эквивалента (NaSO·5НО) 0,01 моль/дм; готовят разведением раствора, приготовленного из стандарт-титра

.

1.9.3. Проведение анализа

Исследуемый раствор отбирают в два сосуда для отбора проб. После отстаивания раствора склянки сосуда разъединяют, предварительно перекрыв соединительные шланги зажимами, и далее проводят анализ, как указано в п.1.7.3.

1.9.4. Обработка результатов - по п.1.8.4.

1.10. Электрометрический метод

1.10.1. Сущность метода

Массовую концентрацию кислорода определяют по силе тока, возникающего в результате диффузии растворенного кислорода через мембрану датчика кислородомера, погруженного в исследуемый раствор, движущийся со скоростью 10-500 см/с.

1.10.2. Аппаратура, реактивы и растворы - по п.1.8.2 или при наличии затравки по п.1.9.2 и перечисленные ниже.

Кислородомер КЛ-115 с пределом допускаемой основной погрешности измерения 0,2-0,4 мг/дм для массовых концентраций кислорода 0,3-20,0 мг/дм.

Термометр ртутный со шкалой 0-50 °С и ценой деления 0,1 °С.

Барометр мембранный метеорологический.

Мешалка магнитная.

Прибор регистрирующий вторичный с пределом допускаемой основной погрешности ±1% от верхнего предела измерения.

Весы технические.

Мензурка вместимостью 1000 см.

Стандартный раствор 1, раствор натрия сернистокислого с массовой концентрацией 80 г/дм; готовят следующим образом: 80 г безводного сернистокислого натрия растворяют в 1 дм исследуемого раствора и выдерживают в течение 8 ч, хранят в банке с притертой пробкой.

Стандартный раствор 2, исследуемый раствор с известной массовой концентрацией кислорода, определенной, как указано в п.1.8 или при наличии затравки - в п.1.9; готовят следующим образом: 10 дм исследуемого раствора помещают в бутыль и насыщают кислородом воздуха при температуре и давлении окружающей среды.

1.10.3. Подготовка к анализу

Датчик кислородомера выдерживают в течение 4-5 ч в дистиллированной воде. Для градуировки шкалы кислородомера используют стандартные растворы 1 и 2. В измерительную ячейку помещают стандартный раствор 1, погружают датчик и при перемешивании устанавливают на шкале кислородомера значение массовой концентрации кислорода 0-0,2 мг/дм.

Измерительную ячейку и датчик кислородомера промывают дистиллированной водой и стандартным раствором 2. Затем в измерительную ячейку помещают стандартный раствор 2, погружают датчик и при перемешивании устанавливают на шкале кислородомера значение массовой концентрации кислорода.

1.10.4. Проведение анализа

Датчик погружают в исследуемый раствор и через 20-30 мин определяют массовую концентрацию кислорода по шкале кислородомера или с использованием вторичного регистрирующего прибора.

1.10.5. Погрешность определения массовой концентрации кислорода не должна превышать значений, приведенных в табл.4.

Таблица 4

Массовая концентрация кислорода, мкг/дм

Погрешность определения массовой концентрации

в абсолютных единицах, мкг/дм

в относительных единицах, %

0,3

0,20

67

0,4

0,20

50

0,5

0,21

42

0,7

0,21

30

1,0

0,21

21

1,5

0,22

15

2,0

0,22

11

3,0

0,23

8

5,0

0,25

5

7,0

0,27

4

10,0

0,30

3

15,0

0,35

2

20,0

0,40

2



2. МЕТОДЫ ОПРЕДЕЛЕНИЯ СВОБОДНОЙ ДВУОКИСИ УГЛЕРОДА

2.1. Метод потенциометрического титрования в интервале массовых концентраций двуокиси углерода 0,5-60,0 мг/дм

2.1.1. Сущность метода

Свободная двуокись углерода взаимодействует с гидроокисью натрия с образованием двууглекислого натрия. Титрование проводят до рН 8,4.

2.1.2. Аппаратура, реактивы и растворы

Сосуд для потенциометрического титрования - в соответствии с черт.4 приложения. Вместимость сосуда определяют по п.6.1 приложения.

Электрод стеклянный типа 1 или 3 по ГОСТ 16287-77.

Электрод сравнения хлорсеребряный насыщенный по ГОСТ 17792-72.

Термокомпенсатор автоматический с тепловой инерционностью не более 3 мин.

Термометр лабораторный со шкалой от 0 до 30 °С, ценой деления 1 °С.

Растворы буферные с рН, равными 6,86 и 9,18; готовят по ГОСТ 8.135-74.

Мешалка электромагнитная.

Микробюретка вместимостью 5 см.

Колбы мерные вместимостью 1000 см.

Натрия гидроокись, стандарт-титр.

Натрия гидроокись, раствор с молярной концентрацией эквивалента (1NaOH) 0,01 моль/дм; готовят разведением раствора, приготовленного из стандарт-титра.

2.1.3. Проведение анализа

Сосуд для потенциометрического титрования, заполненный исследуемым раствором, устанавливают на электромагнитную мешалку, погружают электроды и термокомпенсатор и титруют раствором гидроокиси натрия до рН 8,4.

2.1.4. Обработка результатов

2.1.4.1. Массовую концентрацию свободной двуокиси углерода , мг/дм, вычисляют по формуле

,

где - объем раствора гидроокиси натрия, израсходованный на титрование, см;

0,44 - масса двуокиси углерода, эквивалентная массе гидроокиси натрия в 1 см раствора с молярной концентрацией эквивалента 0,01 моль/дм, мг;

- вместимость сосуда, см.

2.1.4.2. Допускаемые расхождения результатов двух параллельных определений не должны превышать значений, приведенных в табл.5.

Таблица 5

Массовая концентрация свободной двуокиси кислорода*, мг/дм

Допускаемое расхождение

в абсолютных единицах, мг/дм

в относительных единицах, %

0,3

0,05

17

0,5

0,06

12

1,0

0,06

6

2,0

0,08

4

3,0

0,10

3

4,0

0,12

3

5,0

0,14

3

6,0 и более

0,19

3

________________

* Текст соответствует оригиналу. Вероятно следует читать "углерода". - Примечание КОДЕКС.

2.2. Метод потенциометрического титрования в интервале массовых концентраций двуокиси углерода 5-500 мг/дм

2.2.1. Сущность метода - по п.2.1.1.

2.2.2. Аппаратура, реактивы и растворы - по п.2.1.2 (кроме раствора гидроокиси натрия)

Натрия гидроокись, раствор с молярной концентрацией эквивалента (1NaОН) 0,01 моль/дм; готовят из стандарт-титра.

2.2.3. Проведение анализа, как указано в п.2.1.3.

2.2.4. Обработка результатов

2.2.4.1. Массовую концентрацию свободной двуокиси углерода , мг/дм, вычисляют по формуле

,

где - объем раствора гидроокиси натрия, израсходованный на титрование, см;

4,4 - масса двуокиси углерода, эквивалентная массе гидроокиси натрия в 1 см раствора с молярной концентрацией эквивалента 0,01 моль/дм, мг;

- вместимость сосуда, см.

2.2.4.2. Допускаемые расхождения результатов двух параллельных определений не должны превышать значений, приведенных в табл.6.

Таблица 6

Массовая концентрация свободной двуокиси кислорода*, мг/дм

Допускаемое расхождение

в абсолютных единицах, мг/дм

в относительных
единицах, %

2,5

0,41

16,0

3,0

0,41

14,0

4,0

0,43

11,0

5,0

0,45

9,0

6,0

0,50

8,0

8,0

0,50

6,0

10,0

0,54

5,0

15,0

0,70

5,0

20,0

0,72

4,0

25,0

0,72

3,0

30,0

0,82

3,0

40,0

1,19

3,0

100,0 и более

-

2,0

________________

* Текст соответствует оригиналу. Вероятно следует читать "углерода". - Примечание КОДЕКС.


3. ТИТРИМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ СЕРОВОДОРОДА

3.1. Сущность метода

Сульфид-ионы осаждают в виде сернистого кадмия и окисляют йодом. Избыток йода оттитровывают раствором серноватистокислого натрия.

Метод применяют при определении массовой концентрации сероводорода от 2 мг/дм и более.

Нижний предел обнаружения составляет 0,8 мг/дм.

3.2. Аппаратура, реактивы и растворы

Банки с притертыми пробками вместимостью 500-800 см.

Колбы мерные вместимостью 1000 см.

Колбы конические вместимостью 250 см.

Бюретка вместимостью 25 см.

Пипетки без делений вместимостью 10 и 20 см.

Мензурка вместимостью 100 см.

Кислота уксусная.

Кадмий уксуснокислый, раствор; готовят следующим образом: в мерную колбу помещают 40 г уксуснокислого кадмия, растворяют в дистиллированной воде, добавляют 40 см уксусной кислоты и доводят объем раствора до метки дистиллированной водой.

Кислота соляная, разбавленная 1:1.

Натрий серноватистокислый, стандарт-титр.

Натрий серноватистокислый, раствор с молярной концентрацией эквивалента (NaSO·5НО) 0,05 моль/дм; готовят разведением раствора, приготовленного из стандарт-титра.

Йод, стандарт-титр.

Йод, раствор с молярной концентрацией эквивалента (I) 0,05 моль/дм; готовят разведением раствора, приготовленного из стандарт-титра.

Крахмал, раствор с массовой концентрацией 10 г/дм; готовят по

ГОСТ 4517-87.

3.3. Подготовка к анализу

В банку помещают 100 см раствора уксуснокислого кадмия и исследуемый раствор в объеме, содержащем 1-10 мг сероводорода. Раствор отстаивают до полного осветления.

3.4. Проведение анализа

Осветленный раствор отделяют от осадка сернистого кадмия декантацией. Осадок переносят в коническую колбу, добавляют 20 см раствора йода и 10 см раствора соляной кислоты. Избыток раствора йода титруют раствором серноватистокислого натрия до светло-желтой окраски, добавляют 1 см раствора крахмала и титруют до обесцвечивания.

3.5. Обработка результатов

3.5.1. Массовую концентрацию сероводорода , мг/дм, вычисляют по формуле

,

где - объем раствора йода, добавленный к исследуемому раствору, см;

- объем раствора серноватистокислого натрия, израсходованный на титрование, см;

0,852 - масса сероводорода, эквивалентная массе серноватистокислого натрия в 1 см раствора с молярной концентрацией эквивалента 0,05 моль/дм, мг;

- объем исследуемого раствора, взятый для анализа, см

.

3.5.2. Допускаемые расхождения результатов двух параллельных определений не должны превышать значений, приведенных в табл.7.

Таблица 7

Массовая концентрация сероводорода, мг/дм

Допускаемое расхождение

в абсолютных единицах, мг/дм

в относительных единицах, %

0,8

0,6

75,0

1,0

0,6

60,0

2,0

0,6

30,0

4,0

0,6

15,0

6,0

0,7

11,0

8,0

0,7

9,0

10,0

0,8

8,0

12,0

0,8

7,0

14,0

0,9

7,0

16,0

0,9

6,0

18,0

0,9

5,0

20,0

0,9

4,5

25,0

1,0

4,0

30,0

1,0

3,3

40,0

1,3

3,2


ПРИЛОЖЕНИЕ
Справочное


ОТБОР ПРОБ СОЛЕНЫХ ВОД И ДИСТИЛЛЯТА ДЛЯ ОПРЕДЕЛЕНИЯ МАССОВОЙ КОНЦЕНТРАЦИИ ГАЗОВ

1. Длина коммуникаций пробоотбора не должна превышать 6 м.

2. Сосуды для отбора проб (см. черт.1-4) следует присоединять к пробоотборному устройству (черт.1 и 2 приложения 2 ГОСТ 26449.0-85) при помощи резинового шланга.

Сосуды для отбора проб (черт.1-3)


Черт.1


Черт.2


1 - склянка; 2 - шланг; 3 - зажим; 4 - пробка; 5 - склянка с тубусом

Черт.3

Сосуд для потенциометрического титрования (для отбора проб)


1 - вход раствора; 2 - электрод стеклянный; 3 - микробюретка; 4 - электрод сравнения; 5 - термометр; 6 - выход раствора; 7 - мешалка

Черт.4

3. Перед отбором пробы сосуды необходимо промывать не менее чем 6-кратным объемом исследуемого раствора.

4. Отбор проб из коммуникаций и аппаратов, находящихся под вакуумметрическим давлением, следует производить, как указано в приложении 2 ГОСТ 26449.0-85.

5. При отборе проб для определения массовой концентрации кислорода следует использовать сосуды в соответствии с черт.1-3, вместимость которых предварительно определяют гравиметрическим методом.

6. Гравиметрический метод определения вместимости сосудов

6.1. Сущность метода

Вместимость сосудов для отбора проб определяют по массе дистиллированной воды с температурой 20 °С.

6.2. Аппаратура, реактивы и растворы

Весы технические.

Термостат с основной погрешностью стабилизации температуры не более 0,1 °С.

Шкаф сушильный.

Эксикатор.

Термометр ртутный стеклянный со шкалой от 0 до 50 °С и ценой деления 0,1 °С.

Бумага фильтровальная.

6.3. Определение вместимости сосуда

Сосуд моют, как указано в приложении 2 ГОСТ 26449.0-85, сушат в сушильном шкафу при температуре 105-110 °С в течение 2-3 ч, охлаждают в эксикаторе до температуры 20 °С и взвешивают. Затем сосуд заполняют дистиллированной водой температурой 20-25 °С и помещают в термостат, где выдерживают в течение 40 мин при температуре 20 °С. Сосуд извлекают из термостата, насухо вытирают фильтровальной бумагой и взвешивают.

6.4. Обработка результатов

6.4.1. Вместимость сосуда , см, вычисляют по формуле


,

где - масса сосуда с дистиллированной водой, г;

- масса сосуда, г;

0,9982 - плотность дистиллированной воды при 20 °С, г/см.

6.4.2. Относительная погрешность определения вместимости сосуда - не более 1%.

7. При отборе проб для определения массовой концентрации двуокиси углерода следует использовать сосуд для потенциометрического титрования (см. черт.4), вместимость которого предварительно определяют гравиметрическим методом.

8. Гравиметрический метод определения вместимости сосуда для потенциометрического титрования

8.1. Сущность метода - по п.6.1.

8.2. Аппаратура, реактивы и растворы - по п.6.2.

8.3. Определение вместимости сосуда

Сосуд моют, как указано в приложении 2 ГОСТ 26449.0-85, насухо вытирают фильтровальной бумагой, взвешивают, заполняют дистиллированной водой и далее определяют вместимость по п.6.3.

8.4. Обработка результатов - по п.6.4.

Текст документа сверен по:

Водоочистка. Средства и методы: Сб. ГОСТов. -

М.: ИПК Издательство стандартов, 2003

Другие госты в подкатегории

    ГОСТ 10067-80

    ГОСТ 10163-76

    ГОСТ 10075-75

    ГОСТ 10164-75

    ГОСТ 10275-74

    ГОСТ 10091-75

    ГОСТ 10521-78

    ГОСТ 10671.0-2016

    ГОСТ 10671.0-74

    ГОСТ 10485-2016

    ГОСТ 10216-75

    ГОСТ 10485-75

    ГОСТ 10259-78

    ГОСТ 10554-2016

    ГОСТ 10539-74

    ГОСТ 1027-67

    ГОСТ 10554-74

    ГОСТ 10651-75

    ГОСТ 10671.3-2016

    ГОСТ 10262-73

    ГОСТ 10671.3-74

    ГОСТ 10671.5-2016

    ГОСТ 10643-75

    ГОСТ 10555-2016

    ГОСТ 10671.5-74

    ГОСТ 10455-80

    ГОСТ 10671.8-2016

    ГОСТ 10484-78

    ГОСТ 10671.2-74

    ГОСТ 10671.8-74

    ГОСТ 10671.1-2016

    ГОСТ 10671.4-74

    ГОСТ 10671.2-2016

    ГОСТ 10671.7-74

    ГОСТ 10671.4-2016

    ГОСТ 12.2.091-2002

    ГОСТ 10671.1-74

    ГОСТ 10671.6-2016

    ГОСТ 10555-75

    ГОСТ 10671.7-2016

    ГОСТ 10671.6-74

    ГОСТ 12738-77

    ГОСТ 10930-74

    ГОСТ 11773-76

    ГОСТ 10929-76

    ГОСТ 13647-78

    ГОСТ 11841-76

    ГОСТ 11840-76

    ГОСТ 13093-81

    ГОСТ 17227-71

    ГОСТ 157-78

    ГОСТ 11120-75

    ГОСТ 11088-75

    ГОСТ 16286-84

    ГОСТ 14871-76

    ГОСТ 1277-75

    ГОСТ 17792-72

    ГОСТ 16457-2016

    ГОСТ 10931-74

    ГОСТ 17319-2019

    ГОСТ 16457-76

    ГОСТ 18954-73

    ГОСТ 14870-77

    ГОСТ 10652-73

    ГОСТ 17319-76

    ГОСТ 17444-2016

    ГОСТ 16538-79

    ГОСТ 1770-74

    ГОСТ 18289-78

    ГОСТ 17444-76

    ГОСТ 16539-79

    ГОСТ 195-77

    ГОСТ 21400-75

    ГОСТ 19275-73

    ГОСТ 10398-76

    ГОСТ 2053-77

    ГОСТ 20478-75

    ГОСТ 21979-76

    ГОСТ 19908-90

    ГОСТ 20573-75

    ГОСТ 200-76

    ГОСТ 22018-84

    ГОСТ 20848-75

    ГОСТ 20289-74

    ГОСТ 23932-90

    ГОСТ 24245-2016

    ГОСТ 10398-2016

    ГОСТ 12.2.091-2012

    ГОСТ 22159-76

    ГОСТ 24245-80

    ГОСТ 18270-72

    ГОСТ 20490-75

    ГОСТ 20288-74

    ГОСТ 245-76

    ГОСТ 199-78

    ГОСТ 22280-76

    ГОСТ 22516-77

    ГОСТ 22001-87

    ГОСТ 2062-77

    ГОСТ 2493-75

    ГОСТ 27025-86

    ГОСТ 22300-76

    ГОСТ 27026-86

    ГОСТ 22180-76

    ГОСТ 27184-86

    ГОСТ 24363-80

    ГОСТ 14262-78

    ГОСТ 27565-2019

    ГОСТ 27565-87

    ГОСТ 22867-77

    ГОСТ 26703-93

    ГОСТ 27567-87

    ГОСТ 27566-2020

    ГОСТ 27869-88

    ГОСТ 25794.3-83

    ГОСТ 26726-2019

    ГОСТ 27868-88

    ГОСТ 27068-86

    ГОСТ 27566-87

    ГОСТ 25794.1-83

    ГОСТ 25794.2-83

    ГОСТ 28365-89

    ГОСТ 28366-89

    ГОСТ 28687-2016

    ГОСТ 26449.5-85

    ГОСТ 29024-91

    ГОСТ 29131-91

    ГОСТ 28794-90

    ГОСТ 27067-86

    ГОСТ 2603-79

    ГОСТ 29188.0-2014

    ГОСТ 29252-91

    ГОСТ 27987-88

    ГОСТ 29253-91

    ГОСТ 28687-90

    ГОСТ 11125-84

    ГОСТ 29228-91

    ГОСТ 29225-91

    ГОСТ 29251-91

    ГОСТ 29169-91

    ГОСТ 30355.3-96

    ГОСТ 30763-2001

    ГОСТ 29334-92

    ГОСТ 30355.4-96

    ГОСТ 26726-85

    ГОСТ 30355.2-96

    ГОСТ 30142-94

    ГОСТ 28738-2016

    ГОСТ 26449.4-85

    ГОСТ 28738-90

    ГОСТ 30141-94

    ГОСТ 29044-91

    ГОСТ 16287-77

    ГОСТ 30355.5-96

    ГОСТ 30355.6-96

    ГОСТ 32371-2013

    ГОСТ 3159-76

    ГОСТ 14261-77

    ГОСТ 3204-76

    ГОСТ 3158-75

    ГОСТ 32294-2013

    ГОСТ 27866-88

    ГОСТ 32381-2013

    ГОСТ 30355.1-96

    ГОСТ 32428-2013

    ГОСТ 32435-2013

    ГОСТ 32436-2013

    ГОСТ 32292-2013

    ГОСТ 32295-2013

    ГОСТ 32387-2013

    ГОСТ 30828-2002

    ГОСТ 24147-80

    ГОСТ 3118-77

    ГОСТ 32290-2013

    ГОСТ 32440-2013

    ГОСТ 32473-2013

    ГОСТ 32429-2013

    ГОСТ 32291-2013

    ГОСТ 32438-2013

    ГОСТ 3117-78

    ГОСТ 32432-2013

    ГОСТ 32536-2013

    ГОСТ 32372-2013

    ГОСТ 32439-2013

    ГОСТ 32386-2013

    ГОСТ 32541-2013

    ГОСТ 32466-2013

    ГОСТ 33034-2014

    ГОСТ 33035-2014

    ГОСТ 32293-2013

    ГОСТ 32443-2013

    ГОСТ 32474-2013

    ГОСТ 32627-2014

    ГОСТ 33036-2014

    ГОСТ 33040-2014

    ГОСТ 33044-2014

    ГОСТ 32444-2013

    ГОСТ 33038-2014

    ГОСТ 33039-2014

    ГОСТ 33041-2014

    ГОСТ 32442-2013

    ГОСТ 33413-2015

    ГОСТ 33042-2014

    ГОСТ 33096-2014

    ГОСТ 33043-2014

    ГОСТ 33097-2014

    ГОСТ 25336-82

    ГОСТ 33091-2014

    ГОСТ 33061-2014

    ГОСТ 34637-2020

    ГОСТ 33779-2016

    ГОСТ 34638-2020

    ГОСТ 33033-2014

    ГОСТ 3762-78

    ГОСТ 33022-2014

    ГОСТ 32538-2013

    ГОСТ 32370-2013

    ГОСТ 3759-75

    ГОСТ 33023-2014

    ГОСТ 3757-75

    ГОСТ 3758-75

    ГОСТ 33021-2014

    ГОСТ 33777-2016

    ГОСТ 32537-2013

    ГОСТ 32475-2013

    ГОСТ 34639-2020

    ГОСТ 32634-2020

    ГОСТ 342-77

    ГОСТ 3885-73

    ГОСТ 27872-88

    ГОСТ 3777-76

    ГОСТ 3763-76

    ГОСТ 3769-78

    ГОСТ 3770-75

    ГОСТ 3772-74

    ГОСТ 3771-74

    ГОСТ 3760-79

    ГОСТ 4038-79

    ГОСТ 3774-76

    ГОСТ 4108-72

    ГОСТ 3773-72

    ГОСТ 26449.2-85

    ГОСТ 4055-78

    ГОСТ 4110-75

    ГОСТ 3765-78

    ГОСТ 3776-78

    ГОСТ 4109-79

    ГОСТ 4144-79

    ГОСТ 32509-2013

    ГОСТ 4169-76

    ГОСТ 32427-2013

    ГОСТ 4159-79

    ГОСТ 4142-77

    ГОСТ 33059-2014

    ГОСТ 4139-75

    ГОСТ 3652-69

    ГОСТ 4107-78

    ГОСТ 4146-74

    ГОСТ 4145-74

    ГОСТ 4158-80

    ГОСТ 4143-78

    ГОСТ 4140-74

    ГОСТ 4148-78

    ГОСТ 4171-76

    ГОСТ 4170-78

    ГОСТ 4167-74

    ГОСТ 4166-76

    ГОСТ 4168-79

    ГОСТ 4162-79

    ГОСТ 4164-79

    ГОСТ 4174-77

    ГОСТ 4199-76

    ГОСТ 4200-77

    ГОСТ 4197-74

    ГОСТ 4160-74

    ГОСТ 4201-79

    ГОСТ 4214-78

    ГОСТ 4207-75

    ГОСТ 4206-75

    ГОСТ 4147-74

    ГОСТ 4165-78

    ГОСТ 4202-75

    ГОСТ 4236-77

    ГОСТ 4238-77

    ГОСТ 4172-76

    ГОСТ 4220-75

    ГОСТ 4329-77

    ГОСТ 4198-75

    ГОСТ 4208-72

    ГОСТ 4223-75

    ГОСТ 4221-76

    ГОСТ 4237-76

    ГОСТ 4330-76

    ГОСТ 4217-77

    ГОСТ 4331-78

    ГОСТ 4232-74

    ГОСТ 4209-77

    ГОСТ 435-77

    ГОСТ 4456-75

    ГОСТ 4462-78

    ГОСТ 4465-74

    ГОСТ 4461-77

    ГОСТ 4459-75

    ГОСТ 4332-76

    ГОСТ 4478-78

    ГОСТ 4471-78

    ГОСТ 4328-77

    ГОСТ 4204-77

    ГОСТ 4518-75

    ГОСТ 4465-2016

    ГОСТ 4467-79

    ГОСТ 4520-78

    ГОСТ 4234-77

    ГОСТ 4523-77

    ГОСТ 4457-74

    ГОСТ 4556-78

    ГОСТ 4466-78

    ГОСТ 4473-78

    ГОСТ 4470-79

    ГОСТ 4919.2-77

    ГОСТ 4521-78

    ГОСТ 4472-78

    ГОСТ 4463-76

    ГОСТ 4212-2016

    ГОСТ 4233-77

    ГОСТ 4526-75

    ГОСТ 4529-78

    ГОСТ 4528-78

    ГОСТ 4525-77

    ГОСТ 5106-77

    ГОСТ 5407-78

    ГОСТ 5230-74

    ГОСТ 5789-78

    ГОСТ 5818-78

    ГОСТ 5712-78

    ГОСТ 5819-78

    ГОСТ 4530-76

    ГОСТ 4919.2-2016

    ГОСТ 5456-79

    ГОСТ 5821-78

    ГОСТ 5841-74

    ГОСТ 5815-77

    ГОСТ 5823-78

    ГОСТ 5822-78

    ГОСТ 5828-77

    ГОСТ 5842-75

    ГОСТ 5538-78

    ГОСТ 5817-77

    ГОСТ 5429-74

    ГОСТ 5820-78

    ГОСТ 5855-78

    ГОСТ 5830-79

    ГОСТ 5829-71

    ГОСТ 5851-75

    ГОСТ 5845-79

    ГОСТ 5839-77

    ГОСТ 5833-75

    ГОСТ 5852-79

    ГОСТ 5860-75

    ГОСТ 5826-78

    ГОСТ 5848-73

    ГОСТ 6006-78

    ГОСТ 6016-77

    ГОСТ 6038-79

    ГОСТ 5868-78

    ГОСТ 4212-76

    ГОСТ 5955-75

    ГОСТ 6261-78

    ГОСТ 612-75

    ГОСТ 6053-77

    ГОСТ 7851-74

    ГОСТ 6341-75

    ГОСТ 8.120-83

    ГОСТ 6344-73

    ГОСТ 8.134-74

    ГОСТ 8.120-99

    ГОСТ 8.135-74

    ГОСТ 7172-76

    ГОСТ 7168-80

    ГОСТ 5869-77

    ГОСТ 6259-75

    ГОСТ 8.531-85

    ГОСТ 8.315-97

    ГОСТ 6419-78

    ГОСТ 4919.1-77

    ГОСТ 684-78

    ГОСТ 7995-80

    ГОСТ 6691-77

    ГОСТ 8750-78

    ГОСТ 61-75

    ГОСТ 6262-79

    ГОСТ 4517-2016

    ГОСТ 5861-79

    ГОСТ 7298-79

    ГОСТ 8682-93

    ГОСТ 8421-79

    ГОСТ 8677-76

    ГОСТ 6552-80

    ГОСТ 8864-71

    ГОСТ 7205-77

    ГОСТ 8422-76

    ГОСТ 8751-72

    ГОСТ 841-76

    ГОСТ ИСО 8130.7-2001

    ГОСТ 84-76

    ГОСТ 8927-79

    ГОСТ 9419-78

    ГОСТ 6709-72

    ГОСТ Р 54255-2010

    ГОСТ 9262-77

    ГОСТ 8504-71

    ГОСТ Р 50759-95

    ГОСТ 9803-75

    ГОСТ Р 50760-95

    ГОСТ Р ИСО 13067-2016

    ГОСТ 9337-79

    ГОСТ Р ИСО 13079-2015

    ГОСТ 9546-75

    ГОСТ 6995-77

    ГОСТ Р ИСО 1769-94

    ГОСТ Р ИСО 16242-2016

    ГОСТ Р 58144-2018

    ГОСТ 9737-93

    ГОСТ 9428-73

    ГОСТ Р ИСО 16243-2016

    ГОСТ 9336-75

    ГОСТ Р ИСО 4794-94

    ГОСТ 9147-80

    ГОСТ Р ИСО 27911-2015

    ГОСТ Р 52501-2005

    ГОСТ 9485-74

    ГОСТ 9656-75

    ГОСТ Р ИСО 22309-2015

    ГОСТ 8.134-98

    ГОСТ 83-79

    ГОСТ Р 51521-99

    ГОСТ Р 54921-2012

    ГОСТ Р 54919-2012

    ГОСТ 8.450-81

    ГОСТ Р ИСО 6144-2008

    ГОСТ Р ИСО 16962-2012

    ГОСТ 4517-87

    ГОСТ Р 54920-2012

    ГОСТ Р ИСО 6142-2008

    ГОСТ Р 55845-2013

    ГОСТ 4919.1-2016